首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Common bean plants inoculated with salt-tolerant Rhizobium tropici wild-type strain CIAT899 formed a more active symbiosis than did its decreased salt-tolerance (DST) mutant derivatives (HB8, HB10, HB12 and HB13). The mutants formed partially effective (HB10, HB12) or almost ineffective (HB8, HB13) nodules (Fix(d)) under non-saline conditions. The DST mutant formed nodules that accumulated more proline than did the wild-type nodules, while soluble sugars were accumulated mainly in ineffective nodules. Under salt stress, plant growth, nitrogen fixation, and the activities of the antioxidant defense enzymes of nodules were affected in all symbioses tested. Overall, mutant nodules showed lower antioxidant enzyme activities than wild-type nodules. Levels of nodule catalase appeared to correlate with symbiotic nitrogen-fixing efficiency. Superoxide dismutase and dehydroascorbate reductase seem to function in the molecular mechanisms underlying the tolerance of nodules to salinity.  相似文献   

4.
5.
Polyamines have been suggested to play an important role in stress protection. However, attempts to determine the function of polyamines have been complicated by the fact that, dependent on the conditions, polyamine contents increase or decrease during stress. To determine the importance of polyamine formation during salt stress, we analysed polyamine contents and salt tolerance in two Arabidopsis thaliana mutants, spe1-1 and spe2-1 (Watson et al. Plant J 13: 231–239, 1998), with reduced activity of arginine decarboxylase (EC 4.1.1.19), an important enzyme in polyamine synthesis. Polyamines accumulated in wild-type plants (Col-0 and Ler-0) that were pre-treated with 100 m M NaCl before transfer to 125 m M NaCl, but not in plants that were directly transferred to 125 m M NaCl without prior treatment with 100 m M NaCl. This shows that polyamine accumulation depends on acclimation to salinity. The salt treatment that induced polyamine accumulation in wild-type plants did not lead to polyamine accumulation in the spe1-1 and spe2-1 mutants. Decreased fresh weight, chlorophyll content and photosynthetic efficiency indicated that the spe1-1 mutant was more severely affected by salt stress than its wild type, Col-0. In the spe2-1 mutant decreased salt tolerance compared to its wild type, Ler-0, became apparent as bleaching under severe salt stress. The present results demonstrate that decreased polyamine formation due to lower arginine decarboxylase activity leads to reduced salt tolerance.  相似文献   

6.
The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 μM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range in leaves. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.  相似文献   

7.
Accumulation of an osmoprotectant, proline, is enhanced in response to salinity in plants. Here, by immunohistochemical analysis, we demonstrated that proline transporter (HvProT) was highly expressed in the apical region of barley roots under salt stress. Free proline was accumulated more in the basal region than in the apical region of barley roots under salt stress, although expression level of HvProT was higher in the apical region. On the other hand, salt stress increased proline and hydroxyproline contents in the cell wall fraction of the root apical region, suggesting increment of proline utilization. Expression of the genes encoding cell wall proteins (proline rich protein and extensin) and cellulose synthase was induced in barley roots by salt stress. These findings indicated that free proline transported by HvProT presumably behaved as a component of cell wall synthesis in the apical region of barley roots under salt stress.  相似文献   

8.
Osmotin has been implicated in conferring tolerance to drought and salt stress in plants. We have over-expressed the osmotin gene under the control of constitutive CaMV 35S promoter in transgenic tobacco, and studied involvement of the protein in imparting tolerance to salinity and drought stress. The transgenic plants exhibited retarded leaf senescence and improved germination on a medium containing 200mM NaCl. Further, the transgenics maintained higher leaf relative water content (RWC), leaf photosynthesis and free proline content than the wild type plants during water stress and after recovery from stress. When subjected to salt stress (200mM NaCl), the transgenic plants accumulated significantly more proline than the wild type plants. These results suggest the involvement of the osmotin-induced increase in proline in imparting tolerance to salinity and drought stress in transgenic plants over-expressing the osmotin gene.  相似文献   

9.
10.
T-DNA disruption mutations in the AtHKT1 gene have previously been shown to suppress the salt sensitivity of the sos3 mutant. However, both sos3 and athkt1 single mutants show sodium (Na+) hypersensitivity. In the present study we further analyzed the underlying mechanisms for these non-additive and counteracting Na+ sensitivities by characterizing athkt1-1 sos3 and athkt1-2 sos3 double mutant plants. Unexpectedly, mature double mutant plants grown in soil clearly showed an increased Na+ hypersensitivity compared with wild-type plants when plants were subjected to salinity stress. The salt sensitive phenotype of athkt1 sos3 double mutant plants was similar to that of athkt1 plants, which showed chlorosis in leaves and stems. The Na+ content in xylem sap samples of soil-grown athkt1 sos3 double and athkt1 single mutant plants showed dramatic Na+ overaccumulation in response to salinity stress. Salinity stress analyses using basic minimal nutrient medium and Murashige-Skoog (MS) medium revealed that athkt1 sos3 double mutant plants show a more athkt1 single mutant-like phenotype in the presence of 3 mM external Ca2+, but show a more sos3 single mutant-like phenotype in the presence of 1 mM external Ca2+. Taken together multiple analyses demonstrate that the external Ca2+ concentration strongly impacts the Na+ stress response of athkt1 sos3 double mutants. Furthermore, the presented findings show that SOS3 and AtHKT1 are physiologically distinct major determinants of salinity resistance such that sos3 more strongly causes Na+ overaccumulation in roots, whereas athkt1 causes an increase in Na+ levels in the xylem sap and shoots and a concomitant Na+ reduction in roots.  相似文献   

11.
Sun J  Jiang H  Xu Y  Li H  Wu X  Xie Q  Li C 《Plant & cell physiology》2007,48(8):1148-1158
The molecular mechanism governing the response of plants to salinity stress, one of the most significant limiting factors for agriculture worldwide, has just started to be revealed. Here, we report AtSZF1 and AtSZF2, two closely related CCCH-type zinc finger proteins, involved in salt stress responses in Arabidopsis. The expression of AtSZF1 and AtSZF2 is quickly and transiently induced by NaCl treatment. Mutants disrupted in the expression of AtSZF1 or AtSZF2 exhibit increased expression of a group of salt stress-responsive genes in response to high salt. Significantly, the atszf1-1/atszf2-1 double mutant displays more sensitive responses to salt stress than the atszf1-1 or atszf2-1 single mutants and wild-type plants. On the other hand, transgenic plants overexpressing AtSZF1 show reduced induction of salt stress-responsive genes and are more tolerant to salt stress. We also showed that AtSZF1 is localized in the nucleus. Taken together, these results demonstrated that AtSZF1 and AtSZF2 negatively regulate the expression of salt-responsive genes and play important roles in modulating the tolerance of Arabidopsis plants to salt stress.  相似文献   

12.
13.
On the basis of the results of gene chip analysis of the salt-tolerant wheat mutant RH8706-49 under conditions of salt stress, we identified and cloned an unknown salt-induced gene TaST (Triticum aestivum salt-tolerant). Real-time quantitative PCR analysis showed that the expression of the gene was induced by salt stress. Transgenic Arabidopsis plants overexpressing the TaST gene showed higher salt tolerance than the wild-type controls. Subcellular localization studies revealed that the protein encoded by this gene was in the nucleus. In comparison with wild-type controls, transgenic Arabidopsis plants accumulated more Ca2+, soluble sugar, and proline and less Na+ under salt stress. Real-time quantitative PCR analysis showed that Arabidopsis plants overexpressing TaST also showed increased expression of many stress-related genes. All these findings indicated that TaST can enhance the salt tolerance of transgenic Arabidopsis plants.  相似文献   

14.
The mechanisms of potato (Solanum tuberosum L.) plants’ tolerance to chloride salinity were investigated in cv. Lugovskoi regionalized in Russia. Regenerated plants were produced in vitro from apical meristem and grown on half-strength Murashige and Skoog medium (0.5 MS) using a hydroponic unit in controlled-climate conditions. At the age of six weeks, the plants were exposed to salt stress (50–150 mM NaCl, 7 days). Plant response to salt stress was estimated by growth parameters (fresh and dry biomass of the aboveground and underground parts of plants, linear dimensions of shoot and root, area of leaf surface, and number of stolons) and physiological characteristics (level of photosynthetic pigments, accumulation of sodium, potassium, and calcium ions in the aboveground and underground parts of plants, content of proline, activity of antioxidant enzymes, plant tissue hydration, osmotic potential, and POL). It was found that, in response to salinity, the plants of potato, cv. Lugovskoi, showed a considerable inhibition of growth processes, reduction in chlorophyll a content, and suppression of stolon formation, which points to a rather low salinity tolerance of the cultivar. At the same time, under weak or moderate salt stress, the plants preserved water homeostasis owing to effective osmoregulation, actively accumulated proline that acted as a stress protector, and showed hardly any signs of oxidative stress. It was assumed that low salt tolerance of this cultivar depends on the inability of its root system to retain sodium ions and ensure selective ion transport to the aboveground part of the plant and on inefficiency of the system of sodium ions’ removal from the cytoplasm of leaf cells and their compartmentalization in the central vacuole with the purpose of reducing their toxic effect. The obtained results may be useful for working out a technique of improving salt tolerance of this cultivar by the methods of molecular genetics.  相似文献   

15.
To better understand the role of ethylene signaling in plant stress tolerance, salt-induced changes in gene expression levels of ethylene biosynthesis, perception and signaling genes were measured in Arabidopsis thaliana plants exposed to 15 days of salinity. Among the genes analyzed, EIN3 showed the highest expression level increase under salt stress, suggesting a key role for this ethylene-signaling component in response to salt stress. Therefore, we analyzed the salt stress response over 15 days (by adding 100 mM NaCl to the nutrient solution) in the ein3-1 mutant compared to the wild-type (Col-0) in terms of growth, oxidative stress markers (lipid peroxidation, foliar pigments and low-molecular-weight antioxidants) and levels of growth- and stress-related phytohormones (including cytokinins, auxins, gibberellins, abscisic acid, jasmonic acid and salicylic acid). The ein3-1 mutant grew similarly to wild-type plants both under control and salt stress conditions, which was associated with a differential time course evolution in the levels of the cytokinins zeatin and zeatin riboside, and the auxin indole-3-acetic acid between the ein3-1 mutant and the wild-type. Despite showing no signs of physiological deterioration under salt stress (in terms of rosette biomass, leaf water and pigment contents, and PSII efficiency) the ein3-1 mutant showed enhanced lipid peroxidation under salt stress, as indicated by 2.4-fold increase in both malondialdehyde and jasmonic acid contents compared to the wild-type. We conclude that, at moderate doses of salinity, partial insensitivity to ethylene might be compensated by changes in endogenous levels of other phytohormones and lipid peroxidation-derived signals in the ein3-1 mutant exposed to salt stress, but at the same time, this mutant shows higher oxidative stress under salinity than the wild-type.  相似文献   

16.
17.
Role of Ca2+ in Drought Stress Signaling in Wheat Seedlings   总被引:1,自引:0,他引:1  
Plants use complex signal transduction pathways to perceive and react to various biotic and/or abiotic stresses. As a consequence of this signaling, plants can modify their metabolism to adapt themselves to new conditions. One such change is the accumulation of proline in response to drought and salinity stresses. We have studied drought and salinity induced proline accumulation and the roles of Ca2+ (10 mM) and indoleacetic acid (IAA, 0.3 mM) in this response. Subjecting seedlings to both drought (6% polyethylene glycol, PEG) and salinity (150 mM NaCl) stress resulted in a dramatic increase in proline accumulation (7-fold higher than control level). However, the application of Ca2+ along with these stress factors had different effects. Unlike the salinity stress, Ca2+ prevented the drought induced proline accumulation indicating that these stress factors use distinct signaling pathways to induce similar responses. Experiments with IAA and EGTA (10 mM) supported this interpretation and suggested that Ca2+ and auxin participate in signaling mechanisms of drought-induced proline accumulation. Drought and salt stress-induced proline accumulation was compared on salt resistant (cv. Gerek 79) and salt sensitive (cv. Bezostaya) wheat varieties. Although proline level of the first was twofold lower than that of the second in control, relative proline accumulation was dramatically higher in the case of the salt resistant wheat variety under stress conditions.  相似文献   

18.
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that improves water use efficiency by shifting part or all of net atmospheric CO2 uptake to the night. Genetic dissection of regulatory and metabolic attributes of CAM has been limited by the difficulty of identifying a reliable phenotype for mutant screening. We developed a novel and simple colorimetric assay to measure leaf pH to screen fast neutron-mutagenized populations of common ice plant (Mesembryanthemum crystallinum), a facultative CAM species, to detect CAM-deficient mutants with limited nocturnal acidification. The isolated CAM-deficient mutants showed negligible net dark CO2 uptake compared with wild-type plants following the imposition of salinity stress. The mutants and wild-type plants accumulated nearly comparable levels of sodium in leaves, but the mutants grew more slowly than the wild-type plants. The mutants also had substantially reduced seed set and seed weight relative to wild type under salinity stress. Carbon-isotope ratios of seed collected from 4-month-old plants indicated that C3 photosynthesis made a greater contribution to seed production in mutants compared to wild type. The CAM-deficient mutants were deficient in leaf starch and lacked plastidic phosphoglucomutase, an enzyme critical for gluconeogenesis and starch formation, resulting in substrate limitation of nocturnal C4 acid formation. The restoration of nocturnal acidification by feeding detached leaves of salt-stressed mutants with glucose or sucrose supported this defect and served to illustrate the flexibility of CAM. The CAM-deficient mutants described here constitute important models for exploring regulatory features and metabolic consequences of CAM.  相似文献   

19.
20.

Background and aims

Polyamines are cationic molecules that play an important role in the plant response to environmental stresses. The aim of this work is to determine the role of these compounds in the response to salinity of Medicago sativa plants in symbiosis with the soil bacteria Sinorhizobium meliloti.

Methods

M. sativa plants inoculated with S. meliloti were subjected to 100 and 150 mM NaCl treatments. The concentration of nodular polyamines was determined in relation to the nitrogen fixation parameters, proline accumulation, and oxidative damage. In addition, polyamines concentrations were analyzed in different nodular fractions as well as the effect of exogenous polyamines in the nodulation response.

Results

The concentration of nodular polyamines decreased by the salinity in correlation with the nitrogenase activity after 2 and 4 weeks of salt treatment while spermine accumulated after 6 weeks. On the contrary, proline accumulation was induced by the salinity at all time points. The analysis of different nodular fractions showed the highest polyamines concentration in bacteroids being homospermidine the most abundant.

Conclusion

Proline accumulation had prevalence over polyamines at the earliest response to salinity probably due to nitrogen limitation under salt stress conditions and the existence of a common precursor for both compounds in the nodule. Nevertheless, after long salt exposure, spermine was also accumulated. The analysis of different nodular fractions indicated the bacteroidal origin of polyamines in nodules being homoespermidine, one of the most abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号