首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Isoprene is a reactive hydrocarbon with an important role in atmospheric chemistry, and emissions from vegetation contribute to atmospheric carbon fluxes. The magnitude of isoprene emissions from arctic peatlands is not known, and it may be altered by increasing UV-B radiation. Isoprene emission was measured with the dynamic chamber method from a subarctic peatland under long-term enhancement of UV-B radiation targeted to correspond to a 20% loss in the stratospheric ozone layer. The site type of the peatland was a flark fen dominated by the moss Warnstorfia exannulata and sedges Eriophorum russeolum and Carex limosa. The relationship between species densities and the emission was also assessed. Isoprene emissions were significantly increased by enhanced UV-B radiation during the second (2004) and the fourth (2006) growing seasons under the UV-B exposure. Emissions were related to the density of E. russeolum. The dominant moss, W. exannulata, proved to emit small amounts of isoprene in a laboratory trial. Subarctic fens, even without Sphagnum moss, are a significant source of isoprene to the atmosphere, especially under periods of warm weather. Warming of the Arctic together with enhanced UV-B radiation may substantially increase the emissions.  相似文献   

2.
UV-B辐射增强对陆地生态系统碳循环的影响   总被引:1,自引:0,他引:1  
作为全球变化的重要现象之一,紫外射线B(UV-B,波长280~320 nm)辐射增强对陆地生态系统碳循环具有重要影响.UV-B辐射增强主要通过改变植物的光合作用、凋落物分解以及土壤呼吸来影响陆地生态系统碳的输入和转化输出.其他气候因子(大气CO2浓度、温度和水分)可能会促进或减缓UV-B辐射对陆地生态系统碳循环的作用.本文介绍了UV-B辐射增强的背景,综述了国内外近年来UV-B辐射增强及与其他气候因子交互作用对陆地生态系统碳循环的影响,总结了目前研究存在的不足,讨论了未来的研究重点和方向.  相似文献   

3.
田间增强UV—B辐射对麦田生态系统K营养和累积的影响   总被引:2,自引:1,他引:2  
研究大田栽培和自然光条件下,模拟UV-B辐射(UV-B,280-315nm)增强对麦田生态系统K营养和累积的影响,UV-B辐射显著影响春小麦不同生育期各部位K含量和群体K累积,并显著降低群体K总累积,在5.31kJ.m^-2UV-B辐射下,春小麦群体K总累积的降低最显著,UV-B辐射降低春小麦群体K输出,标志着麦田生态系统K产投比降低,K循环功能下降,麦田土壤速效K含量增加是春小麦群体K输出降低的结果,并将导致土壤库中K储量的增加。  相似文献   

4.
增强的UV—B辐射对麦田生态系统能量累积和流动的影响   总被引:6,自引:0,他引:6  
. 《西北植物学报》2000,20(3):387-391
研究了大田栽培和自然光条件下 ,模拟 UV- B辐射 ( UV- B,2 80~ 31 5nm)增强对麦田生态系统能量累积和流动的影响。在 5.31 k J· m- 2 UV- B辐射下 ,春小麦群体不同生育期叶、茎、根、穗、粒生物量和总生物量显著降低 ,各部位热值没有显著变化 ,各部位能量累积和总能量累积显著降低。能量累积与生物量呈极显著正相关 ,而与热值没有显著的相关性 ,可能生物量比热值对能量累积的贡献更大。 UV- B辐射显著降低春小麦群体能量输出 ,可能导致麦田生态系统能量流动功能下降。  相似文献   

5.
The effect of elevated UV‐B radiation on CO2 exchange of a natural flark fen was studied in open‐field conditions during 2003–2005. The experimental site was located in Sodankylä in northern Finland (67°22′N, 26°38′E, 179 m a.s.l.). Altogether 30 study plots, each 120 cm × 120 cm in size, were randomly distributed between three treatments (n=10): ambient control, UV‐A control and UV‐B treatment. The UV‐B‐treated plots were exposed to elevated UV‐B radiation level for three growing seasons. The instantaneous net ecosystem CO2 exchange (NEE) and dark respiration (RTOT) were measured during the growing season using a closed chamber method. The wintertime CO2 emissions were estimated using a gradient technique by analyzing the CO2 concentration in the snow pack. In addition to the instantaneous CO2 exchange, the seasonal CO2 balances during the growing seasons were modeled using environmental data measured at the site. In general, the instantaneous NEE at light saturation was slightly higher in the UV‐B treatment compared with the ambient control, but the gross photosynthesis was unaffected by the exposure. The RTOT was significantly lower under elevated UV‐B in the third study year. The modeled seasonal (June–September) CO2 balance varied between the years depending on the ground water level and temperature conditions. During the driest year, the seasonal CO2 balance was negative (net release of CO2) in the ambient control and the UV‐B treatment was CO2 neutral. During the third year, the seasonal CO2 uptake was 43±36 g CO2‐C m−2 in the ambient control and 79±45 g CO2‐C m−2 in the UV‐B treatment. The results suggest that the long‐term exposure to high UV‐B radiation levels may slightly increase the CO2 accumulation to fens resulting from a decrease in microbial activity in peat. However, it is unlikely that the predicted development of the level of UV‐B radiation would significantly affect the CO2 balance of fen ecosystems in future.  相似文献   

6.
紫外辐射增强对植物糖代谢的影响   总被引:1,自引:0,他引:1  
李元  张翠萍  祖艳群 《生态学杂志》2006,25(10):1265-1268
综述了UV-B辐射增强对植物叶片、茎、根、果实以及籽粒中糖含量影响的研究现状与动态,从生理学角度分析了UV-B辐射对植物糖含量和糖代谢相关的一些重要反应及其影响植物糖含量和糖代谢的关键酶的响应,并从植物的光合碳固定、糖的合成与分解等方面阐述了UV-B影响糖含量及糖代谢的可能机理。展望了今后紫外辐射增强对植物糖代谢影响的研究重点和研究方向。  相似文献   

7.
Tosserams  Marcel  Visser  Andries  Groen  Mark  Kalis  Guido  Magendans  Erwin  Rozema  Jelte 《Plant Ecology》2001,154(1-2):195-210
Due to anthropogenic influences, both solar UV-B irradiance at the earth's surface and atmospheric [CO2] are increasing. To determine whether effects of CO2 enrichment on faba bean (cv. Minica) growth are modified by UV-B radiation, the effects of enhanced [CO2] on growth and photosynthetic characteristics, were studied at four UV-B levels. Faba bean was sensitive to enhanced UV-B radiation as indicated by decreases in total biomass production. Growth stimulation by CO2 enrichment was greatly reduced at the highest UV-B level. [CO2] by UV-B interactions on biomass accumulation were related to loss of apical dominance. Both [CO2] and UV-B radiation affected biomass partitioning, UV-B effects being most pronounced. Effects of [CO2] and UV-B on faba bean growth were time-dependent, indicating differential sensitivity of developmental stages. [CO2] and UV-B effects on photosynthetic characteristics were rather small and restricted to the third week of treatment. CO2 enrichment induced photosynthetic acclimation, while UV-B radiation decreased light-saturated photosynthetic rate. It is concluded that the reduction in biomass production cannot be explained by UV-B-induced effects on photosynthesis.  相似文献   

8.
Effects on water chemistry after drainage of a bog for forestry   总被引:1,自引:1,他引:0  
Drainage for forestry has received increasing interest during recent decades. Generally, drainage concerns wet mineral soils while the utilization of peatlands is a matter of controversy. The peatlands mainly involved are fens, while forestry on bogs is an insignificant activity. Consequently, hydrology of bogs and effects of drainage on their hydrochemistry are little known.The investigation performed aimed at elucidating the parent conditions and the drainage impact on the hydrology and hydrochemistry of an ombrotrophic bog. Two bogs were first compared during a calibration period of two years and then, after drainage of one of them, during a period of three years. The second bog was kept virgin as a control.Considerable influences on runoff and stream water quality were found from the surrounding mineral soil uplands of the bog. Significant differences occurred between the chemical composition of the groundwater in the mineral soil and in the bog peat.Effects on runoff water from drainage of the bog deviate from drainage of minerotrophic peatlands with respect to decreased concentrations and losses of organic carbon and nitrogen. From two small bog catchments within the drained bog, there generally were greater losses of nutrients than from the catchment as a whole. Furthermore, the runoff from the drained bog decreased in comparison with the undrained condition. However, there were also similarities to drainage of other peatlands as regards increased pH, alkalinity and concentrations of sulphate. Also, concentrations of total-phosphorus increased in spite of a decreased phosphate (MRP) concentration.  相似文献   

9.
UV-B辐射增强对陆地植物次生代谢的影响   总被引:10,自引:6,他引:10  
薛慧君  岳明 《西北植物学报》2004,24(6):1131-1137
平流层臭氧的减薄已导致地表中波紫外辐射(UV-B,280~320nm)增强,由于UV-B能被许多生物大分子如蛋白质和核酸吸收并引起分子构象的变化,因此可对植物的各方面产生影响。本文将近年来特别是近5年的UV-B辐射增强对植物次生代谢物影响的研究工作进行了综述。主要包括:UV-B辐射增强对植物紫外吸收物的影响和可能的机制;环境因子的复合作用对植物紫外吸收物的影响和可能的机制;UV-B辐射增强对次生代谢物影响的生态学意义。并对该领域未来的研究作了展望。  相似文献   

10.
采用盆栽试验的方法,研究了秋末冬初不同灌水量下限\[分别占田间持水量(FC)的80%、70%、60%、50%\]对高羊茅绿期及抗寒性生理指标的影响.结果表明:在冬季低温条件下,80%和70%FC灌水处理使高羊茅叶片相对含水量、保护酶(SOD、POD和CAT)活性、叶绿素、可溶性糖和游离脯氨酸含量维持在较高水平,丙二醛含量和电解质外渗率降低,高羊茅的抗寒性增强.80%FC灌水处理分别较70%、60%和50%FC处理的草坪草绿期延长4、22和28 d,到达枯黄休眠的时间最晚,完成返青的时间最早.综合考虑节水和提高水分利用效率等多种因素,70%FC灌水处理为高羊茅秋末冬初季节最佳的灌水下限.  相似文献   

11.
增强的紫外线-B辐射对几种作物和品种生长的影响   总被引:28,自引:0,他引:28  
在温室条件下,以每日2.2kJ/m^2(CK)、8.82kJ/m^2(T1)和12.6kJ/m^2(T2)紫外线-B辐射(UV-B,280~320nm)剂量研究了5个黄瓜(Cucumis satious L.)品种,7个番茄(Lycopsicon esculentum Mill)品种及大豆[Glycine max(L.)Metr.]、菜豆(Phaseolus vulgaris L.)和黄河密瓜(Cucumis melo L.)的生长反应。辐射处理25d后,测定了株高(PH)、叶重(LDW)及总生物量(TDW)、叶面积(LA)、特定叶重(SLW)、上胚轴长度(EL)和番茄品种的子叶节周长(GCN)。结果表明,种间和种内差异显著。但是大多数品种及种的反应指数为负值,并呈现强度负相关效应,说明UV—B辐射抑制了它们的生长发育,但大豆的反应指数在低剂量的处理下为正值反而促进其生长。UV—B胁迫下,大多数种类的上胚轴延伸明显受阻,特定叶重增加,叶面积和生物量减少,番茄的子叶节膨大。作物对UVB辐射的种内和种间反应是作物遗传特性上的差异和对环境的适应能力不同所致。  相似文献   

12.
We measured net ecosystem CO2 exchange (NEE), plant biomass and growth, species composition, peat microclimate, and litter decomposition in a fertilization experiment at Mer Bleue Bog, Ottawa, Ontario. The bog is located in the zone with the highest atmospheric nitrogen deposition for Canada, estimated at 0.8–1.2 g N m−2 yr−1 (wet deposition as NH4 and NO3). To establish the effect of nutrient addition on this ecosystem, we fertilized the bog with six treatments involving the application of 1.6–6 g N m−2 yr−1 (as NH4NO3), with and without P and K, in triplicate 3 m × 3 m plots. The initial 5–6 years have shown a loss of first Sphagnum, then Polytrichum mosses, and an increase in vascular plant biomass and leaf area index. Analyses of NEE, measured in situ with climate‐controlled chambers, indicate that contrary to expectations, the treatments with the highest levels of nutrient addition showed lower rates of maximum NEE and gross photosynthesis, but little change in ecosystem respiration after 5 years. Although shrub biomass and leaf area increased in the high nutrient plots, loss of moss photosynthesis owing to nutrient toxicity, increased vascular plant shading and greater litter accumulation contributed to the lower levels of CO2 uptake. Our study highlights the importance of long‐term experiments as we did not observe lower NEE until the fifth year of the experiment. However, this may be a transient response as the treatment plots continue to change. Higher levels of nutrients may cause changes in plant composition and productivity and decrease the ability of peatlands to sequester CO2 from the atmosphere.  相似文献   

13.
UV-B辐射增强对马铃薯叶片结构及光合参数的影响   总被引:2,自引:0,他引:2  
李俊  杨玉皎  王文丽  郭华春 《生态学报》2017,37(16):5368-5381
叶片作为植物进行光合作用的主要器官,在长期进化过程中形成了对不同光照环境条件的形态可塑性和相应的适应机制,以保证植物能在变化的、非适宜环境下的生存与繁衍。随着大气臭氧层衰减引起地表UV-B辐射增强,其对植物叶片结构和光合作用的影响显著,但这种气候变化趋势对马铃薯叶片形态结构、光合作用的影响尚不明确。设置增强UV-B辐射2.5 kJm~(-2)d~(-1)(T1)、5.0 kJm~(-2)d~(-1)(T2)、自然光(CK)3个处理,以6个马铃薯品种(系)为材料,研究增强辐射对不同基因型马铃薯叶片结构和光合参数的影响。结果表明:增强的UV-B辐射使马铃薯叶片解剖结构不同程度增厚,叶片厚度增加;叶片气孔和非腺毛的密度增加明显,腺毛有增多倾向。扫描电镜显示处理后的近轴面叶片角质层厚度增加,蜡质晶体增多,但表皮细胞变小且失水萎缩,细胞轮廓模糊;气孔、腺毛及非腺毛附属结构受胁迫影响呈萎缩状态。透射电镜显示处理后的叶肉细胞中基粒类囊体肿胀,结构层次紊乱,胁迫引起细胞质壁分离,细胞壁扭曲并有较多的沉淀物;部分品种过氧化物酶体可见清晰的过氧化氢酶晶体。叶片缩小增厚、腺毛增多、角质层和蜡质增厚、胞内积累过氧化氢酶的形态适应和生理响应并未能有效减少UV-B辐射对光合参数和光合效率的影响,合作88、丽薯6号、师大6号的净光合速率、气孔导度等参数均受到抑制,光能利用效率明显降低,属于UV-B辐射敏感型品种;剑川红21-3、21-1和转心乌3个品种(系)的相关光合特性几乎不受影响,显示云南地方品种具有较强的UV-B辐射耐受性,有待于进一步从生理生化和分子水平探究更多的适应机制。  相似文献   

14.
Extracellular phenoloxidase enzymes play an important role in the stability of soil carbon storage by contributing to the cycling of complex recalcitrant phenolic compounds. Climate warming could affect peatland functioning through an alteration of polyphenol/phenoloxidase interplay, which could lead them to becoming weaker sinks of carbon. Here, we assessed the seasonal variability of total phenolics and phenoloxidases subjected to 2–3 °C increase in air temperature using open‐top chambers. The measurements were performed along a narrow fen–bog ecological gradient over one growing season. Climate warming had a weak effect on phenoloxidases, but reduced phenolics in both fen and bog areas. Multivariate analyses revealed a split between the areas and also showed that climate warming exacerbated the seasonal variability of polyphenols, culminating in a destabilization of the carbon cycle. A negative relationship between polyphenols and phenoloxidases was recorded in controls and climate treatments suggesting an inhibitory effect of phenolics on phenoloxidases. Any significant decrease of phenolics through repeatedly elevated temperature would greatly impact the ecosystem functioning and carbon cycle through an alteration of the interaction of polyphenols with microbial communities and the production of extracellular enzymes. Our climate treatments did not have the same impact along the fen–bog gradient and suggested that not all the peatland habitats would respond similarly to climate forcing.  相似文献   

15.
增强的UV-B辐射对麦田生态系统中种群数量动态的影响   总被引:3,自引:0,他引:3  
李元  王勋陵 《生态学报》2001,21(1):131-135
研究了大田栽培和自然光条件下,模拟UV-B辐射(UV-B,280~315nm)增强对麦田生态系统杂草、大型土壤动物和麦蚜种群数量动态的影响。在UV-B辐射下,杂草和大型土壤动物的种类和数量降低,物种多样性改变,杂草总生物量也降低。UV-B辐射降低麦蚜复合种群数量,并与麦叶粗纤维、可溶性蛋白、可溶性糖、Mg和Zn含量有显著的相关性。UV-B辐射还导致麦蚜与麦叶Mg、Fe和Zn含量均显著增加。  相似文献   

16.
Elevated ultraviolet‐B (UVB) radiation has been reported to have few effects on plants but to alter the soil microbial community composition. However, the effects on soil microorganisms have to be mediated via plants, because direct radiation effects are only plausible on the uppermost millimeters of soil. Here, we assessed secondary effects of UVB on soil microbes. The responses in the dominant plant Eriophorum russeolum, peat pore water and microbial communities in the peat were recorded at a subarctic mire in the middle of the third growing season under field exposure simulating 20% depletion in the ozone layer. The UVB treatment significantly reduced the sucrose and the total soluble sugar (sucrose+glucose+fructose) concentration of the plant leaves while increasing the sucrose concentration in the belowground storage organ rhizome. The starch concentration of the leaves was also slightly reduced by elevated UVB. In the plant roots, carbohydrate concentrations remained unaffected but the total phenolics concentration increased under elevated UVB. We suggest that the simultaneously observed decrease in bacterial growth rate and the altered bacterial community composition are due to UVB‐induced changes in the plant photosynthate allocation and potential changes in root exudation. There were no effects of elevated UVB on microbial biomass, peat pore water or nutrient concentrations in the peat. The observed responses are in line with the previously reported lower ecosystem dark respiration under elevated UVB, and they signify that the changed plant tissue quality and lower bacterial activity are likely to reduce decomposition.  相似文献   

17.
紫外线-B辐射对植物DNA及蛋白质的影响   总被引:5,自引:0,他引:5  
大气平流层中的臭氧衰减,导致太阳辐射中的紫外辐射量有明显的增加,其中UV-B辐射对植物会产生不同程度的影响。分子生态学理论认为,UV-B辐射对植物造成的损伤,首先伤害植物的生物大分子,即进行光化学修饰。本文就臭氧衰减对生态环境和植物的影响途径进行了讨论,重点论述了UV-B辐射对植物蛋白质合成的抑制和DNA的损伤修复途径。并应用分子生物学技术研究植物对UV-B辐射的抗性机理和DNA修复技术的前景进行了展望。  相似文献   

18.
Gwynn-Jones  D.  Lee  J. A.  Callaghan  T. V. 《Plant Ecology》1997,128(1-2):243-249
An experiment is described which studies the effects of enhanced UV-B radiation (simulating a 15% reduction in the Ozone layer) and elevated atmospheric concentrations of CO2 (600 ppm) on the dwarf shrub layer of a sub-arctic forest heath ecosystem at Abisko, North Sweden. The experimental treatments were first applied in 1993, and have covered most of the snow-free season (late May to early September) 1993–1995. Effects of the treatments on the four dwarf shrub species have been recorded largely using non-destructive measures (Vaccinium uliginosum, Vaccinium myrtillus – deciduous species and Vaccinium vitis-idaea and Empetrum hermaphroditum – evergreen species). Effects of the treatments on stem growth and leaf thickness have so far been small, although CO2 treatments initially stimulated stem extension in Vaccinium myrtillus 1993 and depressed growth in V. vitis idaea in 1994 and E. hermaphroditum during 1995. UV-B treatments stimulated fruit production in V. myrtillus in both 1994 and 1995, but there was no effect on reproductive phenology. There were also marked effects of UV-B treatments on insect herbivory in the deciduous dwarf shrubs; with leaf area loss being greater than the control in the UV-B treatment in V. myrtillus and less in V. uliginosum. The results point to the possibility of important effects of the treatments on physiological and chemical processes within the plants. The ecological results of such effects may not be immediately apparent, but may be far reaching, pointing to the need for long-term in situ experimentation in predicting the effects of these global change variables.  相似文献   

19.
Uncertainties about the response of plant physiology and growth to enhanced UV-B radiation cause uncertainty to predict how plant production will vary under future radiation change on the Tibetan Plateau. Here, we used a meta-analysis approach to test the influence of UV-B radiation on plant physiology and growth. This hypothesis was tested by investigating the response of plants, which was expressed by some measurable variables. Enhanced UV-B radiation decreased plant biomass, plant height, basal diameter, leaf area index, maximal PSII efficiency, and Chl a+b, but increased intercellular CO2 concentration, malondialdehyde (MDA), hydrogen peroxide, superoxide anion radical, peroxidase, ascorbate peroxidase, proline and UV-B absorbing compounds. The effect of enhanced UV-B radiation on net photosynthesis rate (P n ) increased with mean annual precipitation and experimental duration. The effect of enhanced UV-B radiation on MDA decreased with experimental duration. The effect of enhanced UV-B radiation on superoxide dismutase (SOD) increased with the magnitude of enhanced UV-B radiation. Forests rather than grasslands exhibited a positive response of SOD and a negative response of P n to enhanced UV-B radiation. Therefore, the effect of enhanced UV-B radiation on alpine plants varied with ecosystem types. Local climate conditions may regulate effects of enhanced UV-B radiation on alpine plants.  相似文献   

20.
增强紫外—B对反枝苋形态、生理及异速生长的影响   总被引:5,自引:0,他引:5  
在田间条件下,模拟西安地区21.6%的臭氧层减薄,研究增强紫外-B辐射 280~320nm,3.18kJ·m-2·d-1 对双子叶阔叶杂草反枝苋 Amaranthusretroflexus 生理、形态及异速生长的影响.结果表明: 1 与对照相比,处理组的叶绿素、类胡萝卜素含量降低,但叶片紫外吸收物质的含量增加; 2 处理组的株高、叶数及单株重有明显降低; 3 株高与单株重的线性关系有较大的偏离,表现在同等株高下处理组的生物量低于对照.这些表明在补充的紫外-B条件下,反枝苋的形态有较大的可塑性,并进一步会影响该植物在群落中的竞争能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号