首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Recent attention has focused on riparian forest buffer systems for filtering sediment, nutrients, and pesticides entering from upland agricultural fields. This paper summarizes the results of a field monitoring study done in Tokachikawa watershed in Hokkaido, Japan, Cisadane, Cianten and Citamyang sub-watersheds in Indonesia and Cauvery watershed, India to quantify the impact of riparian buffer zones on changes in stream water quality. A watershed approach was used to compare land use indicators – uplands, forests, riparian forest, livestock areas – to a wide range of surface water physical and chemical properties. Stream water physical property values increased from upstream to the confluence point, influenced by the upland and livestock land use activities. The greatest reduction in impairment of water quality was observed in buffer zones located along higher order streams where the gradient is very low, leading to slow groundwater movement. The lower stream water temperature in riparian buffer zones suggests that the shading effect is most pronounced in this area of the watershed. The results demonstrate the positive impact of forest buffer zones in reducing the influence of agricultural nutrients and chemicals on surface stream waters. Design and management considerations for establishing riparian zone land use are discussed.  相似文献   

2.
Two international meetings on ecological engineering, with a focus on riparian buffer zones, served as the source for selected papers in this special issue: (1) an International Workshop on Efficiency of Purification Processes in Riparian Buffer Zones: Their Design and Planning in Agricultural Watersheds, jointly organised by Hokkaido University, Japan, the National Agricultural Research Center for Hokkaido Region, Japan, Civil Engineering Research Institute of Hokkaido, Japan, and the Institute of Geography, University of Tartu, Estonia, and held from 5 to 9 November 2001 in Kushiro City, Hokkaido, Japan; and (2) an International Conference on Ecological Engineering for Landscape Services and Products, jointly organised by the International Ecological Engineering Society (IEES) and Lincoln University, Christchurch, New Zealand, and held from 25 to 29 November 2001 in Christchurch, New Zealand. At these two meetings, altogether 94 oral presentations (17 from invited speakers) and 15 posters by representatives from 21 countries were presented. The editorial paper highlights trends in investigation of the purification processes in riparian buffer zones as well as planning, design and management aspects of riparian buffers regarding the wide spectrum of their ecological functions; it characterises the two international meetings which served as sources for the selected papers and briefly explains the main aspects of these papers.  相似文献   

3.
A strong linear correlation was found between the log-transformed load and retention of nitrogen and phosphorus in riparian buffer zones (r=0.99 and 0.997, respectively). Analyses of N and P budgets in four riparian forests of varying age (two grey alder stands in Estonia and two riparian deciduous forests in USA) show a significant efficiency. Despite the different input load (72.9–110.4 kg N ha−1 year−1 and 2.5–3.0 kg P ha−1 year−1), the outputs into streams from the alder stands systems were comparably low (9.0–13.2 and 0.38–0.62 kg ha−1 year−1). The older forests from the USA showed less efficiency. Plant uptake of both N and P in younger stands was significantly higher than in older forests. Methods to determine the buffer zones' and buffer strips' width and their efficiency are presented. The testing of efficiency assessment in a watershed in Estonia demonstrated an expected efficiency of buffers.  相似文献   

4.
东风港滨岸缓冲带对水生生物群落结构的影响   总被引:4,自引:0,他引:4  
选择苏州河的支流东风港为研究对象,选取其中一段人工建造滨岸缓冲带作为研究区,调查其水生生物群落并与对照区相比较,以具体说明滨岸缓冲带对水生生物群落结构的影响。通过对研究区与对照区内的浮游植物、浮游动物、底栖动物和大型水生植物的调查研究,结果显示,研究区浮游植物的种类数多于对照区,且以清水种占优势;浮游动物群落结构研究区明显比对照区复杂;底栖动物的种类数、密度和生物量研究区都多于对照区;另外研究区还有较为多样化的大型水生植物群落。这些都表明研究区的水生生物群落结构较对照区更为完善。说明滨岸缓冲带对提高水体生物多样性,完善水生生物群落结构具有较为明显的作用。  相似文献   

5.
Off-season uptake of nitrogen in temperate heath vegetation   总被引:3,自引:0,他引:3  
Andresen LC  Michelsen A 《Oecologia》2005,144(4):585-597
In this field study we show that temperate coastal heath vegetation has a significant off-season uptake potential for nitrogen, both in the form of ammonium and as glycine, throughout winter. We injected 15N-ammonium and 15N 2×(13C)-glycine into the soil twice during winter and once at spring. The winter temperatures were similar to those of an average winter in the northern temperate region of Europe, with only few days of soil temperatures below zero or above 5°C. The vegetation, consisting of the evergreen dwarf shrub Calluna vulgaris, the deciduous dwarf shrub Salix arenaria, and the graminoids Carex arenaria and Deschampsia flexuosa, showed high root uptake of both forms of nitrogen, both 1 day after labelling and after a month, in species specific temporal patterns. Plant uptake of 13C was not significant, providing no further evidence of intact uptake of glycine. Translocation of the labelled nitrogen to shoots was generally evident after 1 month and increased as spring approached, with different translocation strategies in the three plant functional types. Furthermore, only the graminoids showed shoot growth during winter. Increasing plant nitrogen concentration from fall to spring at temperate heaths may, hence, be due to nitrogen uptake. Our results suggest that the potential for nitrogen uptake in plants at winter is of the same order of magnitude as at summer. Hence, winter nitrogen uptake in ecosystems in the temperate/boreal region should be considered when making annual nitrogen budgets of heath ecosystems, and the view of plant nutrient uptake as low in this climatic region during winter should be revised.  相似文献   

6.
Recently, the riparian buffer zone using Phragmites australis (Cav.) Trin. has frequently been installed in the ecotone, and young shoots of P. australis have been produced worldwide using seeds and/or rhizomes. However, the expenditures of labor, time, and money related to this technique have been enormous. In this paper, therefore, a new method which enables the reduction of the above-mentioned expenditure is developed and proposed. Using this method, we were able to install an area where P. australis flourished without the production of young shoots, by simply placing segments of P. australis culms by the water, and were able to reduce the above-mentioned usual expenditure. On the other hand, hydrophytes such as Scirpus tabernaemontani Gmel., Zizania latifolia Turcz. and Typha latifolia L. have frequently been planted with P. australis as a riparian buffer zone material. In this study, therefore, the care required in the mix planting of the above-mentioned four hydrophytes was also examined on the basis of the allelopathic potential of the interspecies. As a result, the allelopathic inhibition of root elongation was observed between the interspecies. Therefore a sufficient planting interval is required in order to ensure the elongation of the roots of the above-mentioned hydrophytes in the case of mix planting.  相似文献   

7.
丛枝菌根真菌在土壤氮素循环中的作用   总被引:12,自引:0,他引:12  
陈永亮  陈保冬  刘蕾  胡亚军  徐天乐  张莘 《生态学报》2014,34(17):4807-4815
作为植物需求量最大的营养元素,氮素是陆地生态系统初级生产力的主要限制因子。丛枝菌根真菌能与地球上80%以上的陆生植物形成菌根共生体,帮助宿主植物吸收土壤中的P、N等矿质养分。目前,丛枝菌根真菌与氮素循环相关研究侧重于真菌对氮素的吸收形态以及共生体中氮的传输代谢机制,却忽略了丛枝菌根真菌在固氮过程、矿化与吸收过程、硝化过程、反硝化过程以及氮素淋洗过程等土壤氮素循环过程中所起到的潜在作用,并且越来越多的证据也表明丛枝菌根真菌是影响土壤氮素循环过程的重要因子。总结了丛枝菌根真菌可利用的氮素形态及真菌的氮代谢转运相关基因的研究现状;重点分析了丛枝菌根真菌在调控土壤氮素循环过程中的潜在作用以及在生态系统中的重要生态学意义,同时提出了丛枝菌根真菌在土壤氮素循环过程中一些需要深入研究的问题。  相似文献   

8.
1. This study was part of the Lotic Intersite Nitrogen eXperiment (LINX); a series of identical 15NH4 tracer additions to streams throughout North America. 15NH4Cl was added at tracer levels to a Puerto Rican stream for 42 days. Throughout the addition, and for several weeks afterwards, samples were collected to determine the uptake, retention and transformation pathways of nitrogen in the stream. 2. Ammonium uptake was very rapid. Nitrification was immediate, and was a very significant transformation pathway, accounting for over 50% of total NH4 uptake. The large fraction of NH4 uptake accounted for by nitrification (a process that provides energy to the microbes involved) suggests that energy limitation of net primary production, rather than N limitation, drives N dynamics in this stream. 3. There was a slightly increased 15N label in dissolved organic nitrogen (DON) the day after the 15NH4 addition was stopped. This DO15N was < 0.02% of DON concentration in the stream water at the time, suggesting that nearly all of the DON found in‐stream is allochthonous, or that in‐stream DON production is very slow. 4. Leptophlebiidae and Atya appear to be selectively feeding or selectively assimilating a very highly labelled fraction of the epilithon, as the label found in the consumers became much higher than the label found in the food source. 5. A large spate (>20‐fold increase in discharge) surprisingly removed only 37% of in‐stream fine benthic organic matter (FBOM), leaves and epilithon. The fraction that was washed out travelled downstream a long distance (>220 m) or was washed onto the stream banks. 6. While uptake of 15NH4 was very rapid, retention was low. Quebrada Bisley retained only 17.9% of the added 15N after 42 days of 15N addition. Most of this was in FBOM and epilithon. Turnover rates for these pools were about 3 weeks. The short turnover times of the primary retention pools suggest that long‐term retention (>1 month) is minimal, and is probably the result of N incorporation into shrimp biomass, which accounted for < 1% of the added 15N.  相似文献   

9.
The riparian vegetation of a basin in the NW Spain was studied to establish its spatial variation pattern and to relate floristic and structural differences in the community to environmental factors. Eighty-seven sampling units in 43 sampling stations were used. Samples were classified in 5 groups using Two Way Indicator Species Analysis (TWINSPAN). Three groups represented reaches with riparian wood along their banks: Mediterranean alderwoods and shrubby willow woods. The remaining two corresponded to floodplains with vegetation colonizing moderately eutrophicated deposits of gravel. Structural characteristics of richness and diversity differentiated the alder woods. In these, the shaded environment created by the woody species limited herbaceous vegetation development. This was dominated by Carex acuta subsp. broteriana. Classification and CCA ordination results were compared. The TWINSPAN groups could be recognized in the CCA graph. The ordination was related to a pollution gradient associated with altitude. This pollution gradient involved bank ruderalization, incorporation of nitrophilous species and a decrease in the vegetation quality. The influence of the lithological features on vegetation was also evident.  相似文献   

10.
A better understanding of nitrate removal mechanisms is important for managing the water quality function of stream riparian zones. We examined the linkages between hydrologic flow paths, patterns of electron donors and acceptors and the importance of denitrification as a nitrate removal mechanism in eight riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Nitrate-N concentrations in shallow groundwater from adjacent cropland declined from levels that were often 10–30 mg L–1 near the field-riparian edge to < 1 mg L–1 in the riparian zones throughout the year. Chloride data suggest that dilution cannot account for most of this nitrate decline. Despite contrasting hydrogeologic settings, these riparian zones displayed a well-organized pattern of electron donors and acceptors that resulted from the transport of oxic nitrate-rich groundwater to portions of the riparian zones where low DO concentrations and an increase in DOC concentrations were encountered. The natural abundances of d15N and in situ acetylene injection to piezometers indicate that denitrification is the primary mechanism of nitrate removal in all of the riparian zones. Our data indicate that effective nitrate removal by denitrification occurs in riparian zones with hydric soils as well as in non-hydric riparian zones and that a shallow water table is not always necessary for efficient nitrate removal by denitrification. The location of hot spots of denitrification within riparian areas can be explained by the influence of key landscape variables such as slope, sediment texture and depth of confining layers on hydrologic pathways that link supplies of electron donors and acceptors.  相似文献   

11.
The decomposition and the fate of 15N- labelled beech litter was monitored in a beech forest (Vosges mountains, France) over 3 years. Circular plots around beech trees were isolated from neighbouring tree roots by soil trenching. After removal of the litter layer, 15N-labelled litter was distributed on the soil. Samples [labelled litter, soil (0–15 cm depths], fine roots, mycorrhizal root tips, leaves) were collected during the subsequent vegetation periods and analysed for total N and 15N concentration. Mass loss of the 15N-labelled litter was estimated using mass loss data from a litterbag experiment set up at the field site. An initial and rapid release of soluble N from the decomposing litter was balanced by the incorporation of exogenous N into the litter. Fungal N accounted for approximately 35% of the N incorporation. Over 2 years, litter N was continuously released and rates of N and mass loss were equivalent, while litter N was preferentially lost during the 3rd year. Released 15N accumulated essentially at the soil surface. 15N from the decomposing litter was rapidly (i.e. in 6 months) detected in roots and beech leaves and its level increased regularly and linearly over the course of the labelling experiment. After 3 years, about 2% of the original litter N had accumulated in the trees. 15N budgets indicated that soluble N was the main source for soil microbial biomass. Nitrogen accumulated in storage compounds was the main source of leaf N, while soil organic N was the main source of mycorrhizal N. Use of 15N-labelled beech litter as decomposing substrate allowed assessment of the fate of litter N in the soil and tree N pools in a beech forest on different time scales. Received: 3 May 1999 / Accepted: 3 January 2000  相似文献   

12.
沿长江中下游(宜昌-铜陵段)13座城市共37个位点,分别于丰水期和枯水期对岸带的湿生植物进行调查,从物种和系统发育2个维度研究群落的构建机制,并结合环境和空间因子探讨其驱动因素。结果显示:(1)丰水期湿生植物群落的α多样性高于枯水期,且丰水期α多样性主要与水分条件呈正相关,而枯水期则主要与温度和土壤总氮含量有关。(2)丰水期的系统发育结构指数呈聚集趋势,暗示生境过滤起着主导作用,而枯水期的NRI(net relatedness index)和NTI(nearest taxon index)呈不同趋势,暗示存在近期的群落分化。(3)群落的α多样性在物种层面和系统发育层面存在显著关联性,其多样性水平可在一定程度上互为表征。(4)长江中下游沿岸湿生植物群落的构建机制在不同时期存在差异,丰水期的群落构建是环境筛选和扩散限制共同作用的结果,且以环境筛选作用占主导,而枯水期的群落构建仅在物种层面受一定程度环境筛选作用的影响。(5)大生境的温度变化、微生境的土壤水分和养分条件是影响长江中下游岸带湿生植物群落差异的主要驱动因素。该研究结果可为长江中下游岸带湿地生态系统的管理和保护提供科学支持。  相似文献   

13.
The role of hydrochory in structuring riparian and wetland vegetation   总被引:1,自引:0,他引:1  
Hydrochory, or the passive dispersal of organisms by water, is an important means of propagule transport, especially for plants. During recent years, knowledge about hydrochory and its ecological consequences has increased considerably and a substantial body of literature has been produced. Here, we review this literature and define the state of the art of the discipline. A substantial proportion of species growing in or near water have propagules (fruits, seeds or vegetative units) able to disperse by water, either floating, submerged in flowing water, or with the help of floating vessels. Hydrochory can enable plants to colonize sites out of reach with other dispersal vectors, but the timing of dispersal and mechanisms of establishment are important for successful establishment. At the population level, hydrochory may increase the effective size and longevity of populations, and control their spatial configuration. Hydrochory is also an important source of species colonizing recruitment‐limited riparian and wetland communities, contributing to maintenance of community species richness. Dispersal by water may even influence community composition in different landscape elements, resulting in landscape‐level patterns. Genetically, hydrochory may reduce spatial aggregation of genetically related individuals, lead to high gene flow among populations, and increase genetic diversity in populations receiving many propagules. Humans have impacted hydrochory in many ways. For example, dams affect hydrochory by reducing peak flows and hence dispersal capacity, altering the timing of dispersal, and by presenting physical barriers to dispersal, with consequences for riverine plant communities. Hydrochory has been inferred to be an important vector for the spread of many invasive species, but there is also the potential for enhancing ecosystem restoration by improving or restoring water dispersal pathways. Climate change may alter the role of hydrochory by modifying the hydrology of water‐bodies as well as conditions for propagule release and plant colonization.  相似文献   

14.
Abstract

Isotope and elemental composition of carbon (C) and nitrogen (N) as well as its mass loss were measured for Sphagnum fuscum litter after one and two years of incubation in three different soil zones defined by the position of water table in a pristine Sphagnum-dominated peatland on the coast of western Canada. Mass losses were greater for the first year than for the second year, and the greatest loss was found in the oxic zone closest to the peatland surface. Early stage of decomposition clearly affected isotope signatures in Sphagnum litter. Litter δ13C values significantly decreased after the first year of incubation. The depletion of 13C content during the first year might be related to the loss of more isotopically enriched soluble constituents coupled with the large mass loss. Litter δ15N values significantly increased after the first year of incubation in spite of the large mass loss. Litters incubated in the oxic zone had the greatest mass loss and 15N enrichment, suggesting that the enrichment was the result of interactions with soil microbes and preferential loss of lighter N. Conversely, litters incubated in the anoxic zone had smaller mass loss and the amount of N significantly increased, suggesting that the incorporation of bacterial biomass might also contribute to the 15N enrichment. The 15N enrichment trend continued in the second year, but the change was not significant as the first year. Increases in the δ15N values with depth in the near surface Sphagnum peat core suggests that the enrichment trend of litter 15N abundance with age is likely to continue for much longer periods than observed over the two-year period of this study.  相似文献   

15.
The present study was conducted to (i) investigate parameters influencing the fluxes of the greenhouse gas methane (CH4) in Danish riparian wetlands with contrasting vegetation characteristics and (ii) develop models relating CH4 emissions to soil and/or vegetation parameters integrating the spatial and temporal variability in the fluxes. Fluxes of CH4 were monitored in 12 wetland plots over a year using static chambers, yielding a dataset with more than 800 measured fluxes of CH4. Yearly emissions of CH4 ranged from −0.2 to 38.3 g CH4-C m−2 year−1, and significant effects of groundwater level, soil temperature (10 cm depth), peat depth, sulfate, nitrate, and soil carbon content were found. Two methods based on easily available environmental parameters to estimate yearly CH4 emissions from riparian wetlands are presented. The first uses a generalized linear model (GLM) to predict yearly CH4 emissions based on the humidity preference of vegetation (Ellenberg-F), peat depth and degree of humification of the peat (von Post index). The second method relies solely on plant species composition and uses weighted-average regression and calibration to link the vegetation assemblage to yearly CH4 emission. Both models gave reliable predictions of the yearly CH4 fluxes in riparian wetlands (modeling efficiency > 0.35). Our findings support the use of vegetation, possibly in combination with some soil parameters such as peat depth, as indicator of CH4 emission in wetlands.  相似文献   

16.
Adair EC  Binkley D  Andersen DC 《Oecologia》2004,139(1):108-116
Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m–2 year–1 for years 10–70, and 2.7 g N m–2year–1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.  相似文献   

17.
18.
19.
An 1800-km South to North transect (N 53°43′ to 69°43′) through Western Siberia was established to study the interaction of nitrogen and carbon cycles. The transect comprised all major vegetation zones from steppe, through taiga to tundra and corresponded to a natural temperature gradient of 9.5°C mean annual temperature (MAT). In order to elucidate changes in the control of C and N cycling along this transect, we analyzed physical and chemical properties of soils and microbial structure and activity in the organic and in the mineral horizons, respectively. The impact of vegetation and climate exerted major controls on soil C and N pools (e.g., soil organic matter, total C and dissolved inorganic nitrogen) and process rates (gross N mineralization and heterotrophic respiration) in the organic horizons. In the mineral horizons, however, the impact of climate and vegetation was less pronounced. Gross N mineralization rates decreased in the organic horizons from south to north, while remaining nearly constant in the mineral horizons. Especially, in the northern taiga and southern tundra gross nitrogen mineralization rates were higher in the mineral compared to organic horizons, pointing to strong N limitation in these biomes. Heterotrophic respiration rates did not exhibit a clear trend along the transect, but were generally higher in the organic horizon compared to mineral horizons. Therefore, C and N mineralization were spatially decoupled at the northern taiga and tundra. The climate change implications of these findings (specifically for the Arctic) are discussed.  相似文献   

20.
Decomposition of lignin, holocellulose, polyphenols and soluble carbohydrates was investigated in relation to nitrogen (N) dynamics in leaf litter of 14 tree species. The influence of organic chemical components and N on litter mass loss rate was then evaluated for 14 litter types. The study was carried out over a 3-year period on upper and lower parts of a forest slope in a cool temperate forest in Japan. The decomposition processes were divided into early and late phases based on N immobilization and mobilization. Mass loss rate of whole litter and organic chemical components was similar for the upper and lower sites. Litter mass loss was faster in the immobilization phase than in the mobilization phase in each of 14 litter types, which was ascribed to the decreased mass loss of holocellulose, polyphenols and soluble carbohydrates in the mobilization phase as compared to the immobilization phase. Mass loss rate of lignin was not different between the phases. Litter mass loss rate in the immobilization and mobilization phases was negatively correlated to lignin content and positively correlated to contents of polyphenols and soluble carbohydrates at the start of these phases, but was not correlated to holocellulose and N contents in either phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号