首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine/threonine protein kinases of the Ste20p/PAK family are highly conserved from yeast to man. These protein kinases have been implicated in the signaling from heterotrimeric G proteins to mitogen-activated protein (MAP) kinase cascades and to cytoskeletal components such as myosin-I. In the yeast Saccharomyces cerevisiae, Ste20p is involved in transmitting the mating-pheromone signal from the betagamma-subunits of a heterotrimeric G protein to a downstream MAP kinase cascade. We have previously shown that binding of the G-protein beta-subunit (Gbeta) to a short binding site in the non-catalytic carboxy-terminal region of Ste20p is essential fortransmitting the pheromone signal. In this study, we searched protein sequence databases for sequences that are similar to the Gbeta binding site in Ste20p. We identified a sequence motif with the consensus sequence S S L phi P L I/V x phi phi beta (x: any residue; phi: A, I, L, S, or T; beta: basic residues) that is solely present in members of Ste20p/PAK family protein kinases. We propose that this sequence motif, which we have designated GBB (Gbeta binding) motif, is specifically responsible for binding of Gbeta to Ste20p/PAK protein kinases in response to activation of heterotrimeric G protein coupled receptors. Thus, the GBB motif is a novel type of signaling domain that serves to link protein kinases of the Ste20p/PAK family to G protein coupled receptors.  相似文献   

2.
The Fas cell surface receptor belongs to the tumor necrosis factor receptor family and can initiate apoptosis in a variety of cell types. Using the Fas cytoplasmic domain as bait in a yeast two-hybrid screening, we isolated a mouse cDNA encoding a 205-amino-acid protein. Its predicted protein sequence shows 68% identity and 80% similarity with the sequence of recently described human Mort/FADD. This protein, most likely the mouse homolog of human FADD, associates with Fas in vivo only upon the induction of cell death. A fraction of this protein is highly phosphorylated at serine/threonine residues, with both phosphorylated and unphosphorylated forms being capable of binding to FAS. Stable expression of a truncated form of the Mort/FADD protein protects cells from Fas-mediated apoptosis by interfering with the wild-type protein-Fas interaction. Thus, mouse Mort/FADD is an essential downstream component that mediates Fas-induced apoptosis.  相似文献   

3.
M S Davies  A Henney  W H Ward  R K Craig 《Gene》1986,45(2):183-191
We describe the isolation and characterisation of a full-length cDNA sequence (pZH-21) of a human ribosomal protein (rp) mRNA isolated from a cDNA library constructed from the human ZR-75-1 mammary tumour cell-line. The predicted protein is highly basic and shows 72% homology at the amino acid (aa) level with yeast rp L44. Comparative RNA blotting of ZR-75-1 poly(A)+ RNA isolated from cells cultured in the presence of the anti-oestrogen tamoxifen demonstrates the presence of a number of mRNA species whose concentration is elevated co-ordinately 5-6-fold in the presence of 17beta-oestradiol. Insulin in the presence of tamoxifen, also enhanced rp mRNA levels suggesting increased levels are a reflection of cell proliferation as opposed to specific hormonal regulation. Genomic analysis demonstrates the presence of a family of related human sequences, and homology with rat and guinea pig rp genes, but not yeast DNA. The conservation of rp aa sequence, in the absence of detectable homology at the nucleotide (nt) level, points to an important common functional role of the L44 protein in ribosome structure and function in man and yeast.  相似文献   

4.
The cDNA library of human pancreatic islets was screened with sera from patients with insulin-dependent diabetes mellitus (IDDM). From the library screening, we isolated a novel cDNA, RNA helicase-like protein (RHELP), which exhibited strong sequence homology to p68 RNA helicase, a prototypic member of the DEAD (Asp-Glu-Ala-Asp) box protein family. Sequence analysis of the cDNA revealed that RHELP contained DEAD sequence motif and other conserved motifs of the DEAD box protein family, indicating that RHELP is a new member of this family. DEAD box-containing proteins are involved in the RNA processing, ribosome assembly, spermatogenesis, embryogenesis, and cell growth and division. RHELP showed 42% and 44% amino acid sequence identity to human p68 RNA helicase and yeast DBP2 RNA helicase, respectively, among the DEAD box protein family. Northern blot analysis revealed that RHELP is expressed in most tissues including the liver, lung, tonsil, thymus, and muscle in addition to the pancreatic islets. In vivo or in vitro functions of RHELP as a putative RNA helicase and its potential role as a diabetic autoantigen need to be further investigated.  相似文献   

5.
The dbf3 mutation was originally obtained in a screen for DNA synthesis mutants with a cell cycle phenotype in the budding yeast Saccharomyces cerevisiae. We have now isolated the DBF3 gene and found it to be an essential gene with an ORF of 7239 nucleotides, potentially encoding a large protein of 268 kDa. We also obtained an allele-specific high copy number suppressor of the dbf3-1 allele, encoded by the known SSB1 gene, a member of the Hsp70 family of heat shock proteins. The sequence of the Dbf3 protein is 58% identical over 2300 amino acid residues to a predicted protein from Caenorhabditis elegans. Furthermore, partial sequences with 61% amino acid sequence identity were deduced from two files of human cDNA in the EST nucleotide database so that Dbf3 is a highly conserved protein. The nucleotide sequence of DBF3 turned out to be identical to the yeast gene PRP8, which encodes a U5 snRNP required for pre-mRNA splicing. This surprising result led us to further characterise the phenotype of dbf3 which confirmed its role in the cell cycle and showed it to function early, around the time of S phase. This data suggests a hitherto unexpected link between pre-mRNA splicing and the cell cycle.  相似文献   

6.
Spassov DS  Jurecic R 《IUBMB life》2003,55(7):359-366
Drosophila Pumilio (Pum) protein is a founder member of a novel family of RNA-binding proteins, known as the PUF family. The PUF proteins constitute an evolutionarily highly conserved family of proteins present from yeast to humans and plants, and are characterized by a highly conserved C-terminal RNA-binding domain, composed of eight tandem repeats. The conserved biochemical features and genetic function of PUF family members have emerged from studies of model organisms. PUF proteins bind to related sequence motifs in the 3' untranslated region (3'UTR) of specific target mRNAs and repress their translation. Frequently, PUF proteins function asymmetrically to create protein gradients, thus causing asymmetric cell division and regulating cell fate specification. Thus, it was recently proposed that the primordial role of PUF proteins is to sustain mitotic proliferation of stem cells. Here we review the evolution, conserved genetic and biochemical properties of PUF family of proteins, and discuss protein interactions, upstream regulators and downstream targets of PUF proteins. We also suggest that a conserved mechanism of PUF function extends to the newly described mammalian members of the PUF family (human PUM1 and PUM2, and mouse Pum1 and Pum2), that show extensive homology to Drosophila Pum, and could have an important role in cell development, fate specification and differentiation.  相似文献   

7.
8.
Rio1p was identified as a protein serine kinase founding a novel subfamily. It is highly conserved from Archaea to man and only distantly related to previously established protein kinase families. Nevertheless, analysis of multiple protein sequence alignments shows that those amino acid residues that are important for either structure or catalytic activity in conventional protein kinases are also conserved in members of the Rio1p family at the respective positions (corresponding to domains I-XI of protein kinases). Recombinant Rio1p from Escherichia coli and tagged Rio1p from yeast has kinase activity in vitro, and mutation of amino acid residues that are conserved and indispensable for catalytic activity (i.e. ATP-binding motif, catalytic centre) abrogates activity. RIO1 is essential in yeast and plays a role in cell cycle progression. After sporulation of RIO1/rio1 diploids, RIO1-disrupted progeny cease growth after one to three cell divisions and arrest as either large unbudded or large-budded cells. Cells deprived of Rio1p are enlarged and arrest either in G1 or in mitosis mainly with the DNA at the bud neck and short spindles (a phenotype also seen in cells carrying a weak allele), suggesting that Rio1p activity is required for at least at two steps during the cell division cycle: for entrance into S phase and for exit from mitosis. The weak RIO1 allele leads to increased plasmid loss.  相似文献   

9.
We have recently cloned and characterized an evolutionarily conserved gene, Sensitive to Apoptosis Gene (SAG), which encodes a redox-sensitive antioxidant protein that protects cells from apoptosis induced by redox agents. The SAG protein was later found to be the second family member of ROC/Rbx/Hrt, a component of the Skp1-cullin-F box protein (SCF) E3 ubiquitin ligase, being required for yeast growth and capable of promoting cell growth during serum starvation. Here, we report the genomic structure of the SAG gene that consists of four exons and three introns. We also report the characterization of a SAG splicing variant (SAG-v), that contains an additional exon (exon 2; 264 bp) not present in wildtype SAG. The inclusion of exon 2 disrupts the SAG ORF and gives rise to a protein of 108 amino acids that contains the first 59 amino acids identical to SAG and a 49-amino acid novel sequence at the C terminus. The entire RING-finger domain of SAG was not translated because of several inframe stop codons within the exon 2. The SAG-v protein was expressed in multiple human tissues as well as cell lines, but at a much lower level than wildtype SAG. Unlike SAG, SAG-v was not able to rescue yeast cells from lethality in a ySAG knockout, nor did it bind to cullin-1 or have ligase activity, probably because of the lack of the RING-finger domain. Finally, we report the identification of two SAG family pseudogenes, SAGP1 and SAGP2, that share 36% or 47% sequence identity with ROC1/Rbx1/Hrt1 and 30% or 88% with SAG, respectively. Both genes are intronless with two inframe stop codons.  相似文献   

10.
E C Hurt 《The EMBO journal》1988,7(13):4323-4334
In order to study the role of nucleoskeletal components for nuclear and cell division in the budding yeast Saccharomyces cerevisiae, we have employed a combined biochemical/genetic approach. We have identified a peripheral nuclear protein which appears to be located both at the nuclear membrane and the spindle pole body. The gene has been cloned and subsequently shown to be essential for cell growth. The DNA sequence of the gene has been determined. As deduced from the nucleotide sequence, the gene potentially codes for a novel 86 kd protein with a highly repetitive and conserved nine amino acid sequence motive in the middle part of the protein. The flanking amino- and carboxy-terminal regions have similarities to intermediate filaments and calcium binding proteins, respectively. It appears that the 86 kd protein is a regulated nucleoskeletal-like protein (NSP1) involved in the process of nuclear and/or cell division. The affinity-purified antibody against the yeast NSP1 protein stained the nucleus and centrosomes of mammalian MDCK (Madin Darby canine kidney) cells in indirect immunofluorescence.  相似文献   

11.
The complete cDNA sequence of a mitochondrial protein from Chinese hamster ovary cells, designated P1, which was originally identified as a microtubule-related protein (Gupta, R.S., Ho, T.K.W., Moffat, M.R.K., and Gupta, R. (1982) J. Biol. Chem. 257, 1071-1078), has been determined. The P1 cDNA encodes a protein of 60,983 Da including a 26-amino acid putative mitochondrial targeting sequence at its N-terminal end. The deduced amino acid sequence of Chinese hamster P1 shows 97% identity to the human P1 protein. Most interestingly, the amino acid sequences of mammalian P1 proteins show extensive sequence homology (42-60% identical residues and an additional 15-25% conservative replacements) to the "chaperonin" family of bacterial, yeast, and plant proteins (viz. groEL protein of Escherichia coli, hsp 60 protein of yeast, and ribulose-1,5-bisphosphate carboxylase subunit binding protein of plant chloroplasts) and to the 60-65-kDa major antigenic protein of mycobacteria and Coxiella burnetii. The homology between mammalian P1 and other proteins begins after the putative mitochondrial presequence and extends up to the C-terminal end. Furthermore, similar to the chaperonin family of proteins, P1 appears to exist in cells as a homooligomeric complex of seven subunits and shows ATPase activity. These observations strongly indicate that P1 protein is a member of the chaperonin family and that it may be involved in a similar function in mammalian cells.  相似文献   

12.
13.
Endonuclease G (EndoG) is a mitochondrial non-specific nuclease that is highly conserved among the eukaryotes. Although the precise role of EndoG in mitochondria is not yet known, the enzyme is released from the mitochondria and digests nuclear DNA during apoptosis in mammalian cells. Schizosaccharomyces pombe has an EndoG homolog Pnu1p (previously named SpNuc1) that is produced as a precursor protein with a mitochondrial targeting sequence. During the sorting into mitochondria the signal sequence is cleaved to yield the functionally active endonuclease. From the analogy to EndoG, active extramitochondrial Pnu1p may trigger cell killing by degrading nuclear DNA. Here, we tested this possibility by expressing a truncated Pnu1p lacking the signal sequence in the extramitochondrial region of pnu1-deleted cells. The truncated Pnu1p was localized in the cytosol and nuclei of yeast cells. And ectopic expression of active Pnu1p led to cell death with fragmentation of nuclear DNA. This suggests that the Pnu1p is possibly involved in a certain type of yeast cell death via DNA fragmentation. Although expression of human Bak in S. pombe was lethal, Pnu1p nuclease is not necessary for hBak-induced cell death.  相似文献   

14.
The TNF family is involved in the regulation of the immune system, and its members have been implicated in a variety of biological events such as apoptosis, cell proliferation, differentiation and survival. Here we present a new member of the TNF family, tumor necrosis factor superfamily member 20 (TNFSF20) that we have identified from the expressed sequence tag (EST) database and characterized. The human protein is a 285 amino acid long type II transmembrane protein and is 19% homologous to TNF in its extra-cellular domain. TNFSF20 is expressed at the surface of antigen presenting cells such as cells of the macrophagemonocyte lineage and dendritic cells. After treatment with bacterial lipopolysaccharide (LPS), TNFSF20 expression is downregulated at the surface of the expresssing cells, suggesting that the membrane-bound protein gets cleaved, and that a soluble factor is released in the extra-cellular compartment. The soluble form of the recombinant TNFSF20 induces proliferation of resting peripheral blood monocytes (PBMC) and cell death of activated lymphocytes. TNFSF20 might therefore play a critical role in the regulation of cell-mediated immune responses.  相似文献   

15.
Expression of the human adenovirus E1a product in yeast   总被引:2,自引:0,他引:2  
H Handa  T Toda  M Tajima  T Wada  H Iida  T Fukasawa 《Gene》1987,58(1):127-136
We synthesized the 13S mRNA-encoded protein of the early region 1a (E1a) of human adenovirus in Saccharomyces cerevisiae under the control of the yeast GAL7 gene promoter. Similar to the case in HeLa cells, the E1a protein in yeast was phosphorylated and formed multiple bands on sodium dodecylsulfate-polyacrylamide gel electrophoresis. These bands migrated more slowly than expected from the Mr calculated on the basis of the nucleotide sequence of the gene. Synthesis of the E1a protein caused induction of a specific family of heat-shock proteins (Hsp70), which, however, did not confer heat resistance to the yeast. In addition, the E1a production resulted in an elongation of the generation time of yeast from 2.4 h to 3.9 h, which was attributed specifically to elongation of the G1 interval in the cell cycle. In the light of these findings, we suggest that the E1a protein synthesized in yeast exerts a specific function.  相似文献   

16.
Forty cDNA clones corresponding to the bifunctional NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase enzyme were isolated from a mouse lambda gt11 library. Two classes of cDNA clones were shown by Northern analysis to correspond to the two mRNA species of 1.7 and 2.0 kilobases present in transformed cells but not in normal tissues and that apparently are derived from alternate polyadenylation signals. The 1050-base pair coding region encodes a protein of 350 amino acids which contains a putative mitochondrial-targeting signal peptide of 34 amino acids following the initiator methionine. The 20 amino acids immediately following the signal peptide correspond exactly to those determined by sequence analysis of the amino terminus of the purified protein. The derived amino acid sequence of the NAD-dependent dehydrogenase-cyclohydrolase shows extensive homology with the corresponding amino-terminal sequence of the trifunctional NADP-dependent dehydrogenase-cyclohydrolase-synthetase enzyme from human cells (approximately 40%), yeast cytosol (approximately 36%), and yeast mitochondria (approximately 45%).  相似文献   

17.
18.
19.
Lee GJ  Kim H  Kang H  Jang M  Lee DW  Lee S  Hwang I 《Plant physiology》2007,143(4):1561-1575
Members of the epsin family of proteins (epsins) are characterized by the presence of an epsin N-terminal homology (ENTH) domain. Epsins have been implicated in various protein-trafficking pathways in animal and yeast (Saccharomyces cerevisiae) cells. Plant cells also contain multiple epsin-related proteins. In Arabidopsis (Arabidopsis thaliana), EPSIN1 is involved in vacuolar trafficking of soluble proteins. In this study, we investigated the role of Arabidopsis EpsinR2 in protein trafficking in plant cells. EpsinR2 contains a highly conserved ENTH domain but a fairly divergent C-terminal sequence. We found that the N-terminal ENTH domain specifically binds to phosphatidylinositol-3-P in vitro and has a critical role in the targeting of EpsinR2. Upon transient expression in protoplasts, hemagglutinin epitope-tagged EpsinR2 was translocated primarily to a novel cellular compartment, while a minor portion localized to the Golgi complex. Protein-binding experiments showed that EpsinR2 interacts with clathrin, AtVTI12, and the Arabidopsis homologs of adaptor protein-3 delta-adaptin and adaptor protein-2 alpha-adaptin. Localization experiments revealed that hemagglutinin epitope-tagged EpsinR2 colocalizes primarily with delta-adaptin and partially colocalizes with clathrin and AtVTI12. Based on these findings, we propose that EpsinR2 plays an important role in protein trafficking through interactions with delta-adaptin, AtVTI12, clathrin, and phosphatidylinositol-3-P.  相似文献   

20.
Two cDNAs encoding casein kinase-1 have been isolated from a yeast cDNA library and termed CKI1 and CKI2. Each clone encodes a protein of approximately 62,000 Da containing a highly conserved protein kinase domain surrounded by variable amino- and carboxy-terminal domains. The proteins also contain two conserved carboxy-terminal cysteine residues that comprise a consensus sequence for prenylation. Consistent with this posttranslational modification, cell fractionation experiments demonstrate that intact CKI1 is found exclusively in yeast cell membranes. Gene disruption experiments reveal that, although neither of the two CKI genes is essential by itself, at least one CKI gene is required for yeast cell viability. Spores deficient in both CKI1 and CKI2 fail to grow and, therefore, either fail to germinate or arrest as small cells before bud emergence. These results suggest that casein kinase-1, which is distributed widely in nature, plays a pivotal role in eukaryotic cell regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号