首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《BBA》1985,807(2):155-167
The time-resolved fluorescence emission and excitation spectra of Chlorella vulgaris cells have been measured by single-photon timing with picosecond resolution. In a three-exponential analysis the time-resolved excitation spectra recorded at 685 and 706 nm emission wavelength with closed PS II reaction centers show large variations of the preexponential factors of the different decay components as a function of wavelength. At λem = 685 nm the major contribution to the fluorescence decay originates from two components with life-times of 2.1–2.4 and 1.2–1.3 ns. A short-lived component with life-times of 0.1–0.16 ns of relatively small amplitude is also found. When the emission is detected at 706 nm, the short-lived component with a life-time of less than 0.1 ns predominates. Time-resolved emission spectra using λexc = 630 or λexc = 652 nm show a spectral peak of the two longer-lived components at about 680–685 nm, whereas the fast component is red-shifted as compared to the others and shows a maximum at about 690 nm. The emission spectrum observed upon excitation at 696 nm with closed PS II reaction centers shows a large increase in the amplitude of the fast component with a lifetime of 80–100 ps as compared to that at 630 nm excitation. At almost open Photosystem II (PS II) reaction centers (F0), the life-time of the fast component decreased from 150–160 ps at 682 nm to less than 100 ps at 720 nm emission wavelength. We conclude that at least two pigment pools contribute to the fast component. One is attributed to PS II and the other to Photosystem I (PS I). They have life-times of approx. 180 ps and 80 ps, respectively. The 80 ps (PS I) contribution has a spectral maximum slightly below 700 nm, whereas the 180 ps (PS II) spectrum peaks at 680–685 nm. The spectra of the middle decay component τm and its sensitivity to inhibitors of PS II suggest that this component is not preferentially related to LHC II but arises mainly from Chl a pigments probably associated with a second type of PS II centers. The amplitudes of the fast (180 ps, PS II) component and the long-lived decay show an opposite dependence on the state of the PS II centers and confirm our earlier conclusion that the contribution of PS II to the fast component probably disappears at the Fmax state (Haehnel W., Holzwarth, A.R. and Wendler, J. (1983) Photochem. Photobiol. 34, 435–443). Our data are discussed in terms of α,β-heterogeneity in PS II centers.  相似文献   

2.
《BBA》1986,848(1):48-57
Using a combination of modulated and non-modulated light with synchronized detection it has been possible to monitor State 1–State 2 transitions in intact leaves as changes in the yield of modulated chlorophyll fluorescence. In the presence of excess far-red non-modulated light (713 nm) absorbed mainly by Photosystem I (PS I), the modulated fluorescence intensity was taken to represent Fo — the emission yield which occurs when the reaction centres of Photosystem II (PS II) are all open. On the other hand, superimposing saturating non-modulated wide-band, blue-green light resulted in a transitory maximum yield of modulated chlorophyll fluorescence, Fm, due to the total closure of the PS II reaction centres. In the absence of these additional lights the fluorescence level assumed a steady-state value, Fs, between Fo and Fm. All these parameters changed as the leaf slowly adapted to light of a given spectral composition. It was found that both Fo and Fm increased reversibly (by about 15–20%) during the transition from State 2 to State 1 such that the ratio of Fm to Fo remained constant, indicative of changes in absorption cross-section of PS II and PS I rather than alterations in ‘spillover’ which would cause preferential changes in Fm. It was also possible to estimate the fractions of light, β and α, channeled to PS II and PS I, respectively, from the values of Fo, Fm and Fs. In one approach, β was estimated in State 1, using the assumption that α + β = 1, and its variation during the subsequent state transition was assumed to follow proportional changes in Fo (or Fm). It was found that in State 2 there is a small loss (about 4%) of the total utilization of light in both photosystems. However, if such loss is neglected, assuming α + β is always unity, the calculated β was found to vary in the same direction and almost with the same magnitude as Fo (or Fm), indicating independently that a change in absorption cross-section in PS II (and PS I) had occurred. Consistent with these data were the light-saturation curves for the non-modulated far-red light-quenching effect in bringing the fluorescence from Fs to Fo in States 1 and 2. The ratio of the initial slopes of these curves indicates quantitatively both redistribution of light between PS I and PS II during the State 1–State 2 transitions and a partial loss of excitation energy in State 2.  相似文献   

3.
《BBA》1987,893(3):480-489
Room temperature chlorophyll fluorescence lifetime measurements using single photon counting and low-intensity laser excitation have been carried out on photosynthetic systems which have undergone protein reorganisation by an in vivo state 1-state 2 transition, protein phosphorylation and the absence of Mg2+. Analysis of the global changes in average lifetime and total fluorescence yield suggest that each treatment brings about a decrease in Photosystem (PS) II absorption cross-section but that this mechanism of energy redistribution accounts for different proportions of the total fluorescence quenching in the various cases. Further analysis of the overall fluorescence decay into individual kinetic components was carried out using a four-exponential model. The state transition did not alter the lifetimes of the four components but decreased the fluorescence yield of the long-lived decay, at both F0 and FM, by 24% and increased the yield of the rapid components. Such changes infer that there is a decrease in PS II absorption cross-section and an increase in PS I excitation on going from state 1 to state 2. Furthermore, these alterations show that the 500 ps component (at F0) gives rise to the 2 ns decay (at FM). After in vitro protein phosphorylation at 5 mM Mg2+, the changes are very similar to those brought abought by a state transition, except that both long-lived kinetic components exhibit a decrease in yield. When protein phosphorylation was carried out at 2 mM Mg2+ a slight decrease in the lifetimes of the two slow components was observed, with a further decrease in the yield of the 2.3 ns decay and a larger increase in the yields of the two rapid decays. Although the fluorescence quenching brought about by the absence of Mg2+ (57%) was the largest of all the treatments, only a small part could be explained by a decrease in PS II absorption cross-section (17%). The absence of Mg2+ led to a decrease in the lifetimes and yields of the two long-lived decays. A careful comparison of the characteristics of the slowest component in the presence and absence of 5 mM Mg2+ on closing the PS II traps suggest that this decay has different origins in the two cases.  相似文献   

4.
Inhibition of photosynthesis by UV-B was investigated in the thalloid liverwort Conocephalum conicum Dum. UV-B irradiance was adjusted to a strength producing 50% inhibition of the rate of photosynthesis during 10 min of irradiation. A linear relationship of the fluorescence terms Fv/Fm of photosystem (PS) II and JP was observed following a UV-B irradiation. This suggested that PS II was a major site of UV-B-induced damage of photosynthesis. The apparent inhibition of Fv/Fm was much smaller when electron flow to the secondary PS II acceptor QB was inhibited by DCMU or when Fv/Fm was measured at 77 K. Apparently, the major target of UV-B effects was electron donation to the PS II reaction center, rather than electron transfer reactions at the PS II acceptor side. The time required for repair of PS II from UV-B-induced damage was light-dependent and minimal at a flux density of 5 μE m?2 s?1. Low temperatures and the presence of streptomycin inhibited the repair processes of PS II, indicating that protein synthesis may be involved in the recovery of PS II. The data indicate that UV-B irradiation on bright and cool winter days may be most harmful for photosynthesis of C. conicum. A repeated irradiation of the thalli with UV-B induced tolerance of photosynthesis which was related to an accumulation of pigments with a maximum of absorption around 315 nm.  相似文献   

5.
The nature of the light-induced ΔpH-dependent decline of chlorophyll a fluorescence in intact and broken spinach chloroplasts was investigated. Fluorescence spectra at 77 K of chloroplasts frozen in the low-fluorescent (high ΔpH) state showed increased ratios of the band peak at 735 nm (Photosystem (PS) I fluorescence) to the peak at 695 nm (PS II fluorescence). The increase in the F735F695 ratio at 77 K was related to the extent of fluorescence quenching at room temperature. Normalization of low-temperature spectra with fluorescein as an internal standard revealed a lowering of F695 that was not accompanied by an increase in F735: preillumination before freezing decreased both F695 and, to a lesser extent, F735 in the spectra recorded at 77 K. Fluorescence induction of chloroplasts frozen in the low-fluorescent state showed a markedly decreased variable fluorescence (Fv) of PS II, but no concomitant increase in initial fluorescence (F0) of PS I. Thus, the buildup of a proton gradient at the thylakoid membrane, as reflected by fluorescence quenching at room temperature, affects low-temperature fluorecence emission in a manner entirely different from the effect of removal of Mg2+, which is thought to alter the distribution of excitation energy in favor of PS I. The ΔpH-dependent quenching therefore cannot be caused by such change in energy distribution and is suggested to reflect increased thermal deactivation.  相似文献   

6.
7.
The effect of divalent cations on the primary photoconversion kinetics of chloroplast Photosystems (PS) I and II was investigated by absorbance difference spectrophotometry in the ultraviolet (ΔA320) and red (ΔA700) regions and by fluorescence at room temperature. Three main chlorophyll (Chl) a fluorescence emission components were identified. Addition of 5 mM MgCl2 to unstacked chloroplasts caused a 5–7-fold increase in Fvα, the variable fluorescence yield controlled by the α-centers. The fluorescence yield Fvβ controlled by the β-centers and the nonvariable fluorescence yield F0 were only slightly changed by the treatment. The absolute number of α- and β-centers remained unchanged and independent of divalent cations. The rate constants Kα, Kβ and KP-700 determined from the photoconversion kinetics of Qα, Qβ and P-700 were also unchanged by divalent cations, suggesting a constancy of the respective absorption cross-sections. Evidence is presented that the Mg2+ effect on Chl a fluorescence is not due simply to unstacking. Conclusion: (1) In the absence of divalent cations from the chloroplast suspending medium, the variable fluorescence yield is not complementary to the rate of PS II photochemistry. (2) A spillover of excitation from PS II to PS I in the absence of Mg2+ cannot account for the 7-fold lowering of the variable fluorescence yield Fvα at room temperature. The results are discussed in view of a model of excitation transfer and fluorescence emission in the pigment bed of PS IIα and PS IIβ.  相似文献   

8.
Tobacco plants were subjected to long-term CO2 deficit. The stress caused photoinhibition of Photosystem (PS) II photochemistry and the aggregation of the light-harvesting complex of PS II (LHC II). The aggregation was shown by the appearance of the characteristic band at 698–700 nm (F699) in 77 K fluorescence emission spectra. LHC II aggregates are considered to quench fluorescence and, therefore, the fluorescence yield was determined to verify their quenching capability. PS II photochemistry, measured as FV/FM, was largely depressed during first 4 days of the stress. Unexpectedly, the total fluorescence yield increased in this period. Fitting of emission spectra by Gaussian components approximating emission bands of LHC II, PS II core, PS I and F699 revealed that mainly the bands at 680 and 699 nm, representing emission of LHC II aggregates, were responsible for the increase of the fluorescence yield. This shows an interruption of the excitation energy transfer between LHC II and both photosystems and, thus, a physical disconnection of LHC II from photosystems. PS II and PS I emissions were not quenched in this period. Therefore, it was concluded that these LHC II aggregates were accumulated out of PS II antenna, and, thus they cannot be involved in dumping of excess excitation. The total fluorescence yield turned to decrease only after the large depression of PS II photochemistry, when LHC II aggregation was considerably speeded up and the fluorescence yields of PS I and II turned to decline.  相似文献   

9.
The far-red limit of photosystem I (PS I) photochemistry was studied by EPR spectroscopy using laser flashes between 730 and 850 nm. In manganese-depleted spinach thylakoid membranes, the primary donor in PS I, P700, was oxidized simultaneously with tyrosine Z, the secondary donor in PS II. It was found that at 295 K PS I photochemistry, observed as P700+ formation, was functional up to 840 nm. This is 30 nm further to the red region than was reported for PS II photochemistry (Thapper, A., Mamedov, F., Mokvist, F., Hammarström, L., and Styring, S. (2009) Plant Cell 21, 2391–2401). The same far-red limit for the P700+ formation was observed in a PS I reaction center core preparation from Nostoc punctiforme. The reduction of the acceptor side of PS I, observed as reduction of the iron-sulfur centers FA and FB by low temperature EPR measurements, was also functional at 15 K with light up to >830 nm. Taken together, these results, obtained from both plants and cyanobacteria, most likely rule out involvement of the red-absorbing antenna chlorophylls in this reaction. Instead we propose the existence of weak charge transfer bands absorbing in the far-red region in the ensemble of excitonically coupled chlorophyll a molecules around P700 similar to what has been found in the reaction center of PS II. These charge transfer bands could be responsible for the far-red light absorption leading to PS I photochemistry at wavelengths up to 840 nm.  相似文献   

10.
F. Torti  P.D. Gerola  R.C. Jennings 《BBA》1984,767(2):321-325
The hypothesis that the chlorophyll fluorescence decline due to membrane phosphorylation is caused principally by the detachment and removal of LHCP from the LHCP-PS II matrix is examined. It is demonstrated that when membranes are phosphorylated in the dark (a) the fluorescence decline is greater when excited by light enriched in wavelengths absorbed mainly by LHCP (475 nm) than when excited by light absorbed to a large extent also by the PS II complex (435 nm), (b) titration with different artificial quenchers of chlorophyll fluorescence is unchanged after the phosphorylation-induced fluorescence decline, and (c) the Fv/Fm ratio does not change after the phosphorylation-induced fluorescence decline. These data indicate that it is indeed principally LHCP that interacts with the quencher (PS I presumably). This interaction involves a small fraction of the total PS II-coupled LHCP, which becomes functionally detached from the LHCP-PS II matrix.  相似文献   

11.
The effects of ultraviolet-B (UV-B: 280-320 nm) radiation on the photosynthetic pigments, primary photochemical reactions of thylakoids and the rate of carbon assimilation (Pn) in the cotyledons of clusterbean (Cyamopsis tetragonoloba) seedlings have been examined. The radiation induces an imbalance between the energy absorbed through the photophysical process of photosystem (PS) II and the energy consumed for carbon assimilation. Decline in the primary photochemistry of PS II induced by UV-B in the background of relatively stable Pn, has been implicated in the creation of the energy imbalance. The radiation induced damage of PS II hinders the flow of electron from QA to QB resulting in a loss in the redox homeostasis between the QA to QB leading to an accumulation of QA. The accumulation of QA generates an excitation pressure that diminishes the PS II-mediated O2 evolution, maximal photochemical potential (Fv/Fm) and PS II quantum yield (ΦPS II). While UV-B radiation inactivates the carotenoid-mediated protective mechanisms, the accumulation of flavonoids seems to have a small role in protecting the photosynthetic apparatus from UV-B onslaught. The failure of protective mechanisms makes PS II further vulnerable to the radiation and facilitates the accumulation of malondialdehyde (MDA) indicating the involvement of reactive oxygen species (ROS) metabolism in UV-B-induced damage of photosynthetic apparatus of clusterbean cotyledons.  相似文献   

12.
《BBA》1987,892(1):42-47
Room-temperature single photon timing measurements on Photosystem-II (PS II-) enriched thylakoid fragments at low excitation energies indicate the presence of three kinetic decay components of chlorophyll fluorescence arising from PS-II-associated pigments. Closing the PS II reaction centres produced three variable components, with lifetime values of 0.02–0.25, 0.15–0.90 and 0.35–2.0 ns, between the initial (F0) and maximal (Fm) fluorescence levels. The yield of each component paralleled the changes in their respective lifetimes, indicating the presence of well-connected PS II reaction centres favouring energy transfer between each other. These changes show that variable chlorophyll fluorescence (Fv) does not arise from one specific origin. The extent of the modifications and the observed relationship between component lifetime and yield, on closing PS II reaction centres, cannot be explained by either the delayed fluorescence (charge recombination) hypothesis of Klimov and co-workers (Klimov, V.V. et al. (1978) Dokl. Akad. Nauk. SSSR 242, 1204–1207) or the proposed changes and origins put forward by Holzwarth and co-workers (Holzwarth, A.R. (1986) Photochem. Photobiol. 43, 707–725; Holzwarth, A.R. et al. (1985) Biochim. Biophys. Acta 807, 155–167).  相似文献   

13.
The aim of the present investigation was to test the hypothesis that the cypress canker caused by a fungus (Seiridium cardinale) infection induced effects on photosynthesis which could be related to photoinhibition and the process of recovery in susceptible and resistant needles. Photoinhibition of photosynthesis and recovery was studied in canker‐infected susceptible and resistant needles of cypress (Cupressus sempervirens L.) under controlled conditions (irradiation of detached needles to approximately 1900 μmol/m2/s). The degree of photoinhibition was determined by means of the ratio of variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm) and electron transport measurements. The potential efficiency of photosystem (PS) II, Fv/Fm declined, and Fo increased significantly in canker‐susceptible needles, while Fo did not change in resistant needles. In isolated thylakoids, high light (HL) decreased the rate of whole chain and PS II activity markedly more in susceptible than in resistant needles. A smaller reduction of PS I activity was noticed only in susceptible needles. Upon subsequent dark incubation, fast recovery was noticed in both needle types and reached maximum rates of PS II efficiency similar to those noticed in non‐photoinhibited needles. The artificial exogenous electron donors such as diphenyl carbazide (DPC), NH2OH and Mn2+ failed to restore the HL induced loss of PS II activity in susceptible needles, while DPC and NH2OH significantly restored it in resistant needles. The results suggest that HL inactivates the donor side of PS II in resistant and the acceptor side of PS II in susceptible needles. The results on the quantification of the PS II reaction centre protein D1 and 33 kDa protein of water‐splitting complex following HL exposure showed pronounced differences between susceptible and resistant needles. The marked loss of PS II activity in HL‐irradiated needles was due to the marked loss of D1 protein in susceptible and 33 kDa protein in resistant needles, respectively.  相似文献   

14.
An insertional transposon mutation in the sll0606 gene was found to lead to a loss of photoautotrophy but not photoheterotrophy in the cyanobacterium Synechocystis sp. PCC 6803. Complementation analysis of this mutant (Tsll0606) indicated that an intact sll0606 gene could fully restore photoautotrophic growth. Gene organization in the vicinity of sll0606 indicates that it is not contained in an operon. No electron transport activity was detected in Tsll0606 using water as an electron donor and 2,6-dichlorobenzoquinone as an electron acceptor, indicating that Photosystem II (PS II) was defective. Electron transport activity using dichlorophenol indolephenol plus ascorbate as an electron donor to methyl viologen, however, was the same as observed in the control strain. This indicated that electron flow through Photosystem I was normal. Fluorescence induction and decay parameters verified that Photosystem II was highly compromised. The quantum yield for energy trapping by Photosystem II (FV/FM) in the mutant was less than 10% of that observed in the control strain. The small variable fluorescence yield observed after a single saturating flash exhibited aberrant QA reoxidation kinetics that were insensitive to dichloromethylurea. Immunological analysis indicated that whereas the D2 and CP47 proteins were modestly affected, the D1 and CP43 components were dramatically reduced. Analysis of two-dimensional blue native/lithium dodecyl sulfate-polyacrylamide gels indicated that no intact PS II monomer or dimers were observed in the mutant. The CP43-less PS II monomer did accumulate to detectable levels. Our results indicate that the Sll0606 protein is required for the assembly/stability of a functionally competent Photosystem II.  相似文献   

15.
Fluorescence induction of isolated spinach chloroplasts was measured by using weak continuous light. It is found that the kinetics of the initial phase of fluorescence induction as well as the initial fluorescence level Fj are influenced by the number of preilluminating flashes, and shows damped period 4 oscillation. Evidence is given to show that it is correlated with the S-state transitions of oxygen evolution. Based on the previous observations that the S states can modulate the fluorescence yield of Photosystem II, a simulating calculation suggests that, in addition to the Photosystem II centers inactive in the plastoquinone reduction, the S-state transitions can also make a contribution to the intial phase of fluorescence induction.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - F0 non-variable fluorescence level emitted when all PS II centers are open - Fi initial fluorescence level immediately after shutter open - Fpt intermediate plateau fluorescence level - Fm maximum fluorescence level emitted when all PS II centers are closed - PS II Photosystem II - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

16.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

17.
Jane M. Bowes  Peter Horton 《BBA》1982,680(2):127-133
Fluorescence induction curves in 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-inhibited Photosystem (PS) II particles isolated from the blue-green alga Phormidium laminosum have been analysed as a function of redox potential. Redox titration of the initial fluorescence indicated a single component with Em,7.5 = +30 mV (n = 1) (Bowes, J., Horton, P. and Bendall, D.S. (1981) FEBS Lett. 135, 261–264). Despite this simplified electron acceptor system and the small number of chlorophylls per reaction centre, a sigmoidal induction curve was nevertheless seen. Sigmoidicity decreased as Q was reduced potentiometrically prior to induction such that the induction was exponential when the ratio FiFm = 0.64. These particles also showed a slow (β) phase of induction which titrated with an Em value slightly more positive than that of the major quencher. It is concluded that the sigmoidal shape of the fluorescence induction curve observed in Phormidium PS II particles is not a consequence of a requirement for two photons to close the PS II reaction centre, but is generated as a result of energy transfer between photosynthetic units comprising one reaction centre per approx. 50 chlorophylls. Also, the existence of PS II heterogeneity (PS IIα, PS IIβ centres) does not require a structurally differentiated chloroplast, but may only indicate the extent of aggregation of PS II centres.  相似文献   

18.
The initial (F0), maximal (FM) and steady-state (FS) levels of chlorophyll fluorescence emitted by intact pea leaves exposed to various light intensities and environmental conditions, were measured with a modulated fluorescence technique and were analysed in the context of a theory for the energy fluxes within the photochemical apparatus of photosynthesis. The theoretically derived expressions of the fluorescence signals contain only three terms, X=J2p2F/(1–G), Y=T/(1–G) and V, where V is the relative variable fluorescence, J2 is the light absorption flux in PS II, p2F is the probability of fluorescence from PS II, G and T are, respectively, the probabilities for energy transfer between PS II units and for energy cycling between the reaction center and the chlorophyll pool: F0=X, FM=X/(1–Y) and FS=X(1+(YV/(1–Y))). It is demonstrated that the amplitudes of the previously defined coefficients of chlorophyll fluorescence quenching, qP and qN, reflect, not just photochemical (qP) or nonphotochemical (qN) events as implied in the definitions, but both photochemical and nonphotochemical processes of PS II deactivation. The coefficient qP is a measure of the ratio between the actual macroscopic quantum yield of photochemistry in PS II (41-1) in a given light state and its maximal value measured when all PS II traps are open (41-2) in that state, with 41-3 and 41-4. When the partial connection between PS II units is taken into consideration, 1-qP is nonlinearily related to the fraction of closed reaction centers and is dependent on the rate constants of all (photochemical as well as nonphotochemical) exciton-consuming processes in PS II. On the other hand, 1-qN equals the (normalized) ratio of the rate constant of photochemistry (k2b) to the combined rate constant (kN) of all the nonphotochemical deactivation processes excluding the rate constant k22 of energy transfer between PS II units. It is demonstrated that additional (qualitative) information on the individual rate constants, kN-k22 and k2b, is provided by the fluorescence ratios 1/FM and (1/F0)–(1/FM), respectively. Although, in theory, 41-5 is determined by the value of both k2b and kN-k22, experimental results presented in this paper show that, under various environmental conditions, 41-6 is modulated largely through changes in k N, confirming the idea that PS II quantum efficiency is dynamically regulated in vivo by nonphotochemical energy dissipation.Abbreviations Chl chlorophyll - F0, FM and FS initial, maximal and steady-state levels of modulated Chl fluorescence emitted by light-adapted leaves - PS I and II photosystem I and II - qP and qN (previously defined) photochemical and nonphotochemical components of Chl fluorescence quenching  相似文献   

19.
Trehalose was supplied to wheat (Triticum aestivum L.) seedlings just before a high temperature (40 °C) treatment and some physiological parameters were measured during the heat stress and recovery. The application of trehalose decreased the net photosynthetic rate (PN) of wheat seedlings under the heat stress, but to a small extent increased the dry mass (DM) and leaf water content (LWC) after recovery from the heat stress. The trehalose-induced decrease in PN under the heat stress was not associated with a stomatal response. The heat stress slightly decreased the maximal efficiency of photosystem II (PS II) photochemistry (the variable to maximum chlorophyll a fluorescence ratio, Fv/Fm) similarly in the trehalose treated or non-treated plants. Under the heat stress, the actual efficiency of PS II photochemistry (ΦPSII) and the efficiency of excitation energy capture by open reaction centers (Fv′/Fm′) were lower in the trehalose-pretreated seedlings, whereas they were higher after the recovery. The patterns of changes in nonphotochemical quenching (NPQ) were contrary to those of ?PS II and Fv′/Fm′. The chlorophyll content was lower, whereas the β-carotene content and the degree of de-epoxidation (DEPS) of xanthophyll cycle pigments were higher in the trehalose-pretreated wheat seedlings under the heat stress. These results suggest that exogenous trehalose partially promotes recovery of wheat by the increase of NPQ, β-carotene content, and DEPS.  相似文献   

20.
Pumpkin (Cucurbita pepo L.) leaves in which chloroplast protein synthesis was inhibited with lincomycin were exposed to strong photoinhibitory light, and changes in FO, FM, FV/FM and in the amount of functional Photosystem II (O2 evolution induced by saturating single-turnover flashes) were monitored during the high-light exposure and subsequent dark or low-light incubation. In the course of the photoinhibitory illumination, FM, FV/FM and the amount of functional PS II declined continuously whereas FO dropped rapidly to some extent and then slowly increased. If the experiments were done at room temperature, termination of the photoinhibitory illumination resulted in partial relaxation of the FV/FM ratio and in an increase in FO and FM. The relaxation was completed in 10–15 min after short-term (15 min) photoinhibitory treatment but continued 30–40 min if the exposure to high light was longer than 1 h. No changes in the amount of functional PS II accompanied the relaxation of FV/FM in darkness or in low light, in the presence of lincomycin. Transferring the leaves to low temperature (+4°C) after the room-temperature illumination (2 h) completely inhibited the relaxation of FV/FM. Low temperature did not suppress the relaxation if the photoinhibitory illumination had also been done at low temperature. The results indicate that illumination of lincomycin-poisoned pumpkin leaves at room temperature does not lead to accumulation of a reversibly photoinactivated intermediate.Abbreviations FO, FM chlorophyll fluorescence with all reaction centres open or closed, respectively - FV variable fluorescence (FV=FM–FO) - LHC Light-harvesting complex - PS II Photosystem II - QA, QB primary and secondary quinone electron acceptors of PS II, respectively - qNE, qNT, qNI non-photochemical quenching due to high-energy state, state transition or photoinhibition, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号