首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The 80% aqueous acetone extract of the rhizomes of Curcuma zedoaria cultivated in Thailand (Thai zedoary) was found to inhibit release of beta-hexosaminidase, as a marker of antigen-IgE-mediated degranulation, in RBL-2H3 cells and passive cutaneous anaphylaxis reaction in mice. From the active fraction, four curcuminoids (curcumin, dihydrocurcumin, tetrahydrodemethoxycurcumin, and tetrahydrobisdemethoxycurcumin) were isolated together with two bisabolane-type sesquiterpenes, and the effects of four curcuminoids from Thai zedoary and several related compounds on the degranulation were examined. Among them, curcumin showed the highest activity against beta-hexosaminidase release with IC(50) of 5.3 microM, followed by bisdemethoxycurcumin (IC(50) = 11 microM). With regard to the structural requirements of curcuminoids for the activity, the conjugated olefins at the 1-7 positions and the 4'- or 4'-hydroxyl groups of curcuminoids were suggested to be essential for the strong activity, whereas the 3'- or 3'-methoxyl group only enhanced the activity. Furthermore, effects of curcumin and bisdemethoxycurcumin on calcium ionophores (A23187 and ionomycin)-induced degranulation and antigen-induced release of TNF-alpha and IL-4 were examined.  相似文献   

2.
To clarify the structure-activity relationships of flavonoids for antiallergic activity, the inhibitory effects of various flavonoids on the release of beta-hexosaminidase, as a marker of degranulation of RBL-2H3 cells, were examined. Among them, luteolin (IC(50)=3.0 microM), diosmetin (2.1 microM), and fisetin (3.0 microM) were found to show potent inhibitory activity, and the results suggested the following structural requirements of flavonoids: (1) the 2-3 double bond of flavones and flavonols is essential for the activity; (2) the 3- or 7-glycoside moiety reduced the activity; (3) as the hydroxyl groups at the 3'-, 4'-, 5-, 6-, and 7-positions increased in number, the inhibitory activities become stronger; (4) the flavonols with a pyrogallol type moiety (the 3',4',5'-trihydroxyl groups) at the B ring exhibited less activity than those with a phenol type moiety (the 4'-hydroxyl group) or catechol type moiety (the 3',4'-dihydroxyl groups) at the B ring; (5) the activities of flavones were stronger than those of flavonols; and (6) methylation of flavonols at the 3-position reduced the activity. However, (7) several flavones and flavonols with the 4'- and/or 7-methoxyl groups did not obey rules (3), (4), and (5). In addition, several flavonoids, that is apigenin, luteolin, diosmetin, fisetin, and quercetin, inhibited the antigen-IgE-mediated TNF-alpha and IL-4 production from RBL-2H3 cells, both of which participate in the late phase of type I allergic reactions.  相似文献   

3.
Stilbenes isolated from the rhizomes of Rheum undulatum (Korean rhubarb) and the related compounds were investigated on their anti-allergic activities. The results revealed that 3,5,4'-trimethylpiceatannol exhibited the most potent inhibition against beta-hexosaminidase release as a marker of degranulation in RBL-2H3 cells with IC(50) of 2.1 microM, followed by trimethylresveratrol (IC(50)=5.1 microM). Structural requirements of stilbenes for the activity are as follows: (1) The oxygen functions (-OCH(3), -OH), especially methoxyl groups, are essential and their positions on aromatic rings are important for the activity; (2) the alpha-beta double bond increased the activity; (3) the glycoside moiety dramatically decreased the activity; and (4) the substitution group at the 3'-position in trimethylresveratrol (3,5,4'-trimethoxystilbene) was preferably OH>H>OCH(3) for the activity. Several active stilbenes (piceatannol, 3,5,4'-trimethylpiceatannol, resveratrol, trimethylresveratrol) also inhibited ionomycin-induced beta-hexosaminidase release, suggesting that inhibition of Ca(2+) influx or degranulation mechanisms after Ca(2+) influx is important for their activities. Piceatannol, 3,5,4'-trimethylpiceatannol, resveratrol, and trimethylresveratrol also significantly inhibited antigen-induced release of TNF-alpha and IL-4 in RBL-2H3 cells.  相似文献   

4.
Ca2+ acts as an important second messenger in mast cells. However, the mechanisms involved in the secretion of inflammatory cytokines from activated mast cells are unknown. In this study, we examined the signaling pathway involved in calcium-related cytokine secretion in a mast cell line, RBL-2H3 cells. We report that treatment with 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), a chelator of intracellular calcium, can inhibit IgE-stimulated TNF-alpha and IL-6 secretion in a concentration-dependent manner with IC50 values of 0.41 and 0.014 microM, respectively. Maximal inhibition of TNFalpha- and IL-6 secretion was 58.5 +/- 3% and 87 +/- 8% in BAPTA-AM, respectively. BAPTA-AM also completely inhibited the IgE-induced TNF-alpha and IL-6 mRNA levels. In activated RBL-2H3 cells, the expression level of NF-kappaB/Rel A protein increased in the nucleus. However, the level of NF-kappaB/Rel A in nucleus was decreased by treatment of BAPTA-AM. In addition, BAPTA-AM completely inhibited the IgE-induced IkappaB kinase beta (IKKbeta) activation and IkappaBalpha phosphorylation. These observations demonstrate that the intracellular Ca2+ may play an important role in IgE-induced TNF-alpha and IL-6 secretion from mast cells via IKKbeta activation.  相似文献   

5.
There is a growing need to understand the impact of environmental sulfhydryl group-reactive heavy metals on the immune system. Here we show that Ag(+) induces mast cell degranulation, as does the aggregation of the high affinity immunoglobulin E receptor (FcepsilonRI). Micromolar quantities of Ag(+) specifically induced degranulation of mast cell model rat basophilic leukemia (RBL-2H3) cells without showing cytotoxicity. The Ag(+)-mediated degranulation could be observed as rapidly as 5 min after the addition of the ions. Ag(+) also induced a rapid change in tyrosine phosphorylation of multiple cellular proteins including the focal adhesion kinase but not Syk kinase. The Syk-selective inhibitor piceatannol and the Src family-selective tyrosine kinase inhibitor PP1 dose-dependently inhibited FcepsilonRI-mediated degranulation, whereas neither compound inhibited the Ag(+)-mediated degranulation. Furthermore, likewise FcepsilonRI aggregation, Ag(+) also induced leukotriene secretion. These results show that Ag(+) activates RBL-2H3 mast cells through a tyrosine phosphorylation-linked mechanism, which is distinct from that involved in FcepsilonRI-mediated activation.  相似文献   

6.
Peanut skin contains large amounts of polyphenols having antiallergic effects. We found that a peanut-skin extract (PSE) inhibits the degranulation induced by antigen stimulation of rat basophilic leukemia (RBL-2H3) cells. A low-molecular-weight fraction from PSE, PSEL, also had inhibitory activity against allergic degranulation. A main polyphenol in PSEL was purified by gel chromatography and fractionated by YMC-gel ODS-AQ 120S50 column. Electrospray ionization mass spectrometry (ESI-MS) analysis of the purified polyphenol gave m/z 599 [M+Na]?. Based on the results of 1H-NMR, 13C-NMR spectra, and optical rotation analysis, the polyphenol was identified as procyanidin A1. It inhibited the degranulation caused by antigen stimulation at the IC?? of 20.3 μM. Phorbol-12-myristate-13-acetate (PMA) and 2,5,-di(tert-butyl)-1,4-hydroquinone (DTBHQ)-induced processes of degranulation were also inhibited by procyanidin A1. These results indicate that peanut-skin procyanidin A1 inhibits degranulation downstream of protein kinase C activation or Ca2? influx from an internal store in RBL-2H3 cells.  相似文献   

7.
8.
In the mast cell signaling pathways, the binding of immunoglobulin E (IgE) to FcRI, its high-affinity receptor, is generally thought to be a passive step. In this study, we examined the effect of IgE alone, that is, without antigen stimulation, on the degranulation in mast cells. Monomeric IgE (500–5,000 ng/ml) alone increased cytosolic Ca2+ level ([Ca2+]i) and induced degranulation in rat basophilic leukemia (RBL)-2H3 mast cells. Monomeric IgE (5,000 ng/ml) alone also increased [Ca2+]i and induced degranulation in bone marrow-derived mast cells. Interestingly, monomeric IgE (5–50 ng/ml) alone, in concentrations too low to induce degranulation, increased filamentous actin content in RBL-2H3 mast cells. We next examined whether actin dynamics affect the IgE alone-induced RBL-2H3 mast cell activation pathways. Cytochalasin D inhibited the ability of IgE alone (50 ng/ml) to induce de novo actin assembly. In cytochalasin D-treated cells, IgE (50 ng/ml) alone increased [Ca2+]i and induced degranulation. We have summarized the current findings into two points. First, IgE alone increases [Ca2+]i and induces degranulation in mast cells. Second, IgE, at concentrations too low to increase either [Ca2+]i or degranulation, significantly induces actin assembly, which serves as a negative feedback control in the mast cell Ca2+ signaling and degranulation. mast cell; immunoglobulin E; cytochalasin D; Y-27632; wortmannin  相似文献   

9.
Sixteen heat-killed bifidobacteria isolated from human intestine and a probiotic strain Lactobacillus GG were tested for their ability to influence IgE-mediated degranulation of rat basophilic leukemia (RBL-2H3) cells in vitro . The bifidobacteria suppressed IgE-mediated degranulation of RBL-2H3 cells by 1.6–56.4% in a strain-dependent manner. Bifidobacteria from healthy infants expressed high inhibitory effects on IgE-mediated degranulation (41–55%), while those from allergic infants varied greatly in their effects against degranulation. Bifidobacteria taxonomically identified as Bifidobacterium bifidum exhibited much stronger inhibitory effects against IgE-mediated degranulation than those taxonomically identified as B. adolescentis ( P < 0.05).These results indicate that the intestinal bifidobacteria might be one of factors influencing IgE-mediated allergic responses.  相似文献   

10.
The methanolic extract of the bark of Betula platyphylla was found to suppress antigen mediated degranulation of RBL-2H3 cells. Four arylbutanoids (14) and eight diarylhepatonoids (512) were isolated from the methanolic extract using bioassay-guided fractionation. Among them, compounds 4 and 12 were isolated and assigned for the first time. Compounds 1, 2, 3, 5, 10, and 12 showed remarkable inhibitory activity against the degranulation of RBL-2H3 by antigen stimulation in a dose dependent manner at the concentrations ranging from 10 μM to 100 μM.  相似文献   

11.
Recent studies have revealed that SNARE proteins are involved in the exocytotic release (degranulation) in mast cells. However, the roles of SNARE regulatory proteins are poorly understood. Complexin is one such regulatory protein and it plays a crucial role in exocytotic release. In this study, we characterized the interaction between SNARE complex and complexin II in mast cells by GST pull-down assay and in vitro binding assay. We found that the SNARE complex that interacted with complexin II consisted of syntaxin-3, SNAP-23, and VAMP-2 or -8, whereas syntaxin-4 was not detected. Recombinant syntaxin-3 binds to complexin II by itself, but its affinity to complexin II was enhanced upon addition of VAMP-8 and SNAP-23. Furthermore, the region of complexin II responsible for binding to the SNARE complex, was near the central α-helix region. These results suggest that complexin II regulates degranulation by interacting with the SNARE complex containing syntaxin-3.  相似文献   

12.
A direct degranulation assay has been developed to enable the use of RBL mast cells as a biosensor for screening chemical libraries for drug discovery and environmental toxicity evaluation. Release of beta-hexosaminidase into the extracellular milleu is widely used to characterize cellular components and mechanisms involved in stimulated exocytosis, including those initiated by crosslinking of IgE receptors on mast cells. To adapt this versatile assay for high throughput screening, we developed a direct, in situ method in which beta-hexosaminidase detection is carried out in a single step, convenient for multi-sample processing and thus for biosensor applications. This direct assay is efficient for measuring exocytosis in antigen-stimulated RBL mast cells, detecting antigen concentrations as low as 1 pM. We also demonstrate its utility in detecting inhibition of degranulation by a known pharmacologic inhibitor that blocks Syk tyrosine kinase activity critical for cell activation.  相似文献   

13.
The SH2-containing protein tyrosine phosphatase1 (SHP-1) is important for signaling from immune receptors. To investigate the role of SHP-1 in mast cells we overexpressed the wild-type and the phosphatase-inactive forms of SHP-1 in rat basophilic leukemia 2H3 (RBL-2H3) mast cell line. The phosphatase-inactive SHP-1 (C453S or D419A) retains its ability to bind tyrosine phosphorylated substrates and thereby competes with the endogenous wild-type enzyme. Overexpression of wild-type SHP-1 decreased the FcepsilonRI aggregation-induced tyrosine phosphorylation of the beta and gamma subunits of the receptor whereas the dominant negative SHP-1 enhanced phosphorylation. There were also similar changes in the tyrosine phosphorylation of Syk. However, receptor-induced histamine release in the cells expressing either wild-type or dominant negative SHP-1 was similar to that in the parental control cells. In contrast, compared with the parental RBL-2H3 cells, FcepsilonRI-induced c-Jun N-terminal kinase phosphorylation and the level of TNF-alpha mRNA was increased in the cells overexpressing wild-type SHP-1 whereas the dominant negative SHP-1 had the opposite effect. The substrate-trapping mutant SHP1/D419A identified pp25 and pp30 as two major potential substrates of SHP-1 in RBL-2H3 cells. Therefore, SHP-1 may play a role in allergy and inflammation by regulating mast cell cytokine production.  相似文献   

14.
Polymethoxy flavones (PMFs) are present in fruit tissues of Citrus species. It has been reported that flavonoids isolated from several Citrus have been shown to suppress the degranulation as inferred by histamine release in rat basophilic leukemia RBL-2H3 cells. In this study, we examined the effect of PMFs (PMF-1: 6,7,4',5'-tetramethoxy-5-monohydroxyflavone, PMF-2: 5,6,8,3',6'-pentamethoxy flavone, PMF-3: 5,6,7,3',4',5'-hexamethoxy flavone) on the degranulation in RBL-2H3 cells. All the PMFs suppressed the degranulation from Ag-stimulated RBL-2H3 cells. Interestingly, PMF-combination (PMF-1+PMF-2; PMF-1+PMF-3) treatment enhanced the inhibition of degranulation compared with PMF-single treatment. In order to clarify the inhibitory mechanism of degranulation by PMFs, we examined the activation of intracellular signaling molecules such as Lyn, Syk, and PLCgammas. All the PMFs significantly suppressed the activation of Syk and PLCgammas. In Ag-mediated activation of Fc epsilonRI on mast cells, three major subfamilies of mitogen-activated protein kinases, especially ERK44/42, were activated. These PMFs reduced the level of phospho-ERKs. The intracellular free Ca(2+) concentration ([Ca(2+)]i) was elevated by Fc epsilonRI activation, and PMF treatment reduced the elevation of [Ca(2+)]i by suppressing Ca(2+) influx. Thus, it was suggested that the suppression of Ag-stimulated degranulation by these PMFs mainly is due to the Syk/PLCgammas/PKC pathway and Ca(2+) influx. Furthermore, to be noted in the PMF-combination treatment, inactivation of Syk was enhanced compared with PMF-single treatment. But the inhibitory effect of degranulation by PMF-combination treatment was not associated with the suppression of Ca(2+) influx.  相似文献   

15.
Recent studies have indicated that SNARE proteins and their accessory proteins are involved in exocytotic release in mast cells and neurotransmitter release in neuronal cells. These data suggest that a similar molecular mechanism operates in both systems. However, mast and neuronal cells are structurally very different; an active zone is found in neuronal cells. In the present study, we examined the involvement of active zone proteins during exocytosis in mast cells. We found that several active zone proteins are expressed in RBL-2H3 cells and focused on one of those proteins called ELKS. Overexpression and knockdown of ELKS caused an increase and decrease in exocytotic activity, respectively. Immunocytochemical analysis and live imaging of the expression of YFP-conjugated ELKS showed that ELKS was translocated to the plasma membrane after antigen stimulation. These results suggest that ELKS positively regulates exocytotic release in RBL-2H3 by acting on the plasma membrane upon stimulation.  相似文献   

16.
Antigen-stimulated rat basophilic leukemia (RBL-2H3) cells release serotonin and other inflammatory mediators by a process that requires Ca2+ influx and increased cytoplasmic Ca2+ levels, and is mimicked by Ca2+ ionophores. We report here that the Ca2+ response to antigen and to ionomycin has two components, a Ca2+ spike and a Ca2+ plateau. In nominally Ca2+-free medium, both components of the Ca2+ response are inhibited and secretion does not occur. In Na+-free medium, the initial Ca2+ spike induced by antigen or ionomycin occurs, but the plateau is again absent and secretion is inhibited by 30 to 50%. Secretion is also reduced by 10(-4) M amiloride, an inhibitor of Na+ transport pathways, and by 10(-5) M concentrations of two amiloride analogs with greater activity than amiloride, respectively, against Na+ channels and Na+/Ca2+ exchange. Phorbol esters, which stimulate protein kinase C, enhance the Ca2+ plateau and secretion caused by suboptimal amounts of both antigen and ionomycin; this enhancement depends on extracellular Na+. The Na+ ionophore, monensin, mimics the Ca2+ plateau. From these data, we infer that the Ca2+ spike and plateau reflect separate responses of RBL-2H3 cells to antigen or ionomycin. We propose that the Ca2+ plateau results at least in part from the activation of a Na+-dependent Ca2+ influx pathway. One possible mechanism is that antigen binding stimulates a protein kinase C-regulated Na+ transport system. The resulting influx of Na+ may activate a Na+/Ca2+ antiporter that supports the Ca2+ plateau and mediator release.  相似文献   

17.
Ceramide has been suggested to function as a mediator of exocytosis in response to the addition of a calcium ionophore from PC12 cells. Here, we show that although cell-permeable C(6)-ceramide or a calcium ionophore alone did not increase either the degranulation of serotonin or the release of arachidonic acid (AA) from RBL-2H3 cells, their combined effect significantly stimulated these processes in a time- and dose-dependent manner. This effect was inhibited by the presence of an exogenous calcium chelator and significantly suppressed by the CERK inhibitor (K1) and phospholipase A(2) (PLA(2)) inhibitors. Moreover, cytosolic PLA(2) GIVA (cPLA(2) GIVA) siRNA-transfected RBL-2H3 cells showed a lower level of serotonin release than scramble siRNA-transfected cells. Little is known about the regulation of degranulation proximal to the activation of cytosolic phospholipase A(2) GIVA, the initial rate-limiting step in RBL-2H3 cells. In this study, we suggest that CERK, ceramide-1-phosphate, and PLA(2) are involved in degranulation in a calcium-dependent manner. Inhibition of p44/p42 mitogen-activated protein kinase partially decreased the AA release, but did not affect degranulation. Furthermore, treatment of the cells with AA (ω-6, C20:4), not linoleic acid (ω-6, C18:2) or α-linolenic acid (ω-6, C18:3), induced degranulation. Taken together, these results suggest that ceramide is involved in mast cell degranulation via the calcium-mediated activation of PLA(2).  相似文献   

18.
In this study, the anti-allergy potency of thirteen tannins isolated from the galls on buds of Carpinus tschonoskii (including two tannin derivatives) was investigated. RBL-2H3 (rat basophilic leukemia) cells were incubated with these compounds, and the release of β-hexosaminidase and cytotoxicity were measured. Of the thirteen tannins, tetragalloylglucose (2), pentagalloylglucose (3), casuarictin (4), and casuarinin (9) were the most potent inhibitors, and all the tannins showed no cytotoxic effect after 24 h of incubation. The results obtained suggest that tannins from C. tschonoskii are capable of inhibiting allergic reactions and may be useful for the treatment or prevention of type I allergic diseases.  相似文献   

19.
The retinoic acid receptor (RAR) agonists, Re80 and Am80, partially inhibited the antigen-induced IL-4 production by rat mast cell line RBL-2H3 in a concentration-dependent manner (0.1 to 1000 nM). Both Re80 and Am80 also reduced the antigen-induced increase in IL-4 mRNA levels. The RAR antagonist LE540 at 4 microM reversed Re80 (100 nM)- and Am80 (100 nM)-induced inhibition of IL-4 production. The retinoid X receptor agonist HX600 (1 microM) by itself did not affect IL-4 production, but enhanced the inhibitory effect of Re80 (10 nM) and of Am80 (10 nM). Cyclosporin A suppressed the antigen-induced IL-4 production almost completely at 0.3 microM. These findings indicated that the antigen-induced IL-4 production by RBL-2H3 cells is partially inhibited by retinoids via RAR-dependent mechanisms.  相似文献   

20.
Degranulation in RBL-2H3 cells: regulation by calmodulin pathway   总被引:1,自引:0,他引:1  
Involvement of the calmodulin pathway in Ca2+-induced degranulation was evaluated in RBL-2H3 mast cells. Pretreatment of RBL-2H3 cells with a calmodulin antagonist, W-13, blocked ionomycin-dependent release of beta-hexosaminidase into the supernatant, although W-13 treatment alone slightly but significantly increased the release. Ca2+/calmodulin activates various protein kinases and phosphatases including myosin-light chain kinase (MLCK), calmodulin-dependent protein kinases (CaMKs), and calcineurin. When RBL-2H3 cells were pretreated with a MLCK inhibitor, ML-7, or a CaMKs inhibitor, KN-93, the ionomycin-dependent release of beta-hexosaminidase into the supernatant was inhibited. In addition, pretreatment with calcineurin inhibitors, cyclosporin A and FR901725, resulted in blockage of the ionomycin-dependent release of beta-hexosaminidase into the supernatant. Our results indicate that Ca2+/calmodulin, activated calmodulin, is indispensable for Ca2+-induced degranulation, and that within the calmodulin pathways, at least MLCK, CaMKs and calcineurin positively regulate the release of granules initiated by increasing cytosolic Ca2+ concentrations in RBL-2H3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号