首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many plant species are thought to benefit from mast seeding as a result of increased seed survival through predator satiation. However, in communities with many different masting species, lack of synchrony in seed production among species may decrease seed survival by maintaining seed predator populations through the intermast cycle. Similarly, masting by different plant species may have different effects on the seed predator community. We conducted a three-year study in a northeastern USA temperate deciduous forest to determine if production of large seed crops by several tree species was synchronous, and if they had similar effects on all small mammal species. We found that red oak mast crops resulted in increased densities of Peromyscus leucopus and P. maniculatus , but had no effect on Clethrionomys gapperi abundance. Conversely, C. gapperi populations, but not Peromyscus populations, appeared to increase in response to a large red maple seed crop. Differences in small mammal abundance resulted in changes in species-specific seed survival: in the year of abundant C. gapperi , experimentally placed red oak acorns had significantly higher survival than in the year of high Peromyscus abundance. Red oak acorn removal was positively correlated with Peromyscus abundance, while red maple seed removal was significantly higher with increased C. gapperi abundance. Thus, species-specific seed production had differential effects on subsequent small mammal abundance, which in turn affected seed survival. We suggest that at the level of the community, even short-term lack of synchrony in production of large seed crops can cause variation in postdispersal seed survival, through differential effects on the community of small mammal seed predators.  相似文献   

2.
Scatter-hoarding animals are crucial in seed dispersal of nut-bearing plants. We used the holm oak Quercus ilex—wood mouse Apodemus sylvaticus mutualism as a model system to evaluate the relative importance of seed size and fat content on scatter-hoarders’ foraging decisions influencing oak dispersal and potential recruitment. We performed a field experiment in which we offered holm oak acorns with contrasting seed size (2 vs 5 g) and fat content (3 vs 11%). Moreover, to test if the strength of these seed trait effects was context-dependent, experimental acorns were placed in small fragments, where natural regeneration is scarce or absent, and forest habitats. In small fragments, rodents had to face increased intraspecific competition for acorns and reduced anti-predator cover during transportation. As a result, they became more selective to ensure rapid acquisition of most valuable food items but, in turn, transported seeds closer to avoid unaffordable predation risks. During harvesting and caching, larger acorns were prioritized and preferentially cached. Fat content only had a minor effect in harvesting preferences. In contrast, in forest sites, where rodent abundance was four times lower and understory cover was well-developed, rodents were not selective but provided enhanced dispersal services to oaks (caching rates were 75% higher). From the plants’ perspective, our results imply that the benefits of producing costly seeds are context-dependent. Seed traits modified harvesting and caching rates only when rodents were forced to forage more efficiently in response to increased intraspecific competition. However, when landscape traits limited cache protection strategies, a more selective foraging behavior by scatter-hoarders did not result in enhanced dispersal services. Overall, our result shows that successful dispersal of acorns depends on how specific traits modulate their value and how landscape properties affect rodents’ ability to safeguard them for later consumption.  相似文献   

3.
Rodents change acorn dispersal behaviour in response to ungulate presence   总被引:3,自引:0,他引:3  
Alberto Muñoz  Raúl Bonal 《Oikos》2007,116(10):1631-1638
Small rodents are prominent seed predators, but they also favour plant recruitment as seed dispersers. The direct interactions of ungulates on plants are more one‐sided and negative, as they mainly reduce plant recruitment through predation on seeds and seedlings. The effects of small rodents and ungulates on plant recruitment have been considered and studied as independent episodes within plant regeneration cycles. However, ungulate–rodent interactions and their potential effects on plant regeneration have not been considered so far. A number of studies have recently documented ungulate effects on the abundance, diversity and spatial distribution of small rodents. Here, we hypothesize that ungulates may also affect rodent seed dispersal behaviour. We monitored acorn dispersal by small rodents (Mus spretus and Apodemus sylvaticus) in oak woodlands with and without exclosures for large ungulates, mainly red deer, Cervus elaphus, and wild boar, Sus scrofa. The study was carried out in a typical Mediterranean Holm oak, Quercus ilex, forest throughout the acorn fall season in 2003 and 2004. We found that, in both years, the proportion of acorns cached and not recovered in the short‐term was, on average, lower in the presence (1.4%) than in the absence (19.9%) of ungulates. Acorn dispersal distances were not affected by ungulate presence in either year. However, ungulates had an effect on the spatial distribution of dispersed seeds; rodents apparently avoided shrubs as caching sites in both years. This result was interpreted as a behavioural response to reduce the risk of cache pilferage by conspecifics, which are closely associated with shrubs in presence, but not in absence, of ungulates. Potential effects of different densities of rodents or predators were discarded, as none of them differed between the areas with and without ungulates. The present study found significant interactions between heterospecific seed and seedling consumers that had been considered as independent episodes within tree regeneration cycles. As a result of such interactions, ungulates may have negative indirect effects on oak recruitment by reducing (1) acorn caching frequency, and (2) the proportion of acorns cached under shrubs, key nurse‐plants for the establishment of Holm oak seedlings in Mediterranean areas.  相似文献   

4.
Scatter-hoarding rodents such as tree squirrels selectively cache seeds for subsequent use in widely-spaced caches placed below the ground surface. This behavior has important implications for seed dispersal, seedling establishment, and tree regeneration. Hoarders manage these caches by recovering and eating some seeds, and moving and re-caching others. This process of re-caching, however, is poorly understood. Here, we use radio-telemetry to evaluate re-caching behavior for the management of acorn caches by rodents in eastern deciduous forests. We also test the hypothesis that as seeds are re-cached, the distance from the source increases. Radio transmitters were implanted in Northern red oak (Quercus rubra) acorns and presented to rodents in a natural setting over 3 seasons. We used radio-telemetry to track and document evidence of recovery and re-caching. We tracked a total of 102 acorns. Of the 39 radio-tagged acorns initially cached, 19 (49%) were cached on two or more occasions; one acorn was cached four times. The hypothesis that rodents move seeds to progressively greater distances from the source is not well-supported, suggesting that acorns are being moved within an individual's home range. Given the species of rodents in the study area, gray squirrels (Sciurus carolinensis) are the most likely to be responsible for the caching and re-caching events. Gray squirrels appear to engage in extensive re-caching during periods of long-term food storage, which has important implications for understanding how caching behavior influences acorn dispersal and oak regeneration.  相似文献   

5.
Scatterhoarding by rodents, whereby seeds are collected and stored for later consumption, can result in seed dispersal. Seeds may be covered in litter on the forest floor (cached) or buried. This is particularly so in the Neotropics for large, nutritious seeds, and where primary dispersers are rare or missing. In African forests, contemporary anthropogenic pressures such as hunting, forest degradation, and fragmentation are contributing toward major declines in large frugivores, yet the potential for scatterhoarding to mitigate this loss is largely unknown. In this study, we used thread‐marked seed to explore the balance between seed predation and dispersal by rodents in Afromontane forest. We studied two tree species in three habitats: (1) continuous forest; (2) continuous forest edge, and (3) small, degraded riparian forest patches. We found that seed removal rates were high and almost the same in all three habitats for both tree species, but that the predation/dispersal balance differed among habitats. In continuous forest, more seeds of each species were scatterhoarded than depredated, and rates of scatterhoarding differed between the two species. In all habitats, burying seeds up to 2 cm belowground was more common than caching. Distances seeds were moved was approximately five times greater in continuous forest than in forest edge or riparian patches. We found strong evidence to suggest that the African pouched rat, Cricetomys sp. nov was responsible for the scatterhoarding.  相似文献   

6.
鼠类对辽东栎橡子的搬运   总被引:8,自引:2,他引:6  
在北京东灵山地区,在灌丛、森林2 种生境类型中共设计了5 个处理,以检验种子质量、种子可视度、生境类型如何影响鼠类对辽东栎(Quercus liaotungensis)橡子的搬运。每个处理包括200 枚种子。每日检查种子状态,实验持续16 d。鼠类在几天之内将大多数种子搬运走。完好橡子比虫蛀橡子消失得快。橡子在森林生境中明显比在灌丛生境中消失的快。鼠类对放置在灌丛下方和灌丛之间的橡子的搬运速率差别不大。放置在落叶下方的橡子消失速率明显慢于地表的橡子。本研究利用半存活时间测量种子的搬运率。各处理的半存活时间范围是0. 6 ~ 8. 6 d。各处理的橡子搬运率均较高,这说明鼠类有能力在种子下落到冬季来临的2 个月时间内,搬运绝大多数的橡子。实验说明,鼠类是辽东栎橡子重要的捕食者和扩散者。  相似文献   

7.
The process of seed dispersal of many animal-dispersed plants is frequently mediated by a small set of biotic agents. However, the contribution that each of these dispersers makes to the overall recruitment may differ largely, with important ecological and management implications for the population viability and dynamics of the species implied in these interactions. In this paper, we compared the relative contribution of two local guilds of scatter-hoarding animals with contrasting metabolic requirements and foraging behaviours (rodents and dung beetles) to the overall recruitment of two Quercus species co-occurring in the forests of southern Spain. For this purpose, we considered not only the quantity of dispersed seeds but also the quality of the seed dispersal process. The suitability for recruitment of the microhabitats where the seeds were deposited was evaluated in a multi-stage demographic approach. The highest rates of seed handling and predation occurred in those microhabitats located under shrubs, mostly due to the foraging activity of rodents. However, the probability of a seed being successfully cached was higher in microhabitats located beneath a tree canopy as a result of the feeding behaviour of beetles. Rodents and beetles showed remarkable differences in their effectiveness as local acorn dispersers. Quantitatively, rodents were much more important than beetles because they dispersed the vast majority of acorns. However, they were qualitatively less effective because they consumed a high proportion of them (over 95%), and seeds were mostly dispersed under shrubs, a less suitable microhabitat for short-term recruitment of the two oak species. Our findings demonstrate that certain species of dung beetles (such as Thorectes lusitanicus), despite being quantitatively less important than rodents, can act as effective local seed dispersers of Mediterranean oak species. Changes in the abundance of beetle populations could thus have profound implications for oak recruitment and community dynamics.  相似文献   

8.
啮齿动物捕食和搬运蒙古栎种子对种群更新的影响   总被引:1,自引:0,他引:1  
张晶虹  刘丙万 《生态学报》2014,34(5):1205-1211
2010-2011年,在东北林业大学城市林业示范基地研究了啮齿动物对蒙古栎种子的捕食和搬运。结果表明,蒙古栎种子捕食率在年际间无显著差异,但2010年的蒙古栎种子搬运率显著高于2011年,存留率显著低于2011年。啮齿动物在胡桃楸林、樟子松林、水曲柳林和白桦林内对蒙古栎种子的总捕食率和总搬运率分别达到(5.7±13.5)%和(27.1±37.1)%。蒙古栎种子在樟子松林内的捕食率和搬运率均最高,胡桃楸林内蒙古栎种子存留率最高;2010年蒙古栎种子在与蒙古栎林边缘距离0,10,20,30,40,50m组间的捕食率无显著差异,搬运率和存留率有显著差异,但2011年蒙古栎种子在不同距离组间的捕食率呈显著差异,搬运率和存留率无显著差异。与蒙古栎林边缘距离20m处蒙古栎种子的捕食率最高。2010年和2011年,分别有(37.8±49.7)%和(27.7±49.8)%的蒙古栎种子被啮齿动物利用,这表明啮齿动物是林业示范基地内蒙古栎地表种子的主要捕食者。冬季食物匮乏秋季贮藏种子是造成啮齿动物对蒙古栎种子有较大捕食、扩散压力的主要原因。因此,啮齿动物对蒙古栎种子的捕食和搬运影响了蒙古栎林的种群更新。  相似文献   

9.
Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics.  相似文献   

10.
The effect of forest disturbance on survival and secondary dispersal of an artificial seed shadow (N= 800) was studied at Brownsberg Natural Park, Suriname, South America. We scattered single seeds of the frugivore‐dispersed tree Virola kwatae (Myristicaceae), simulating loose dispersal by frugivores, in undisturbed and disturbed secondary forest habitats. Seed survival rate aboveground was high (69%) within 2 wk and was negatively correlated with scatterhoarding rate by rodents, the latter being significantly lower in the undisturbed forest (9%) than in the disturbed forest (20%). Postdispersal seed predation by vertebrates was low (3%) and infestation of seeds by invertebrates was almost zero in all instances. Therefore, secondary seed dispersal by rodents in forest is not as critical for recruitment as observed among other bruchid‐infested large‐seeded species. Secondary seed dispersal by rodents may, however, facilitate seedling recruitment whether cached seeds experience greater survival than seeds remaining above ground surface.  相似文献   

11.
Experimental studies of seed predation in old-fields   总被引:6,自引:0,他引:6  
Summary In a pair of experiments conducted in old-field habitats in southwestern Michigan (USA), we examined rates of seed loss to post-dispersal predators (ants and rodents). Seeds from 4–6 species of biennial plants were tested over a range of seed densities and habitat types. We found that seed removal was significantly higher in vegetated habitats than in areas of disturbed soil (both simulated small-animal diggings and a plowed field). In the undisturbed vegetation, seed losses ranged from 1–20% of seeds removed/day.An exclosure experiment demonstrated that ants and rodents foraged selectively for seeds of the six plant species tested. Rodents (Peromyscus maniculatus) fed preferentially on species producing large seeds (predominantly Tragopogon dubius). Ants (Myrmica lobicornus) foraged on smaller seeds, although their foraging preferences were not based strictly on seed size.Seed density had only a minor effect on predation rate over the range of densities tested. Predators, instead appeared to treat each experimental group of seeds as a single prey patch. Consequently, predation intensity was quite variable over distances of <20 m within a relatively homogeneous section of habitat.These field experiments provide initial estimates of seed losses to post-dispersal predators in old-field habitats. Rates of seed loss were generally less than those reported from desert or semi-arid habitats. However, for some old-field species, seed losses averaged an appreciable 10–20% day. The selective nature of the seed predators, plusthe relative patchiness of predation intensity in space, suggest that postdispersal seed predation can play a role in determining the distribution and/or abundance of old-field herbs.  相似文献   

12.
张博  石子俊  陈晓宁  廉振民  常罡 《生态学报》2014,34(14):3937-3943
森林鼠类的种子贮藏行为对植物的扩散和自然更新有着非常重要的影响。然而,鼠类是否具有鉴别虫蛀种子的能力还存在一定的争议。此外,鼠类的鉴别能力是否受到食物丰富度变化的影响也未见相关报道。采用标签标记法,2011年秋季(9—11月,食物丰富季节)和2012年春季(4—6月,食物匮乏季节)分别在秦岭南坡的佛坪国家级自然保护区内,调查了森林鼠类对完好和虫蛀锐齿槲栎(Quercus aliena)种子的选择差异。结果显示:1)在秋季,尽管2种类型种子的存留动态没有显著差异,但是在后期虫蛀种子的存留时间相对更长;而在春季2种类型种子的存留动态则极为显著,几乎所有的完好种子(99%)在释放后的第3天就被鼠类全部扩散,虫蛀种子的存留时间则相对较长。2)在秋季,鼠类更喜好扩散后取食完好种子;而在春季,鼠类则喜好在原地取食绝大部分的种子,并且优先取食完好种子。3)在秋季,鼠类贮藏了更多的完好种子;而在春季,尽管完好种子在释放后第1天便达到贮藏高峰,然而由于后期的大量被捕食,2种类型种子在贮藏动态上没有显示出显著差异。研究结果表明秦岭地区森林鼠类可以准确区分完好与虫蛀种子,但是食物丰富度会影响鼠类对种子的选择策略。在食物丰富的秋季,鼠类更多地选择贮藏完好种子;而在食物相对匮乏的春季,鼠类更倾向于同时取食2种类型种子。森林鼠类通过对2种类型种子的鉴别和选择,影响不同种子的命运,从而可能对种子的扩散和自然更新产生重要影响。  相似文献   

13.
亚热带林区啮齿动物对樱桃种子捕食和搬运的作用格局   总被引:2,自引:2,他引:0  
在都江堰林区,通过在原生林、次生林和灌丛3类生境释放野生和栽培樱桃(Cerasus pseudocerasus)的种子,研究了啮齿动物对樱桃种子的捕食及其对樱桃种群更新的作用。结果表明,啮齿动物对樱桃两类种子的搬运无显著差异,而啮齿动物对野生樱桃种子的收获则明显快于栽培樱桃种子,且在3类生境均有类似的趋势。这说明啮齿动物偏爱于收获具有较高收益(种仁重/种子重)的野生樱桃种子。啮齿动物在小于10 d的时间尺度收获了所有释放的樱桃种子,其中,70%以上为啮齿动物所搬运。春季食物的匮乏可能是导致啮齿动物对樱桃种子有较大捕食压力的主要原因,而生境类型间的差异较小。因此,啮齿动物是都江堰林区樱桃地表种子的主要捕食者,它们对野生樱桃种子的选择性捕食和搬运能影响樱桃种子/果实的进化及其种群更新。  相似文献   

14.
不同植物种子依靠不同的方式实现扩散,啮齿动物对林木种子搬运后在取食点微生境和贮藏方式的选择存在偏好,研究其贮藏行为与微生境的关系是探究幼苗建成的关键。在秦岭中段火地塘林区,采用标签标记法,以锐齿槲栎、华山松和油松种子为材料,探究了小型啮齿动物对松栎混交林建群种种子扩散过程的影响。结果表明:1)油松种子原地取食率显著高于锐齿槲栎和华山松种子,且啮齿动物更倾向于搬运后取食(60%)和埋藏(4.33%)华山松种子,搬运后取食距离也为华山松最大(2.49 m);锐齿槲栎小种子被搬运后埋藏的距离最大(4.92 m)。2)除华山松种子外,其他类型种子被搬运后单个取食的比例均在85%以上;油松种子不存在埋藏点,而其他类型种子90%以上均以单个形式被埋藏。3)大部分种子被啮齿动物搬运后选择在裸地丢弃;锐齿槲栎大种子(87.5%)、小种子(78.57%)和华山松种子(53.33%)较大比例被啮齿动物埋藏在灌丛下方,埋藏在裸地的种子较少。4)大部分种子在灌丛下方被取食,仅华山松种子被啮齿动物搬运到洞穴取食;除油松种子被大量原地取食外,其他类型种子被搬运到取食点的种子比例基本呈现由微生境植被复杂到简单(灌丛—草丛—灌丛边缘—裸地)而逐渐减小的趋势。种子的营养价值及取食和搬运过程中啮齿动物付出的成本是影响种子命运的关键性因子,且啮齿动物对种子埋藏和取食地点的微生境存在较明显的选择性。  相似文献   

15.
作为种子捕食者和种子扩散者, 啮齿动物对产坚果植物的自然更新有很大作用。然而, 对啮齿动物鉴别虫蛀种子的能力颇有争议。2001 年秋季在中国四川都江堰市实验林场, 以3 种比例(I1∶S = 1∶1 , I1∶S = 4∶1 和I1∶I2∶S = 1∶1∶1)供给啮齿动物4 种壳斗科种子: 栓皮栎( Quercus variabilis) 、枹树( Q. serrata) 、青冈( Cyclobalanopsis glauca) 和栲树( Castanopsis fargesii) 的3 种坚果型(即饱满种子(S) , 不含象虫的虫蛀种子(I1) 和含象虫的虫蛀种子( I2 ) 验证了啮齿动物能够准确地鉴别虫蛀种子这一假说。结果表明, 在3 种比例下4 种坚果的虫蛀种子的消失速率均慢于饱满种子。即使虫蛀种子的比例增加, 啮齿动物显著地搬走了更多的饱满种子(67%~92%) 。当虫蛀种子的比例增加时, 虫蛀种子就地消耗和拒绝的比例降低, 搬走比例增加。啮齿动物并不拒绝虫蛀种子, 这可能与它们的可利用性(如象虫可以作为蛋白质的补充) 和数量以及它们的觅食行为有关。结果证实啮齿动物能准确地鉴别虫蛀种子, 从而有区别地搬走并贮藏更多的饱满种子, 消耗一部分可以利用的虫蛀种子(包括其内的象虫) 。这样, 啮齿动物通过对饱满种子和虫蛀种子的鉴别和选择会影响不同种子的命运, 从而对这些坚果植物的自然更新产生影响。  相似文献   

16.
Many nutritious seeds are commonly attacked by insects which feed on the seed reserves. However, studies have not fully explored the ecological implications of insect infestation in animal seed dispersal and subsequent plant regeneration. Our question is whether the fact that an infested seed still contains the larva or not might increase/decrease the probability of being successfully dispersed by animals. This study examines the effects of weevil-infested seeds on the natural regeneration of a rodent-dispersed oak species. Rodents showed a high ability to discriminate between sound and infested seeds, even when the larva was still inside. As a result, rodents caused differential seed dispersal for sound and infested seeds by modifying multiple aspects of the dispersal process. We found that, for the same seed weight, infested acorns with a larva still inside can contribute to natural regeneration (0.7?% of seedlings in next summer), although in comparison to sound acorns they suffered higher predation rates by rodents (both partial and complete), were removed later from the ground (less preferred), cached less frequently, and dispersed to shorter distances, which reduced their potential to colonize new environments. However, infested seeds with exit holes are notably less preferred by rodents and, when dispersed, they are mostly deposited on the litter (uncached) with shorter dispersal distances and lower emergence success. Thus, the probability that larval-holed acorns will produce viable seedlings is extremely low (null in this study). Whether infested seeds still contain a larva or not clearly determines the probability of being successfully dispersed. Premature seed drop prolongs the presence of the larva inside the acorn after seed drop, and could be a possible mechanism to allow dispersal of infested seeds.  相似文献   

17.
The mature oak (Quercus liaotungensis Koidz) forests in the Dongling mountains of northern China have become degraded in recent years because regeneration has been limited. To determine whether or not seedling establishment of the oak is seed limited, microsite limited, or predator limited and to determine whether seedling establishment is affected by ground cover, we conducted field experiments during a mast year and investigated the fate of seeds and the soil seed bank dynamics of the oak. A large acorn crop (128.8 acorns/m2) was observed in the study period, and the peak density of acorns on the forest floor reached 46.5 acorns/m2, suggesting that tree recruitment was not seed limited. Acorns in the soil seed bank were mainly lost through decay (principally after fungal attack), consumption in situ, and removal by animals. Predation (including consumption in situ and removal) accounted for 86.4% of acorn loss and was therefore likely to have been the most important factor influencing seed dynamics. More than 70% of acorns were found to have germinated, but no established seedling was observed on the forest floor. Using cages to exclude predators, it was estimated that 87% of acorns germinated and 49% became established as seedlings, indicating that the acorns on the forest floor could emerge and grow in the absence of predators. We conclude that the regeneration of the tree population is limited by predators rather than by the availability of microsites. The presence of ground cover increased the germination rate and increased the chance of seed survival in the early stage of the experiment, but at the end of the investigation, no established seedling was found in the quadrats both with and without ground cover, possibly because of high density of animal predators. On the basis of these results, we suggest that selective tree felling will increase the coverage of the herbaceous layer, which can further decrease the population density of the rodents, and thereby improve the regeneration of oak trees.  相似文献   

18.
北京东灵山落叶阔叶林中辽东栎种子雨   总被引:13,自引:0,他引:13  
在北京东灵山地区的一个落叶阔叶林中调查了辽东栎(Quercus liaotungensis Koidz.)的种子雨。对于选定的4棵辽东栎中的3棵,树冠下的种子雨分布格局符合二次分布,具有很高的决定系数。由设置在树冠下的种子捕捉器收集的坚果数量来估计整棵树的种子雨。4棵树的种子雨中有活力的种子很少,变化范围从26到259个。每棵树的树冠下的种子雨密度变化范围从0.76到7.26个/m^2。林中平均种  相似文献   

19.
Bo Wang  Gang Wang  Jin Chen 《Plant Ecology》2012,213(8):1329-1336
Seed predation and dispersal by scatter-hoarding rodents are key processes that determine seed survival, and thus, plant regeneration within forests. For decades, there has been much debate on the important effects of seed size (one of the most important seed traits) on rodent foraging preference. Furthermore, the possible selective forces in the evolution of seed size may be influenced by primary selectivity and how rodents treat seeds after harvesting. In this study, different-sized seeds from four species (Pinus armandii, Pinus densata, Abies sp., and Viburnum sp.) harvested by scatter-hoarding rodents were studied in an alpine forest in Southwestern China for two consecutive years. Our results showed that seed size influenced rodent foraging preferences, with bigger seeds being preferred over smaller seeds, within and across species. Rodents only removed and cached the larger seeds of P. armandii, and ate the seeds of the other three species in situ. Rodents are purely seed predators for these three species. For the cached seeds of P. armandii, significantly positive correlations were observed between seed size and dispersal distance among both primary and secondary cached seeds in 2006, but not in 2005. Our results indicate that among many coexisting species with widely different-sized seeds, scatter-hoarding rodents played important roles in the seed dispersal of the big-seeded species alone. This caching behavior could offset the limited seed dispersal of large-seeded and wingless species (P. armandii), in comparison with that of small winged seed species (P. densata and Abies sp.) and frugivore-dispersed species (Viburnum sp.).  相似文献   

20.
 以分布在云南西双版纳地区的大型先锋草本植物小果野芭蕉(Musa acuminata)为研究材料,研究其种子初次散布过程和不同时空尺度上种子被 捕食格局。小果野芭蕉的成熟果实有75%在夜间被取食和传播,在白天消失的果实则占25%。蝙蝠是其最主要的种子传播者,鸟类在其种子传播 过程中也起到一定的作用。人工摆放种子试验结果显示小果野芭蕉种子的主要转移者是小型啮齿类(鼠类)和蚁类:在开放处理下3 d后转移率为 86%,排除蚁类(鼠类可进入)处理下种子转移率为69%以及排除鼠类(蚂蚁可进入)处理下种子被转移率为56%。季节、地点和生境均显著影响人工 摆放种子被转移强度:雨季显著高于旱季(p<0.001), 野芭蕉生境显著高于与其相连的自然森林和荒地(p<0.001),在人为干扰较少的补蚌自然 保护区显著低于西双版纳热带植物园和新山,而后两者之间并无显著差异(p>0.05)。同时,地点和生境以及季节、地点和生境都有显著的交互 作用。与相邻的森林和荒地相比,野芭蕉群落中种子被鼠类捕食的强度最大且受蚁类二次转移的比例最少,森林和荒地中种子被鼠类捕食的强 度相对较小且蚁类对种子的二次转移比例较高,从而更好地帮助种子逃避鼠类捕食。因此,依赖于食果动物(主要是蝙蝠, 也包括鸟类)的初次 散布是小果野芭蕉种子逃避捕食的关键。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号