首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Naturally occurring motoneuron cell death during development is a well-described phenomenon and the existence of a survival factor provided by target muscles has been postulated. Blockade of activity by chronic application of a neuromuscular junction blocker rescues almost all motoneurons from cell death. The present study was conducted in order to examine the possibility that the motoneuron survival-promoting activity in muscles increases following activity blockade. Cell culture was used to assess the degree of motoneuron survival-promoting activity present in muscle extracts. Embryonic chick motoneurons were labeled by injecting the water-insoluble fluorescent dye, DiI (Molecular Probes, Inc.) into the spinal nerves both before and during the cell death period. The labeled cells extending long neurites were counted after 2 days of culture as viable motoneurons in low-density heterogeneous cell cultures. The culture medium, Ham F12/DMEM (1:1 mixture) supplemented with 10% horse serum, 5% chick serum, and 5% fetal calf serum, was employed as a basic culture medium for assessing motoneuron survival factor, since it supported the survival of a significantly higher number of motoneurons derived from embryos before cell death than those during the cell death period, thus representing the motoneuron's requirement for survival factor in vivo. The number of surviving motoneurons clearly increased in proportion to the amount of muscle extract added to the culture medium. In comparison with control chick embryos, the dose-response relation between the number of surviving motoneurons and the amount of muscle extract added did not change when embryos were used after chronic application of curare. These results therefore indicate that survival factor derived from target muscle is crucial to the in vitro motoneurons during the cell death period, but do not support the idea that inactive muscle contains a higher amount of the survival factor.  相似文献   

2.
We have previously reported on our investigation of motoneuron cell death (MCD) in the rat nucleus ambiguus (NA). This article focuses on the other major upper respiratory tract motor nucleus: the hypoglossal. The hypoglossal nucleus (XII) contains motoneurons to the tongue and, as such, plays a critical role in defining patterns of respiration, deglutition, and vocalization. Motoneuron counts were made in XII in a developmental series of rats. In addition, the neural tracer fast DiI was used to ensure that all hypoglossal motoneurons had migrated into the nucleus at the time cell death was assessed. Furthermore, an antibody to γ-aminobutyric acid (GABA) was used to determine the potential effect of inadvertently counting large interneurons on motoneuron counts. Cell death in XII was shown to occur entirely prenatally with a loss of 35% of cells between embryonic day 16 (E16) and birth. Fast DiI tracings of the prenatal hypoglossal nerve indicated that all motoneurons were present in a well-defined nucleus by E15. Immunocytochemical staining for GABA demonstrated considerably fewer interneurons than motoneurons in XII. These findings in XII, in comparison with those previously reported for NA, demonstrate differences in the timing and amount of cell death between upper respiratory tract motor nuclei. These differences establish periods during which one nucleus may be preferentially insulted by environmental or teratogenic factors. Preferential insults may underlie some of the upper respiratory tract incoordination pathologies seen in the newborn such as the sudden infant death syndrome (SIDS). © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The mammalian upper respiratory tract (URT) serves as the common modality for aspects of respiration, deglutition, and vocalization. Although these actions are dependent on coordinated and specific neuromuscular control, little is known about the development of URT control centers. As such, this study investigated the occurrence of naturally occurring motoneuron cell death (MCD) in the nucleus ambiguus (NA) of a developmental series of rats. Standard histological techniques were used to count motoneurons in the ventrolateral brainstem where the mature NA is found. In addition, the neural tracer, fast Dil, was used to determine whether motoneurons were still migrating into the region of the NA during the period that cell counts were first taken. Furthermore, to elucidate the potential effect of inadvertently counting large interneurons on the assessment of motoneuron numbers, an antibody to γ-aminobutyric acid (GABA) was used. The results of this study have, for the first time, demonstrated that MCD occurs in a URT-related motor nucleus. Approximately a 50% cell death was observed during the prenatal development of NA, with no further loss seen postnatally. The fast DiI studies showed that by embryonic day 17, NA was fully formed, suggesting that motoneuron migration from the basal plate was complete. In addition, use of the GABA antibody showed a lack of inhibitory interneurons within the NA. The finding of MCD in the NA helps define a critical period in the formation of URT neuromuscular control. As the course of MCD is modifiable by epigenetic signals, insult to the organism during this prenatal period may compromise future URT control. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development.  相似文献   

5.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

6.
A mathematical model is presented for the analysis of transition between cycling and non-cycling compartments by cells responding to a growth stimulus. The cellular age distribution as a function of time is derived from sequential [3H]thymidine pulse labeling indices. Rates of entry into and exit from the cycling compartment are determined on the basis of labeling indices obtained after instantaneous and long duration [3H]thymidine pulses. Analysis of an experiment involving sequential measurements over the whole lifespan of a human lymphocyte culture stimulated by phytohemagglutinin is presented as an example of the application of this method.  相似文献   

7.
Chang liver cells from exponentially growing suspension cultures have been separated by sedimentation at unit gravity. Determinations of the protein content per cell showed that the fractionation procedure resulted in good separation of cells of different size. On the other hand, the DNA content of individual cells from the fractions, as determined cytofluorimetrically, indicated considerable heterogeneity in the size of cells from the same stage of the division cycle. On the basis of earlier results on intermitotic growth and the variation in the length of the cell cycle in homogeneous cell populations, a mathematical model has been constructed and tested using a computer program. The present results on the size distribution of cells from the different stages of the mitotic cycle are consistent with a regeneration of size heterogeneity in each cell generation, as a result of the dispersion of intermitotic times. The variation in cell cycle times may be related to a probabilistic event in the G1 period. In the mathematical model it was necessary to include a mechanism by which the regeneration of abnormally large cells is prevented. The experimental data are compatible with a gradually increasing inhibition of growth in cells larger than a certain size (circa 400 pg protein per cell).  相似文献   

8.
Previous evidence has indicated that an intact centrosome is essential for cell cycle progress and that elimination of the centrosome or depletion of individual centrosome proteins prevents the entry into S phase. To investigate the molecular mechanisms of centrosome-dependent cell cycle progress, we performed RNA silencing experiments of two centrosome-associated proteins, pericentriolar material 1 (PCM-1) and pericentrin, in primary human fibroblasts. We found that cells depleted of PCM-1 or pericentrin show lower levels of markers for S phase and cell proliferation, including cyclin A, Ki-67, proliferating cell nuclear antigen, minichromosome maintenance deficient 3, and phosphorylated retinoblastoma protein. Also, the percentage of cells undergoing DNA replication was reduced by >50%. At the same time, levels of p53 and p21 increased in these cells, and cells were predisposed to undergo senescence. Conversely, depletion of centrosome proteins in cells lacking p53 did not cause any cell cycle arrest. Inhibition of p38 mitogen-activated protein kinase rescued cell cycle activity after centrosome protein depletion, indicating that p53 is activated by the p38 stress pathway.  相似文献   

9.
We examined the luminal pH of individual lysosomes using quantitative ratiometric fluorescence microscopy and report an unappreciated heterogeneity: peripheral lysosomes are less acidic than juxtanuclear ones despite their comparable buffering capacity. An increased passive (leak) permeability to protons, together with reduced vacuolar H+–adenosine triphosphatase (V-ATPase) activity, accounts for the reduced acidifying ability of peripheral lysosomes. The altered composition of peripheral lysosomes is due, at least in part, to more limited access to material exported by the biosynthetic pathway. The balance between Rab7 and Arl8b determines the subcellular localization of lysosomes; more peripheral lysosomes have reduced Rab7 density. This in turn results in decreased recruitment of Rab-interacting lysosomal protein (RILP), an effector that regulates the recruitment and stability of the V1G1 component of the lysosomal V-ATPase. Deliberate margination of lysosomes is associated with reduced acidification and impaired proteolytic activity. The heterogeneity in lysosomal pH may be an indication of a broader functional versatility.  相似文献   

10.
Wang Y  Shirogane T  Liu D  Harper JW  Elledge SJ 《Cell》2003,112(5):697-709
In S. cerevisiae cells undergoing anaphase, a ras-related GTPase, Tem1, is located on the spindle pole body that enters the daughter cell and activates a signal transduction pathway, MEN, to allow mitotic exit. MEN activation must be reversed after mitotic exit to reset the cell cycle in G1. We find that daughter cells activate an Antagonist of MEN pathway (AMEN) in part through induction of the Amn1 protein that binds directly to Tem1 and prevents its association with its target kinase Cdc15. Failure of Amn1 function results in defects of both the spindle assembly and nuclear orientation checkpoints and delays turning off Cdc14 in G1. Thus, Amn1 is part of a daughter-specific switch that helps cells exit from mitotic exit and reset the cell cycle.  相似文献   

11.
Target tissue regulation of naturally occurring neuronal death during development has often been studied by removing a limb bud and then analyzing spinal motor neuron number later in development. The present study focuses on the necessity for limb presence in the initiation of the most rapid phase of cell loss from the lateral motor column (LMC) and in the control of neuron number during this restricted developmental period. Unilateral hindlimb amputation in larval Rana pipiens at the time of onset of rapid LMC cell loss resulted in an unequal, bilateral retention of excess motor neurons (i.e., less cell loss than normally occurs) during this phase. Limb traumatization, with axotomy, also resulted in reduced bilateral LMC cell loss, although to a lesser extent than did amputation. Absence of the limb or axonal transection presumably prevents the communication of motor neurons with their differentiating targets and thus interferes with the flow of information required for the selective events of neuronal loss and survival. The presence of the limb with intact axons is essential at the time that LMC cell loss normally ensues for both the initiation and progression of the phase of greatest cell loss.  相似文献   

12.
13.
14.
15.
Accessory planta retractor (APR) motoneurons of the hawk moth, Manduca sexta, undergo a segment-specific pattern of programmed cell death (PCD) 24 to 48 h after pupal ecdysis (PE). Cell culture experiments show that the PCD of APRs in abdominal segment 6 [APR(6)s] is a cell-autonomous response to the steroid hormone 20-hydroxyecdysone (20E) and involves mitochondrial demise and cell shrinkage. Twenty-four hours before PE, at stage W3-noon, APR(6)s require further 20E exposure and protein synthesis (as tested with cycloheximide) to undergo PCD, and death can be blocked by a broad-spectrum caspase inhibitor. By PE, death is 20E- and protein synthesis-independent and the caspase inhibitor blocks cell shrinkage but not loss of mitochondrial function. Thus, the commitment to mitochondrial demise precedes the commitment to execution events. The phenotype of necrotic cell death induced by a mitochondrial electron transfer inhibitor differs unambiguously from 20E-induced PCD. By inducing PCD pharmacologically, the readiness of APR(6)s to execute PCD was found to increase during the final larval instar. These data suggest that the 20E-induced PCD of APR(6)s includes a premitochondrial phase which includes 20E-induced synthetic events and apical caspase activity, a mitochondrial phase which culminates in loss of mitochondrial function, and a postmitochondrial phase during which effector caspases are activated and APR(6) is destroyed.  相似文献   

16.
17.
In development and in the adult, complex signaling pathways operate within and between cells to coordinate proliferation and cell death. These networks can be viewed as coupling devices that link engines driving the cell cycle and the initiation of apoptosis. We propose three simple frameworks for modeling the effects of proliferative drive on apoptotic propensity. This perspective offers a potentially useful foundation for predicting group behaviors of cells in normal and pathological settings.  相似文献   

18.
In contrast to extracellular signals, the mechanisms utilized to transduce nuclear apoptotic signals are not well understood. Characterizing these mechanisms is important for predicting how tumors will respond to genotoxic radiation or chemotherapy. The retinoblastoma (Rb) tumor suppressor protein can regulate apoptosis triggered by DNA damage through an unknown mechanism. The nuclear death domain-containing protein p84N5 can induce apoptosis that is inhibited by association with Rb. The pattern of caspase and NF-kappaB activation during p84N5-induced apoptosis is similar to p53-independent cellular responses to DNA damage. One hallmark of this response is the activation of a G(2)/M cell cycle checkpoint. In this report, we characterize the effects of p84N5 on the cell cycle. Expression of p84N5 induces changes in cell cycle distribution and kinetics that are consistent with the activation of a G(2)/M cell cycle checkpoint. Like the radiation-induced checkpoint, caffeine blocks p84N5-induced G(2)/M arrest but not subsequent apoptotic cell death. The p84N5-induced checkpoint is functional in ataxia telangiectasia-mutated kinase-deficient cells. We conclude that p84N5 induces an ataxia telangiectasia-mutated kinase (ATM)-independent, caffeine-sensitive G(2)/M cell cycle arrest prior to the onset of apoptosis. This conclusion is consistent with the hypotheses that p84N5 functions in an Rb-regulated cellular response that is similar to that triggered by DNA damage.  相似文献   

19.
20.
The stem cells of the small intestine are multipotent: they give rise, via transit-amplifying cell divisions, to large numbers of columnar absorptive cells mixed with much smaller numbers of three different classes of secretory cells - mucus-secreting goblet cells, hormone-secreting enteroendocrine cells, and bactericide-secreting Paneth cells. Notch signaling is known to control commitment to a secretory fate, but why are the secretory cells such a small fraction of the population, and how does the diversity of secretory cell types arise? Using the mouse as our model organism, we find that secretory cells, and only secretory cells, pass through a phase of strong expression of the Notch ligand Delta1 (Dll1). Onset of this Dll1 expression coincides with a block to further cell division and is followed in much less than a cell cycle time by expression of Neurog3 – a marker of enteroendocrine fate – or Gfi1 – a marker of goblet or Paneth cell fate. By conditional knock-out of Dll1, we confirm that Delta-Notch signaling controls secretory commitment through lateral inhibition. We infer that cells stop dividing as they become committed to a secretory fate, while their neighbors continue dividing, explaining the final excess of absorptive over secretory cells. Our data rule out schemes in which cells first become committed to be secretory, and then diversify through subsequent cell divisions. A simple mathematical model shows how, instead, Notch signaling may simultaneously govern the commitment to be secretory and the choice between alternative modes of secretory differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号