首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural insights into the interaction of smooth muscle myosin with actin have been provided by computer-based fitting of crystal structures into three-dimensional reconstructions obtained by electron cryomicroscopy, and by mapping of structural and dynamic changes in the actomyosin complex. The actomyosin structures determined in the presence and absence of MgADP differ significantly from each other, and from all crystallographic structures of unbound myosin. Coupled to a complex movement ( approximately 34 A) of the light chain binding domain upon MgADP release, we observed a approximately 9 degrees rotation of the myosin motor domain relative to the actin filament, and a closure of the cleft that divides the actin binding region of the myosin head. Cleft closure is achieved by a movement of the upper 50 kDa region, while parts of the lower 50 kDa region are stabilized through strong interactions with actin. This model supports a mechanism in which binding of MgATP at the active site opens the cleft and disrupts the interface, thereby releasing myosin from actin.  相似文献   

2.
The motor protein myosin in association with actin transduces chemical free energy in ATP into work in the form of actin translation against an opposing force. Mediating the actomyosin interaction in myosin is an actin binding site distributed among several peptides on the myosin surface including surface loops contributing to affinity and actin regulation of myosin ATPase. A structured surface loop on beta-cardiac myosin, the cardiac or C-loop, was recently demonstrated to affect myosin ATPase and was indirectly implicated in the actomyosin interaction. The C-loop is a conserved feature of all myosin isoforms with crystal structures, suggesting that it is an essential part of the core energy transduction machinery. It is shown here that proteolytic digestion of the C-loop in beta-cardiac myosin eliminates actin-activated myosin ATPase and reduces actomyosin affinity in rigor more than 100-fold. Studies of C-loop function in smooth muscle myosin were also undertaken using site-directed mutagenesis. Mutagenesis of a single charged residue in the C-loop of smooth muscle myosin alters actomyosin affinity and doubles myosin in vitro motility and actin-activated ATPase velocities, thereby involving a charged region of the loop in the actomyosin interaction. It appears likely that the C-loop is an essential electrostatic binding site for actin involved in modulation of actomyosin affinity and regulation of actomyosin ATPase velocity.  相似文献   

3.
The role of the interaction between actin and the secondary actin binding site of myosin (segment 565-579 of rabbit skeletal muscle myosin, referred to as loop 3 in this work) has been studied with proteolytically generated smooth and skeletal muscle myosin subfragment 1 and recombinant Dictyostelium discoideum myosin II motor domain constructs. Carbodiimide-induced cross-linking between filamentous actin and myosin loop 3 took place only with the motor domain of skeletal muscle myosin and not with those of smooth muscle or D. discoideum myosin II. Chimeric constructs of the D. discoideum myosin motor domain containing loop 3 of either human skeletal muscle or nonmuscle myosin were generated. Significant actin cross-linking to the loop 3 region was obtained only with the skeletal muscle chimera both in the rigor and in the weak binding states, i.e., in the absence and in the presence of ATP analogues. Thrombin degradation of the cross-linked products was used to confirm the cross-linking site of myosin loop 3 within the actin segment 1-28. The skeletal muscle and nonmuscle myosin chimera showed a 4-6-fold increase in their actin dissociation constant, due to a significant increase in the rate for actin dissociation (k(-)(A)) with no significant change in the rate for actin binding (k(+A)). The actin-activated ATPase activity was not affected by the substitutions in the chimeric constructs. These results suggest that actin interaction with the secondary actin binding site of myosin is specific for the loop 3 sequence of striated muscle myosin isoforms but is apparently not essential either for the formation of a high affinity actin-myosin interface or for the modulation of actomyosin ATPase activity.  相似文献   

4.
Using glutaric dialdehyde, the muscle proteins myosin, actin, actomyosin and heavy meromyosin subfragment-1 (S-1) have been immobilized on capron fibers. The ATPase activity of myosin and its capability to interact with actin have been preserved whereas the ATPase activity of its subfragment decreased significnatly. Immobilization on capron fibers changes the pH dependence of the ATPase activity of myosin and of S-1 shifting the maximum towards the acid zone (pH 5.5) and increases the thermal stability of the enzyme. Calcium ions produce a stimulatory effect on ATPase; Mg2+ions yield no effect on myosin and S-1 but enhance the activity in the case of immobilized actomyosin though to a lesser degree than the ions of Ca2+. Immobilized actin retains its ability to form actomyosin complex.  相似文献   

5.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

6.
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin II motor activity. Model simulations based on experimental measurements support the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time regardless of the initial ring size, as originally reported for C. elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to different ploidies.  相似文献   

7.
Kinetic adaptation of muscle and non-muscle myosins plays a central role in defining the unique cellular functions of these molecular motor enzymes. The unconventional vertebrate class VII myosin, myosin VIIb, is highly expressed in polarized cells and localizes to highly ordered actin filament bundles such as those found in the microvilli of the intestinal brush border and kidney. We have cloned mouse myosin VIIb from a cDNA library, expressed and purified the catalytic motor domain, and characterized its actin-activated ATPase cycle using quantitative equilibrium and kinetic methods. The myosin VIIb steady-state ATPase activity is slow (approximately 1 s(-1)), activated by very low actin filament concentrations (K(ATPase) approximately 0.7 microm), and limited by ADP release from actomyosin. The slow ADP dissociation rate constant generates a long lifetime of the strong binding actomyosin.ADP states. ADP and actin binding is uncoupled, which enables myosin VIIb to remain strongly bound to actin and ADP at very low actin concentrations. In the presence of 2 mm ATP and 2 microm actin, the duty ratio of myosin VIIb is approximately 0.8. The enzymatic properties of actomyosin VIIb are suited for generating and maintaining tension and favor a role for myosin VIIb in anchoring membrane surface receptors to the actin cytoskeleton. Given the high conservation of vertebrate class VII myosins, deafness phenotypes arising from disruption of normal myosin VIIa function are likely to reflect a loss of tension in the stereocilia of inner ear hair cells.  相似文献   

8.
Human blood platelet actin was purified using 30% sucrose to extract actomyosin and potassium iodide to dissociate actomyosin and to depolymerize actin. Pure actin thus obtained resembles skeletic muscle actin in its polymerization properties, CD spectra and ability to activate myosin myosin Mg2+-ATPase. Isoelectric focusing gel analysis shows that human blood platelet actin exists in beta and gamma forms. The ratio of beta to gamma forms is of 5 in purified actin, in whole cell extract and in all the fractions studied.  相似文献   

9.
We employed budding yeast and skeletal muscle actin to examine the contribution of the actin isoform to myosin motor function. While yeast and muscle actin are highly homologous, they exhibit different charge density at their N termini (a proposed myosin-binding interface). Muscle myosin-II actin-activated ATPase activity is significantly higher with muscle versus yeast actin. Whether this reflects inefficiency in the ability of yeast actin to activate myosin is not known. Here we optimized the isolation of two yeast myosins to assess actin function in a homogenous system. Yeast myosin-II (Myo1p) and myosin-V (Myo2p) accommodate the reduced N-terminal charge density of yeast actin, showing greater activity with yeast over muscle actin. Increasing the number of negative charges at the N terminus of yeast actin from two to four (as in muscle) had little effect on yeast myosin activity, while other substitutions of charged residues at the myosin interface of yeast actin reduced activity. Thus, yeast actin functions most effectively with its native myosins, which in part relies on associations mediated by its outer domain. Compared with yeast myosin-II and myosin-V, muscle myosin-II activity was very sensitive to salt. Collectively, our findings suggest differing degrees of reliance on electrostatic interactions during weak actomyosin binding in yeast versus muscle. Our study also highlights the importance of native actin isoforms when considering the function of myosins.  相似文献   

10.
In order to study the role of the neck domain of myosin in muscle contraction, we measured the steps of individual myosin II molecules engineered to have no neck domain (light chain-binding domain) by optical trapping nanometry. The actin filament and myosin cofilaments interacted on a glass surface to minimize the angle between them, and to minimize the interaction between myosin and the glass surface. The results showed that the average myosin stepsize did not change much when the neck domain was removed, but the sliding velocity decreased approximately fivefold. Furthermore, the duration of steps for neckless myosin was several times longer at saturated ATP concentration, indicating that the slower velocity was due to a slower dissociation rate of myosin heads from actin. From these data, we conclude that the neck domain of myosin-II primarily regulates the actomyosin kinetics, not the mechanics.  相似文献   

11.
C Y Wang  P K Ngai  M P Walsh  J H Wang 《Biochemistry》1987,26(4):1110-1117
Fodrin, a spectrin-like actin and calmodulin binding protein, was purified to electrophoretic homogeneity from a membrane fraction of bovine brain. The effect of fodrin on smooth muscle actomyosin Mg2+-ATPase activity was examined by using a system reconstituted from skeletal muscle actin and smooth muscle myosin and regulatory proteins. The simulation of actomyosin Mg2+-ATPase by fodrin showed a biphasic dependence on fodrin concentration and on the time of actin and myosin preincubation at 30 degrees C. Maximal stimulation (50-70%) was obtained at 3 nM fodrin following 10 min of preincubation of actin and myosin. This stimulation was also dependent on the presence of tropomyosin. In the absence of myosin light chain kinase, the fodrin stimulation of Mg2+-ATPase could not be demonstrated with normal actomyosin but could be demonstrated with acto-thiophosphorylated myosin, suggesting that fodrin stimulation depends on the phosphorylation of myosin. Fodrin stimulation was shown to require the presence of both Ca2+ and calmodulin when acto-thiophosphorylated myosin was used. These observations suggest a possible functional role of fodrin in the regulation of smooth muscle contraction and demonstrate an effect on Ca2+ and calmodulin on fodrin function.  相似文献   

12.
Calcium regulation of porcine aortic myosin   总被引:1,自引:0,他引:1  
Calcium regulation of actin-activated porcine aortic myosin MgATPase was studied. The MgATPase of the purified actomyosin was stimulated about 10-fold by 0.1 mM Ca2+. The 20,000 molecular weight light chain subunit (LC20) of myosin was phosphorylated by an endogenous kinase that required Ca2+. Half-maximal activation of both kinase and ATPase occurred at about 0.9 microM Ca2+. Phosphorylated and unphosphorylated myosins, free of actin, kinase, and phosphatase, were purified by gel filtration. The MgATPase of phosphorylated myosin was activated by rabbit skeletal muscle actin; unphosphorylated myosin was actin activated to a much lesser extent. Actin activation was maximal in the presence of Ca2+. Regulation of the aortic myosin MgATPase seems to involve both direct interaction of calcium with phosphorylated myosin and calcium activation of the myosin kinase. The MgATPase of trypsin-treated actomyosin did not require Ca2+ for full activity. The trypsin-treated actomyosin was devoid of LC20. When purified unphosphorylated aortic myosin was treated with trypsin, the LC20, was cleaved and the MgATPase, which was not appreciably actin activated before exposure to protease, was increased and was activated by skeletal muscle actin. After incubation of this light chain-depleted myosin with light chain from rabbit skeletal muscle myosin, the actin activation but not the increased activity, was abolished. Unphosphorylated LC20 seems to inhibit actin activation in this smooth muscle.  相似文献   

13.
Binding of caldesmon to smooth muscle myosin   总被引:9,自引:0,他引:9  
Caldesmon, a major calmodulin binding protein, was found to bind smooth muscle myosin. Addition of caldesmon to smooth muscle myosin induced the formation of small aggregates of myosin in the absence of Ca2+-calmodulin, but not in the presence of Ca2+-calmodulin. The binding site of myosin was studied by using caldesmon-Sepharose 4B affinity chromatography. Subfragment 1 was not retained by the column, while heavy meromyosin and subfragment 2 were bound to the caldesmon affinity column in the absence of Ca2+-calmodulin but not in its presence. It was therefore concluded that the binding site of caldesmon on myosin molecule was the subfragment 2 region and that binding of caldesmon to myosin was abolished in the presence of Ca2+ and calmodulin. Cross-linking of actin and myosin mediated by caldesmon was studied. While actomyosin was completely dissociated in the presence of Mg2+-ATP, the addition of caldesmon caused aggregation of the actomyosin. By low speed centrifugation at which actomyosin alone was not precipitated in the presence of Mg2+-ATP, the aggregate induced by caldesmon was precipitated and the composition of the precipitate was found to be actin, caldesmon, and myosin. In the presence of Mg2+-ATP, pure actin did not bind to a myosin-Sepharose 4B affinity column, while all of the actin was retained when the actin/caldesmon mixture was applied to the column. These results indicate that caldesmon can cross-link actin and myosin.  相似文献   

14.
The myosin motor protein generates force in muscle by hydrolyzing Adenosine 5′-triphosphate (ATP) while interacting transiently with actin. Structural evidence suggests the myosin globular head (subfragment 1 or S1) is articulated with semi-rigid catalytic and lever-arm domains joined by a flexible converter domain. According to the prevailing hypothesis for energy transduction, ATP binding and hydrolysis in the catalytic domain drives the relative movement of the lever arm. Actin binding and reversal of the lever-arm movement (power stroke) applies force to actin. These domains interface at the reactive lysine, Lys84, where trinitrophenylation (TNP-Lys84-S1) was observed in this work to block actin activation of myosin ATPase and in vitro sliding of actin over myosin. TNP-Lys84-S1's properties and interactions with actin were examined to determine how trinitrophenylation causes these effects. Weak and strong actin binding, the rate of mantADP release from actomyosin, and actomyosin dissociation by ATP were equivalent in TNP-Lys84-S1 and native S1. Molecular dynamics calculations indicate that lever-arm movement inhibition during ATP hydrolysis and the power stroke is caused by steric clashes between TNP and the converter or lever-arm domains. Together these findings suggest that TNP uncouples actin activation of myosin ATPase and the power stroke from other steps in the contraction cycle by inhibiting the converter and lever-arm domain movements.  相似文献   

15.
Force generation in muscle results from binding of myosin to F-actin. ATP binding to myosin provides energy to dissociate actomyosin complex while the hydrolysis of ATP is needed for re-binding of myosin to F-actin. At the end of each cycle myosin and actin form a tight complex with a substantial interface area. We investigated the dynamics of formation of actomyosin interface in presence and absence of nucleotides by quenched flow cross-linking technique. We showed previously that myosin head (subfragment 1, S1) directly interacts with at least two monomers in the actin filament. The quenched flow cross-linking experiments revealed that the initial contact (in presence or absence of nucleotides) occurs between loop 635-647 of S1 and 1-12 N-terminal residues of one actin and, then, the second contact forms between loop 567-574 of S1 and the N terminus of the second actin. The distance between these two loops in S1 corresponds to the distance between N termini of two actins in the same strand (53 A) but is smaller than that between two actins from the different strands (102 A). The formation of the actomyosin complex proceeds in ordered sequence: S1 initially binds to one actin then binds with the second actin located in the same strand but probably closer to the barbed end of F-actin. The presence of nucleotides slows down the interaction of S1 with the second actin, which correlates with recently proposed cleft movement in a 50 kDa domain of S1. The sequential mechanism of formation of actomyosin interface starting from one end and developing towards the barbed end might be involved in force generation and directional movement in actin-myosin system.  相似文献   

16.
Smooth muscle myosin II undergoes an additional movement of the regulatory domain with ADP release that is not seen with fast skeletal muscle myosin II. In this study, we have examined the interactions of smooth muscle myosin subfragment 1 with ADP to see if this additional movement corresponds to an identifiable state change. These studies indicate that for this myosin:ADP, both the catalytic site and the actin-binding site can each assume one of two conformations. Relatively loose coupling between these two binding sites leads to three discrete actin-associated ADP states. Following an initial, weakly bound state, binding of myosin:ADP to actin shifts the equilibrium toward a mixture of two states that each bind actin strongly but differ in the conformation of their catalytic sites. By contrast, fast myosins, including Dictyostelium myosin II, have reciprocal coupling between the actin- and ADP-binding sites, so that either actin or nucleotide, but not both, can be tightly bound. This uncoupling, which generates a second strongly bound actomyosin ADP state in smooth muscle, would prolong the fraction of the ATPase cycle time that this actomyosin spends in a force-generating conformation and may be central to explaining the physiologic differences between this and other myosins.  相似文献   

17.
Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.  相似文献   

18.
Tropomyosin and caldesomon reciprocally control the actomyosin system in smooth muscle and some non-muscle cells. To compare this mechanism between arterial smooth muscle and platelets, we carried out extensive exchange experiments. Actin, myosin, tropomyosin from arterial smooth muscle cells and platelets were recombined and the effects of two species of caldesmon ('caldesmon77' and 'caldesmon140') on the ATPase activities of both systems were examined and analyzed by the method of analysis of variance. (a) The actomyosin system itself is different between artery and platelets, the difference being determined by myosin (P less than 0.05) and not by actin. (b) Platelet tropomyosin differentiates platelet actin from arterial actin (P less than 0.01), while arterial tropomyosin does not. Neither does tropomyosin differentiate myosin. (c) The effect of caldesmon77 differentiates the origins of myosin (P less than 0.01), actin (P less than 0.05) and tropomyosin (P less than 0.05). The effect of caldesmon140 differentiates the origin of myosin (P less than 0.05) and the actin-myosin 'interaction' (combination) (P less than 0.01), but not the origin of tropomyosin (P greater than 0.1). (1) It is concluded that actomyosin/tropomyosin-caldesmon system is distinguishable between platelets and artery. (2) It is suggested that caldesmon is an actomyosin inhibitor which may interact with myosin, in addition to actin and tropomyosin.  相似文献   

19.
The Ca-regulatory system in squid mantle muscle was studied. The findings were as follows. (a) Squid mantle myosin B (squid myosin B) was Ca-sensitive, and its Ca-sensitivity was unaffected by addition of a large amount of rabbit skeletal myosin (skeletal myosin) or rabbit skeletal F-actin (skeletal F-actin). (b) Squid myosin was prepared from the mantle muscle. It showed a heavy chain component and two light chain components in the SDS-gel electrophoretic pattern: the molecular weights of the latter two were 17,000 and 15,000. Actomyosin reconstituted from squid myosin and skeletal (or squid) actin showed Ca-sensitivity in superprecipitation and Mg-ATPase assays. EDTA- treatment had no effect on the Ca-sensitivity of squid myosin. (c) Squid mantle actin (squid actin) was prepared by the method of Spudich and Watt. Hybrid actomyosin reconstituted by using the pure squid actin preparation with skeletal myosin showed no Ca-sensitivity in Mg-ATPase assay, whereas that reconstituted using crude squid actin showed marked Ca-sensitivity. The crude squid actin contained four protein components which were capable of associating with F-actin in 0.1 M KCl, 1 mM MgCl2 and 20 mM Tris-maleate (pH7.5). (d) Native tropomyosin was prepared from squid mantle muscle, and it conferred Ca-sensitivity on skeletal actomyosin as well as on a hybrid actomyosin reconstituted from squid actin and skeletal myosin. (e) Squid native tropomyosin was separated into troponin and tropomyosin fractions by placing it in 0.4 M LiCl at pH 4.7. The troponin fraction was further purified by DEAE-cellulose chromatography. Squid troponin thus obtained was different in mobility from rabbit skeletal or carp dorsal troponin; three bands of squid troponin corresponded to molecular weights of 52,000, 28,000, and 24,000 daltons. It could confer Ca-sensitivity in the presence of tropomyosin on skeletal actomyosin as well as on a hybrid reconstituted from squid actin and skeletal myosin. (f) Squid myosin B, and two hybrid actomyosins were compared as regards Ca and Sr requirements for their Mg-ATPase activities. The myosin-linked regulatory system rather than the thin-filament-linked regulatory system was predominant in squid myosin B. Squid myosin B required higher Ca2+ and Sr2+ concentrations for Mg-ATPase activity; half-maximal activation of Mg-ATPase was obtained at 0.8 micron Ca2+ and 28 micron Sr2+ with skeletal myosin B, and at 2.5 micron Ca2+ and 140 micron Sr2+ with squid myosin B.  相似文献   

20.
Actomyosin, myosin, and actin from different sources are adsorbed, apparently as a monolayer, by polystyrene particles teins for 1 mg of Lytron were about 10-7 liters mol-1, while heterogeneity indices (alpha) varied from 0.70 to 1.0 presumably as a function of spontaneous aggregation in the liquid phase. Adsorption was irreversible. Orientation of absorbed molecules permitted association of bound muscle actin with platelet or muscle myosin. The association constant of the former reaction was 2.78 times 10-6 liters mol-1. Enzymatic properties of adsorbed actomyosin, Mg2+ATPase activity was abolished, but association of myosin with bound actin, or association of actin with bound myosin was accompanied by restoration of Mg2+ATPase activity. Every subunit of F-actin strands, unless F-actin had been fully depolymerized to G-actin, could bind myosin and activate Mg2+ATPase activity. Immunogenic characteristics of muscle myosin were enhanced by Lytron adsorption. Elicited antibodies showed selective specificity for an antigenic determinant located near or at the actin combining site of muscle myosin. Antibodies did not react with actomyosin. Antibodies prevented association of actin with muscle myosin because they inhibited both superprecipitation and development of Mg2+ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号