首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Corcia  I Pecht  S Hemmerich  S Ran  B Rivnay 《Biochemistry》1988,27(19):7499-7506
Ion channels, activated upon IgE-Fc epsilon receptor aggregation by specific antigen, were studied in micropipet-supported lipid bilayers. These bilayers were reconstituted with purified IgE-Fc epsilon receptor complex and the intact 110-kDa channel-forming protein, both isolated from plasma membranes of rat basophilic leukemia cells (line RBL-2H3). In order to identify the current carrier through these ion channels and to determine their ion selectivity, we investigated the currents flowing through the IgE-Fc epsilon receptor gated channels in the presence of a gradient of Ca2+ ions. Thus, the solution in which the micropipet-supported bilayer was immersed contained 1.8 mM CaCl2, while the interior of the micropipet contained 0.1 microM Ca2+ (buffered with EGTA). Both solutions also contained 150 mM of a monovalent cation chloride salt (either K+ or Na+). The currents induced upon specific aggregation of the IgE (by either antigen or anti-IgE antibodies) were examined over a range of potentials imposed on the bilayer. The type of conductance event most frequently observed under the employed experimental conditions was a channel that has a slope conductance of 3 pS and a reversal potential practically identical with the calculated value for the reversal potential of calcium (134 +/- 11 mV in the presence of sodium, 125 +/- 13 mV in the presence of potassium). These results indicate that this channel is highly selective for calcium against the monovalent cations sodium and potassium. This same channel has a conductance of 4-5 pS in the presence of symmetrical solutions containing only 100 mM CaCl2 and 8 pS in the presence of 0.5 M NaCl with no calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
B M Curtis  W A Catterall 《Biochemistry》1986,25(11):3077-3083
The purified calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubule membrane consists of three subunits: alpha with Mr 135 000, beta with Mr 50 000, and gamma with Mr 33 000. Purified receptor preparations were incorporated into phosphatidylcholine (PC) vesicles by addition of PC in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and removal of detergent by molecular sieve chromatography. Forty-five percent of the alpha, beta, and gamma polypeptides and the [3H]dihydropyridine/receptor complex were recovered in association with PC vesicles. The rate of dissociation of the purified and reconstituted dihydropyridine/receptor complex was identical with that in T-tubule membranes, and allosteric modulation by verapamil and diltiazem was retained. The reconstituted calcium antagonist receptor, when occupied by the calcium channel activator BAY K 8644, mediated specific 45Ca2+ and 133Ba2+ transport into the reconstituted vesicles. 45Ca2+ influx was blocked by the organic calcium antagonists PN200-110 (K0.5 = 0.2 microM), D600 (K0.5 = 1.0 microM), and verapamil (K0.5 = 1.5 microM) and by inorganic calcium channel antagonists (La3+ greater than Cd2+ greater than Ni2+ greater than Mg2+) as in intact T-tubules. A close quantitative correlation was observed between the presence of the alpha, beta, and gamma subunits of the calcium antagonist receptor and the ability to mediate 45Ca2+ or 133Ba2+ flux into reconstituted vesicles. Comparison of the number of reconstituted calcium antagonist receptors and functional channels supports the conclusion that only a few percent of the purified calcium antagonist receptor polypeptides are capable of mediating calcium transport as previously demonstrated for calcium antagonist receptors in intact T-tubules.  相似文献   

3.
The single channel conductance of the dihydropyridine (DHP)-sensitive calcium channel from rabbit skeletal muscle transverse tubules was analyzed in detail using the planar bilayer recording technique. With 0.1 M BaCl2 on both sides of the channel (symmetrical solutions), the most frequent conductance is 12 pS, which is independent of holding potential in the range of -80 to +80 mV. This conductance accounts for approximately 80% of all openings analyzed close to 0 mV. Two additional channels of conductance 9 and 3 pS are also present at all positive potentials, but their relative occurrence close to 0 mV is low. All channels depend on the presence of agonist Bay K 8644 and are inhibited by the antagonist nitrendipine. The relative occurrence of 9 and 3 pS can be increased, and that of 12 pS decreased, by several interventions such as external addition of cholesterol, lectin (wheat germ agglutinin), or calmodulin inhibitor R24571 (calmidazolium). The 9- and 3-pS channels are also conspicuous at positive potentials larger than +40 mV. We suggest that 9- and 3-pS channels are two elementary conductances of the same DHP-sensitive Ca channel. Under most circumstances, these two conductances are gated in a coupled way to generate a channel with a unitary conductance of 12 pS. Interventions tested, including large depolarizations, probably decompose or uncouple the 12-pS channel into 9 and 3 pS.  相似文献   

4.
The ryanodine receptor of rabbit skeletal muscle sarcoplasmic reticulum was purified as a single 450,000-dalton polypeptide from CHAPS-solubilized triads using immunoaffinity chromatography. The purified receptor had a [3H]ryanodine-binding capacity (Bmax) of 490 pmol/mg and a binding affinity (Kd) of 7.0 nM. Using planar bilayer recording techniques, we show that the purified receptor forms cationic channels selective for divalent ions. Ryanodine receptor channels were identical to the Ca-release channels described in native sarcoplasmic reticulum using the same techniques. In the present work, four criteria were used to establish this identity: (a) activation of channels by micromolar Ca and millimolar ATP and inhibition by micromolar ruthenium red, (b) a main channel conductance of 110 +/- 10 pS in 54 mM trans Ca, (c) a long-term open state of lower unitary conductance induced by ryanodine concentrations as low as 20 nM, and (d) a permeability ratio PCa/PTris approximately equal to 14. In addition, we show that the purified ryanodine receptor channel displays a saturable conductance in both monovalent and divalent cation solutions (gamma max for K and Ca = 1 nS and 172 pS, respectively). In the absence of Ca, channels had a broad selectivity for monovalent cations, but in the presence of Ca, they were selectively permeable to Ca against K by a permeability ratio PCa/PK approximately equal to 6. Receptor channels displayed several equivalent conductance levels, which suggest an oligomeric pore structure. We conclude that the 450,000-dalton polypeptide ryanodine receptor is the Ca-release channel of the sarcoplasmic reticulum and is the target site of ruthenium red and ryanodine.  相似文献   

5.
Summary Ion channels permeable to barium and calcium were reconstituted from theAplysia nervous system into phospholipid bilayers formed on the tips of patch electrodes. With asymmetrical concentrations of barium or calcium on the two sides of the bilayer, the single-channel currents reversed at the calculated barium or calcium reversal potentials, indicating that the channels were cation selective. Channels with conductances of 10, 25 and 36 pS were routinely observed. Calcium and barium were equally effective as charge carriers for the 36-pS channel, whereas magnesium was at least fifteenfold less effective. The gating of all three channels was independent of the voltage across the bilayer, but was affected by the dihydropyridine calcium channel agonist Bay K 8644 (Bay K). In the presence of Bay K but not in its absence, long discrete gating events were routinely observed, suggesting that the dihydropyridine increased the probability of long open states as it does for calcium channels in other systems.Bilayers invariably contained more than a single channel (or conductance state). This was observed even when theAplysia nervous system membranes were prepared in the presence of cytoskeleton disrupting agents, or when the membrane proteins were diluted extensively with exogenous phospholipid. Furthermore, transitions between conductance levels were observed with high frequency. These findings, together with the fact that all of the conductance states share certain properties including voltage-independence and sensitivity to Bay K, suggest that the apparent multiple channel types may in fact represent subconductance states of a single ion channel.  相似文献   

6.
The recently described calcium channel agonists Bay-K8644 and CGP-28392 have been used to induce long-term opening of calcium channels from purified rat muscle transverse tubules (t-tubules) incorporated into planar phospholipid bilayers. Agonist-open channels are selective for divalent cations (except Mg++), display voltage-dependent kinetics, and are blocked by the calcium channel antagonist, nitrendipine. The sensitivity to dihydropyridine agonists and antagonists indicate that a pool of t-tubule calcium channels remain functional after membrane fractionation and purification.  相似文献   

7.
The binding of dihydropyridine (PN200-110) to skeletal muscle microsomes (which were 84% sealed inside-out vesicles) was not influenced by the addition of calcium or magnesium nor by addition of their chelators (EDTA or EGTA) unless the vesicles were pretreated with the calcium-magnesium ionophore A23187 and EDTA to remove entrapped cations. Separation of inside-out vesicles from right-side-out vesicles by wheat germ agglutinin chromatography revealed that only the right-side-out vesicles exhibited a calcium-, magnesium-, and chelator-dependent binding of PN200-110. Dihydropyridine binding to cardiac sarcolemma membranes (which were 46% inside-out) and to solubilized skeletal muscle membranes was inhibited by EDTA and could be fully restored by 10 microM calcium or 1 mM magnesium. Calcium increased PN200-110 binding to partially purified rabbit skeletal muscle calcium channels from 3.9 pmol/mg protein to 25.5 pmol/mg protein with a pK0.5 = 6.57 +/- 0.059 and a Hill coefficient of 0.56 +/- 0.04. Magnesium increased binding from 0.7 pmol/mg protein to 16.8 pmol/mg protein with a pK0.5 = 3.88 +/- 0.085 and a Hill coefficient of 0.68 +/- 0.074. These studies suggest that calcium binding to high affinity sites or magnesium binding to low affinity sites on the extracellular side of skeletal muscle T-tubule calcium channels regulates dihydropyridine binding. Further, similar calcium and magnesium binding sites exist on the cardiac calcium channel and serve to allosterically regulate dihydropyridine binding.  相似文献   

8.
Electric conductance was studied across micropipette-supported planar lipid bilayers, reconstituted with IgE-Fc epsilon receptor and the cromolyn-binding protein (CBP) isolated from membranes of rat basophilic leukemia cells (RBL-2H3). Currents were observed following the addition of aggregating agents, specific for either of the two proteins. The results show that the two proteins are necessary and sufficient for the opening of cation channels. Both aggregation of Fc epsilon receptor via IgE with a specific antigen and of CBP by anti-CBP induce channels with similar conductances and open-time distributions. In the presence of 1.8 mM calcium, the most frequently observed channels have a conductance of 1-2 pS. At 100 mM calcium conductance increased to 4-5 pS. Channels induced by antigen were susceptible to blocking by the anti-allergic drug cromolyn. These results suggest that CBP acts as the core of the cation channel and that the channel conductance and open-time characteristics are independent of the mode of aggregation.  相似文献   

9.
We are interested in the properties of the target site of cholinergic anti-nematodal drugs for therapeutic reasons. The target receptors are ligand-gated ion channels that have different subtypes, and each subtype may have a different pharmacology. In a contraction assay using the parasitic nematode Ascaris suum, our laboratory has identified several subtypes, including an N-subtype, preferentially activated by nicotine, and an L-subtype, preferentially activated by levamisole. Here we use patch-clamp recordings to test the hypothesis that the single-channel selectivities of nicotine and levamisole are different. Unitary currents evoked by nicotine in this preparation were characterised for the first time. In some patches, both nicotine and levamisole activated small- and large-conductance channels. In other patches, the agonists activated just one channel amplitude. Discriminant analysis allowed classification of the one-conductance patch channels into the small or large categories, based on sets defined by the two-conductance patch data. The small channels had a conductance of 26.1+/-1.5 pS, n=18 (mean+/-SEM); the large conductance channels had a conductance of 38.8+/-1.2 pS, n=23 (mean+/-SEM). Analysis of amplitude histograms of the two-conductance patches showed that nicotine preferentially activated the small-conductance channels and levamisole preferentially activated the large-conductance channels. Our observations suggest that the N-subtype receptor channel has a conductance of 26 pS channel and the L-subtype receptor channel has a conductance of 39 pS.  相似文献   

10.
We examined ion channels derived from a chloroform extract of isolated, dehydrated rat liver mitochondria. The extraction method was previously used to isolate a channel-forming complex containing poly-3-hydroxybutyrate and calcium polyphosphate from Escherichia coli. This complex is also present in eukaryotic membranes, and is located primarily in mitochondria. Reconstituted channels showed multiple subconductance levels and were voltage-dependent, showing an increased probability of higher conductance states at voltages near zero. In symmetric 150 mM KCl, the maximal conductance of the channel ranged from 350 pS to 750 pS. For voltages >+/-60 mV, conductance fluctuated in the range of approximately 50- approximately 200 pS. In the presence of a 1:3 gradient of KCl, at pH = 7.4, selectivity periodically switched between different states ranging from weakly anion-selective (V(rev) approximately -15 mV) to ideally cation-selective (V(rev) approximately +29 mV), without a significant change in its conductance. Overall, the diverse, but highly reproducible, channel activity most closely resembled the behavior of the permeability transition pore channel seen in patch-clamp experiments on native mitoplasts. We suggest that the isolated complex may represent the ion-conducting module from the permeability transition pore.  相似文献   

11.
The CHAPS-solubilized and purified 30S ryanodine receptor protein complex from skeletal sarcoplasmic reticulum (SR) was incorporated into planar lipid bilayers. The resulting electrical activity displayed similar responses to agents such as Ca2+, ATP, ryanodine, or caffeine as the native Ca2+ release channel, confirming the identification of the 30S complex as the Ca2+ release channel. The purified channel was permeable to monovalent ions such as Na+, with the permeability ratio PCa/PNa approximately 5, and was highly selective for cations over anions. The purified channel also showed at least four distinct conductance levels for both Na+ and Ca2+ conducting ions, with the major subconducting level in NaCl buffers possessing half the conductance value of the main conductance state. These levels may be produced by intrinsic subconductances present within the channel oligomer. Several of these conductances may be cooperatively coupled to produce the characteristic 100 +/- 10 pS unitary Ca2+ conductance of the native channel.  相似文献   

12.
The single channel properties of recombinant gamma-aminobutyric acid type A (GABA(A))alphabetagamma receptors co-expressed with the trafficking protein GABARAP were investigated using membrane patches in the outside-out patch clamp configuration from transiently transfected L929 cells. In control cells expressing alphabetagamma receptors alone, GABA activated single channels whose main conductance was 30 picosiemens (pS) with a subconductance state of 20 pS, and increasing the GABA concentration did not alter their conductance. In contrast, when GABA(A) receptors were co-expressed with GABARAP, the GABA-activated single channels displayed multiple, high conductances (> or =40 pS), and GABA (> or =10 microM) was able to increase their conductance, up to a maximum of 60 pS. The mean open time of GABA-activated channels in control cells expressing alphabetagamma receptors alone was 2.3 +/- 0.1 ms for the main 30-pS channel and shorter for the subconductance state (20 pS, 0.8 +/- 0.1 ms). Similar values were measured for the 30- and 20-pS channels active in patches from cells co-expressing GABARAP. However higher conductance channels (> or =40 pS) remained open longer, irrespective of whether GABA or GABA plus diazepam activated them. Plotting mean open times against mean conductances revealed a linear relationship between these two parameters. Since high GABA concentrations increase both the maximum single channel conductance and mean open time of GABA(A) channels co-expressed with GABARAP, trafficking processes must influence ion channel properties. This suggests that the organization of extrasynaptic GABA(A) receptors may provide a range of distinct inhibitory currents in the brain and, further, provide differential drug responses.  相似文献   

13.
Beticolin 3 (B3) belongs to a family of nonpeptidic phytotoxins produced by the fungus Cercospora beticola, which present a broad spectrum of cytotoxic effects. We report here that, at cytotoxic concentration (10 microM), B3 formed voltage-independent, weakly selective ion channels with multiple conductance levels in planar lipid bilayers. In symmetrical standard solutions, conductance values of the first levels were, respectively, 16 +/- 1 pS, 32 +/- 2 pS, and 57 +/- 2 pS (n = 4) and so on, any conductance level being roughly twice the lower one. Whether a cluster organization of elementary channels or different channel structures underlies this particular property was addressed by investigating the ionic selectivity and the pore size corresponding to the first three conductance levels. Both selectivity and pore size were found to be almost independent of the conductance level. This indicated that multiple conductance behavior resulted from a cluster organization of "B3 elementary channels." According to the estimated pore size and analyses of x-ray diffraction of B3 microcrystals, a structural model for "B3 elementary channels" is proposed. The ability to form channels is likely to be involved in the biological activity of beticolins.  相似文献   

14.
Single calcium-activated potassium channel currents were recorded in intact and excised membrane patches from cultured human macrophages. Channel conductance was 240 pS in symmetrical 145 mM K+ and 130 pS in 5 mM external K+. Lower conductance current fluctuations (40% of the larger channels) with the same reversal potential as the higher conductance channels were noted in some patches. Ion substitution experiments indicated that the channel is permeable to potassium and relatively impermeable to sodium. The frequency of channel opening increased with depolarization and intracellular calcium concentration. At 10(-7) M (Ca++)i, channel activity was evident only at potentials of +40 mV or more depolarized, while at 10(-5) M, channels were open at all voltages tested (-40 to +60 mV). In intact patches, channels were seen at depolarized patch potentials of +50 mV or greater, indicating that the ionized calcium concentration in the macrophage is probably less than 10(-7) M.  相似文献   

15.
Voltage-dependent calcium channels are vital to cardiac muscle contraction. Therefore it is very important to isolate physiologically active channel proteins, however there have been few reports on their solubilization and reconstitution. Highly purified sarcolemmal membranes from bovine cardiac muscle were solubilized with octylglucoside, partially purified by gel filtration, and reconstituted into planar lipid bilayer by the direct insertion method. At least, two cation channel activities were observed: one with about 4.2 pS and the other with about 28 pS in conductance. From the reversal potential, it was concluded that Ba2+ ions are the current carrier through these two channels.  相似文献   

16.
Activation of phospholipase C (PLC)-mediated signaling pathways in non-excitable cells causes the release of calcium (Ca2+) from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ influx via plasma membrane Ca2+ channels. The properties and molecular identity of plasma membrane Ca2+ influx channels in non-excitable cells is a focus of intense investigation. In the previous studies we used patch clamp electrophysiology to describe the properties of Ca2+ influx channels in human carcinoma A431 cell lines. Now we extend our studies to human embryonic kidney HEK293 cells. By using a combination of Ca2+ imaging and whole cell and single channel patch clamp recordings we discovered that: 1) HEK293 cells contain four types of plasma membrane Ca2+ influx channels: I(CRAC), Imin, Imax, and I(NS); 2) I(CRAC) channels are highly Ca2+-selective (P(Ca/Cs)>1000) and I(CRAC) single channel conductance is too small for single channel analysis; 3) Imin channels in HEK293 cells display functional properties identical to Imin channels in A431 cells, with single channel conductance of 1.2 pS for divalent cations, 10 pS for monovalent cations, and divalent cation selectivity P(Ba/K)=20; 4) Imin channels in HEK293 cells are activated by InsP3 and inhibited by phosphatidylinositol 4,5-bisphosphate, but store-independent; 5) when compared with Imin, Imax channels have higher conductance for divalent (17 pS) and monovalent (33 pS) cations, but less selective for divalent cations (P(Ba/K)=4), 6) Imax channels in HEK293 cells can be activated by InsP3 or by Ca2+ store depletion; 7) I(NS) channels are non-selective (P(Ba/K)=0.4) and display a single channel conductance of 5 pS; and 8) I(NS) channels are not gated by InsP3 but activated by depletion of intracellular Ca2+ stores. Our findings provide novel information about endogenous Ca2+ channels supporting receptor-operated and store-operated Ca2+ influx pathways in HEK293 cells.  相似文献   

17.
Single acetylcholine-activated channels have been recorded from neurons dissociated from the sympathetic chain of 17-21 day old rats. The mean single channel conductance is 35 pS in normal medium containing 1 mM calcium, and 51 pS in the absence of calcium. The measured current amplitudes are about five times more variable than at the frog endplate, at least in part because the current, while the channel is open, is much noisier than when it is shut. Single activations of the receptor by acetylcholine (ACh) produce a burst of openings; the distribution of the burst length has two components, the longer of which is of primary importance in synaptic transmission. Whole-cell currents, in response to ACh (up to 30 microM), show strong inward rectification with no outward current being detectable. This phenomenon is similar whether the intracellular ion is sodium or cesium, whether or not divalent cations are present, and whether or not atropine is present. Nevertheless, outward single-channel currents (of normal conductance) are detectable in isolated outside-out patches.  相似文献   

18.
Voltage activated calcium channels were studied in rat cerebellar granule cells in primary culture. Macroscopic currents, carried by 20mM Ba2+, were measured in the whole-cell configuration. Slowly inactivating macroscopic currents, with a maximum value at a membrane potential around 5 mV, were recorded between the 1st and the 4th day in culture. These currents were completely blocked by 5mM Co2+, partially blocked by 10 microM nifedipine, and increased by 2 to 5 microM BAY K-8644. Two types of channels, in the presence of 80 mM Ba2+, were identified by single channel recording in cell-attached patches. The first type, which was dihydropyridine agonist sensitive, had a conductance of 18 pS, a half activation potential of more than 10 mV and did not inactivate. This type of channel was the only type found during the first four days in culture, although it was also present up to the 11th day. The second type of channel was dihydropyridine insensitive, had a conductance of 10 pS, a half activation potential less than -15 mV, and displayed voltage dependent inactivation. This second type of channel was found in cells for more than four days in culture.  相似文献   

19.
Phosphate starvation induced oligomeric proteins from the outer membranes of Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aureofaciens, and Pseudomonas chlororaphis were purified to homogeneity. The incorporation of the purified proteins into planar lipid bilayer membranes resulted in stepwise increases in membrane conductance. Single channel conductance experiments demonstrated that these proteins were all capable of forming small channels, similar to the Pseudomonas aeruginosa phospsate porin protein P, with average single channel conductances in 1 M KCl of between 233 and 252 pS. Single channel conductance measurements made in salts of varying cation or anion size indicated that the channels were uniformly anion selective. The measurement of single channel conductance as a function of KCl concentration revealed that all channels saturated at higher salt concentrations, consistent with the presence of an anion-binding site in the channel. Apparent Kd values for Cl- binding were calculated and shown to vary only twofold (180-297 mM) among all channels, including protein P channels. Phosphate competitively inhibited chloride conductance through these channels with apparent I50 values of between 0.59 and 2.5 mM phosphate at 40 mM Cl- and between 9.7 and 27 mM phosphate at 1 m Cl-. These data were consistent with the presence of a phosphate-binding site in the channels of these phosphate-regulated proteins. Furthermore, they indicated that these channels exhibit at least a 20- to 80-fold higher affinity for phosphate than for chloride.  相似文献   

20.
The cardiac receptor for calcium channel blockers was purified from bovine microsomal membranes which contained 235 +/- 33 fmol nimodipine-binding sites/mg protein (mean +/- SEM of nine preparations). To identify the receptor during the purification 20% of its binding sites were prelabeled with (+)[3H]PN200-110. The receptor was solubilized with 0.6% digitonin and was purified to a specific density of 157 pmol/mg using a combination of ion-exchange, wheat-germ-agglutinin-Sepharose chromatography and sucrose density gradient centrifugation. In the last sucrose gradient bound (+)[3H]PN200-110 comigrated with a 195-kDa protein. ( +/-)[3H]Azidopine and [3H]ludopamil, the photoaffinity ligands for the dihydropyridine and phenylalkylamine-binding site of the calcium channel, were incorporated specifically into the 195-kDa protein. These data indicate that the bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Its molecular mass suggests that the bovine cardiac receptor differs considerably from the rabbit skeletal muscle receptor protein for calcium channel blockers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号