首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
EARTH University is a small agronomic university with a theme of sustainability in eastern Costa Rica. Several natural and constructed wetlands on its campus are used for research, water quality improvement, and higher education. It has become an important location for research and teaching on humid tropical wetland ecology and management. A 112-ha flow-through Raphia taedigera (Arecaceae) forested wetland is being used for climate change research, focusing on carbon sequestration and methane generation. Methane emissions are measured seasonally and are comparable to rates in tropical wetlands published elsewhere. Carbon sequestration by the wetland appears to be substantially higher than similar flow-through temperate zone wetlands. Treatment wetlands are used on campus to improve water quality of effluents from an animal farm, a dairy plant, a landfill, and a banana paper plant. Water quality was substantially improved in all of these wetlands except the landfill leachate wetland. All of these campus wetlands have been integrated into the four-year education program of EARTH University and 22 undergraduate projects have been completed on wetlands over the past 14 years.  相似文献   

2.
We compared potential denitrification and phosphorus (P) sorption in restored depressional wetlands, restored riparian buffers, and natural riparian buffers of central Ohio to determine to what extent systems restored under the U.S. Department of Agriculture's Wetland Reserve Program (WRP) and Conservation Reserve Program (CRP) provide water quality improvement benefits, and to determine which practice is more effective at nutrient retention. We also measured soil nutrient pools (organic C, N, and P) to evaluate the potential for long‐term C sequestration and nutrient accumulation. Depressional wetland soils sorbed twice as much P as riparian soils, but had significantly lower denitrification rates. Phosphorus sorption and denitrification were similar between the restored and natural riparian buffers, although all Natural Resources Conservation Service (NRCS) practices had higher denitrification than agricultural soils. Pools of organic C (2570–3320 g/m2), total N (216–243 g/m2), and total P (60–71 g/m2) were comparable among all three NRCS practices but were greater than nearby agricultural fields and less than natural wetlands in the region. Overall, restored wetlands and restored and natural riparian buffers provide ecosystem services to the landscape that were lost during the conversion to agriculture, but the delivery of services differs among conservation practices, with greater N removal by riparian buffers and greater P removal by wetlands, attributed to differences in landscape position and mineral soil composition. At the landscape, and even global level, wetland and riparian restoration in agricultural landscapes will reintroduce multiple ecosystem services (e.g. C sequestration, water quality improvement, and others) and should be considered in management plans .  相似文献   

3.
Lau  S. S. S.  Chu  L. M. 《Hydrobiologia》2000,431(1):81-92
Nutrient and faecal contamination is an increasing problem to the shrimp productivity and wildlife conservation at the internationally important wetland ecosystems of the Mai Po Marshes (Hong Kong, P.R. China). The present study examined the nutrient status and faecal bacteria loading and potential retention capacity of contaminants of two wetland enclosures. Water in the wetland enclosures was eutrophicated with high concentrations of dissolved inorganic nitrogen (inorg–Ndiss= 15.0 mg l–1) and orthophosphate phosphorus (o-P = 1.89 mg l–1) and was loaded with high levels of faecal coliforms (172 ×103 cfu in 100 ml) and faecal streptococci (1.94 ×103 cfu in 100 ml). The pattern of nutrient enrichment of two wetland enclosures is related to a north-to-south pollution gradient from the Shenzhen River to the wetlands. By retaining tidal water in the wetland for an 8-day period, water quality was greatly improved; NH4–N was removed by 83%, o-P by 45% and faecal bacteria by 100%. This implies a self-purification capability of the wetland enclosures and a potentiality of using them as an alternative sewage treatment.  相似文献   

4.
This contribution summarizes the nutrient and metal removal of a free water surface constructed wetland, compares it with the previous small-scale prototype and discusses the observed differences. Several locally available macrophyte species were transplanted into the wetland. Eichhornia crassipes (water hyacinth) showed a fast growth and it soon became dominant, attaining 80% cover of the wetland surface. Typha domingensis (cattail) and Panicum elephantipes (elephant panicgrass) developed as accompanying species attaining 14 and 4% cover. The wetland removed 86% of Cr and 67% of Ni. Zn concentrations were below 50 μg l−1 in most samplings. The FeS precipitation probably caused the high retention of Fe (95%). The outcoming water was anoxic in most samplings. Phosphate and ammonium were not retained within the wetland while 70% and 60% of the incoming nitrate and nitrite were removed. Large denitrification losses are suggested. Cr, Ni and Zn were retained by the macrophytes in the larger wetland and in sediment in the small-scale one. Differences in the retention mechanism of the two wetlands are discussed.  相似文献   

5.

A 4.6-ha urban stormwater treatment wetland complex in southwest Florida has been investigated for several years to understand its nutrient retention dynamics. This study investigates the role of aquatic vegetation, both submerged vegetation (such as benthic macrophytic and algal communities) and emergent plant communities, on changes in nutrient fluxes through the wetlands. Gross and net primary productivity of water column communities and net primary productivity of emergent macrophytes were used to estimate nutrient fluxes through vegetation in these wetlands using biannual biomass, nutrient concentrations of plant material, and areal coverage data. Emergent macrophyte net primary productivity was estimated as the difference between the increase of productivity during the wet season and the loss during the dry season which, in turn, suggested approximately 0.11g-N m??2 y??1 and 0.09g-P m??2 yr??2 being removed, primarily from the soil, by emergent vegetation. Water column primary productivity accounted for a much larger flux of nutrients with approximately 39.6g-N m??2 yr??1 and 2.4g-P m??2 yr??1 retained in algal communities. These fluxes, combined with measurements in parallel studies, allowed us to develop preliminary nutrient budgets for these wetlands and identify gaps, or missing fluxes, in our models for these wetlands. The results further validated previous findings that suggested that there are large inputs of nitrogen (up to 62.3g-N m??2 yr??1) that are not accounted for by the pumped inflow. Additionally, management suggestions are provided to improve water quality by identifying vegetative species that are most effective at retaining nutrients.

  相似文献   

6.
The main goal of this study was to determine how much variation in macrophyte richness and composition is explained by wetland area, altitude, water conductivity, and nitrate and total phosphorus concentrations in wetlands in southern Brazil, and to compare these variations in two wetland subsystems (palustrine and lacustrine). A total of 126 wetlands were sampled distributed in two subsystems: 87 palustrine and 39 lacustrine wetlands. A total of 153 species of aquatic macrophytes was found in wetlands of southern Brazil and the mean number of macrophyte species per site was 8.7 (range 1–23). From the variables tested, the altitude and area were the only predictor of macrophyte richness and explained 23.1% of variation in richness. The two first axes generated by CCA explained only 4.4% of the variation in the aquatic macrophytes distribution. The macrophyte richness was similar across lacustrine and palustrine subsystems. While altitude, area and conductivity explained 33.2% of variation in macrophyte richness in the palustrine subsystem, none of the variables were associated with macrophyte richness in the studied lacustrine wetlands.  相似文献   

7.
Surficial soil development was studied in four wetland basins created on the floodplain of the Des Plaines River near Chicago, Illinois, USA. These studies determined changes in the spatial distribution of plant-available nutrients as a result of establishing two different wetland hydrologic regimes. Three wetland basins had mineral soils and one an organic soil. A geostatistical analysis including kriging of collected data indicated that all soil parameters showed significant changes in their spatial structure as a result of the water inputs and unidirectional flows. The degree of spatial variability as indicated by autocorrelation in the soil data (i.e., points closer to one another are more similar than points further apart due to the influence of landscape processes) declined for all parameters except Mg+2. Temporal changes in the spatial patterns of extractable phosphorus (P) and percent organic carbon (OC) tended to be inverse; P declined in areas where OC increased and vice versa. The spatial pattern of these changes was dissimilar in the mineral soils as compared to the organic soil and was related to patterns of primary productivity. Zones of P uptake and OC accumulation were also related to wetland hydrology and primary productivity. Changes in the distribution of nutrients, particularly P, may be viewed as a result of nutrient spirals within the wetlands. By comparison, the reorganization in the concentrations of K+ and Ca+2 appear to have been mediated by cation exchange processes. The formation of new concentration gradients was strongly related to both flow pathways and the different water inflow rates. The formation of concentration gradients in exchangeable cations was not reflected in the average concentrations within each basin. Mean values changed significantly in only a few instances. Reducing data in this way missed important biogeochemical changes occurring within the experimental wetland basins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Water reclamation and reuse is being actively promoted in Australia. In Queensland, surface-flow constructed wetlands with a diversity of macrophyte types offer the greatest potential for effluent polishing. Constructed wetlands in subtropical climates in coastal regions and arid climates in inland western regions are conducive to high macrophyte growth rates and nutrient removal, in particular nitrogen, producing an effluent suitable for irrigation, restoration of wetlands and/or release into natural waterways. Faecal-coliform removal is also high, producing effluent with <1000 cfu/100 mL and as low as 100 cfu/100 mL, acceptable for agricultural irrigation. Constructed wetlands can be designed to maximise the removal of both nutrients and pathogens by enhancing macrophyte diversity and natural disinfection processes by incorporating lagoons, shallow-water wetlands and subsurface-flow wetlands into the treatment train. Surface-flow wetlands can also be designed to minimise mosquito breeding by increasing macro-invertebrate predators, thereby alleviating community concerns about potential health risks. This paper addresses the role of constructed wetlands in nutrient and pathogen removal in Queensland's wetlands, and presents three case studies with respect to effluent reuse.  相似文献   

9.
Aquatic plants usually establish following wetland creation from a variety of mechanisms including animal transport, inflows from nearby wetlands, wind dispersal, and seed banks if they are available. However, at created wetlands that are isolated from natural wetlands, aquatic plant communities may not establish even after 10 or more years. One method of improving the establishment of aquatic plants is through the use of salvaged-marsh soils. Using this method, wetland soil from a donor site is collected and spread across the basin of the created wetland. When the proper hydrologic regime is reached at the created site, the seed bank from the donor soil is then present to take advantage of the uncolonized site. Over 1500 wetlands have been created in northeast Wyoming, USA from bentonite mining and most of them have not developed submersed and emergent plant communities due to isolation from plant sources. Our goal was to evaluate the effectiveness of using salvaged-wetland soil as a tool for improving plant growth at created wetlands. Our study took place at 12 newly created wetlands that were isolated from other wetlands by >5 km. Six wetlands were treated as reference wetlands, with no introductions of seeds or propagules. At the other six wetlands we spread ≈10–15 cm of salvaged soil from a donor wetland during the winter of 1999–2000. To identify the potential plants in donor soil, we collected 10 random samples from the donor wetlands and placed them within wetland microcosms in a greenhouse where they were treated to either moist-soil conditions (water at or just below the soil line) or submersed conditions (water levels maintained at 15–30 cm). Treatment wetlands were evaluated for plant growth during the fall of 2000 and 2001, whereas the greenhouse samples were grown for two growing seasons then harvested. Our results show that using salvaged wetland soil increases: (1) the number of plant species present at a wetland over time, (2) the total vegetation coverage in a treated wetland over time, and (3) the total plant biomass in a treated wetland. The species pool available in the salvaged wetland soil was limited to 10 obligate wetland species, but several of them are considered valuable to waterfowl and other wildlife. Furthermore, salvaged-wetland soil could be useful for ameliorating poor substrate conditions (i.e., bentonite) and improving conditions for the establishment of additional species. One concern with this technique is the introduction of invasive or exotic species that could form monocultures of undesirable plants (e.g., cattail [Typha spp.]); introducing more desirable species during the application of salvaged soil could reduce this probability. We believe incorporating salvaged-wetland soil during basin construction could be used to increase the value and productivity of created wetlands in this region.  相似文献   

10.
Aims Biodiversity–ecosystem function experiments can test for causal relationships between planting diversity and community productivity. Planting diversity is routinely introduced as a design element in created wetlands, yet substantive support for the finding that early diversity positively affects ecosystem functioning is lacking for wetlands. We conducted a 2-year diversity–productivity experiment using freshwater wetland mesocosms to investigate community biomass production as affected by planted macrophyte functional richness.Methods A richness gradient of macrophytes in four emergent wetland plant functional groups was established in freshwater mesocosms for two consecutive years. Species-specific aboveground morphological traits of plant size were measured at peak growth in both years; rooting depth was measured for each species in the second year. Aboveground biomass (AGB) and belowground biomass (BGB) were harvested after peak growth in the second year; first year AGB was estimated from morphological traits in constructed regression equations. Net richness effects (i.e. both complementarity effects and selection effects) were calculated using an additive partitioning method.Important findings Species richness had a positive effect on community AGB relative to monocultures in the first year. In the second year, mean AGB was significantly reduced by competition in the most species-rich mixtures and all mixtures underyielded relative to the average monoculture. Competition for soil resources was weaker belowground, whereby root distribution at depths>20cm was reduced at the highest richness levels but overall BGB production was not affected. Changes in species biomass were strongly reflected by variation in species morphological traits, and species above and belowground performances were highly correlated. The obligate annual (Eleocharis obtusa), a dominant competitor, significantly contributed to the depression of perennial species' growth in the second growing season. To foster primary productivity with macrophyte richness in early successional communities of created wetlands where ruderal strategies are favored and competition may be stronger than species complementarity, unsystematic planting designs such as clustering the same or similar species could provide protection for some individuals. Additionally, engineering design elements fostering spatial or temporal environmental variability (e.g. microtopography) in newly created wetlands helps diversify the responses of wetland macrophyte species to their environment and could allow for greater complementarity in biomass production.  相似文献   

11.
The aim of this study was to investigate the removal of ibuprofen in laboratory scale constructed wetlands. Four (planted and unplanted) laboratory‐scale horizontal subsurface flow constructed wetlands were supplemented with ibuprofen in order to elucidate (i) the role of plants on ibuprofen removal and (ii) to evaluate the removal performance of a bioaugmented lab scale wetland. The planted systems showed higher ibuprofen removal efficiency than an unplanted one. The system planted with Juncus effusus was found to have a higher removal rate than the system planted with Phalaris arundinacea. The highest removal rate of ibuprofen was found after inoculation of gravel previously loaded with a newly isolated ibuprofen‐degrading bacterium identified as Sphingobium yanoikuyae. This experiment showed that more than 80 days of CW community adaptation for ibuprofen treatment could be superseded by bioaugmentation with this bacterial isolate.  相似文献   

12.
湿地土壤种子库与地上植被相似性关系研究评述   总被引:3,自引:0,他引:3  
刘庆艳  姜明  吕宪国  王国栋 《生态学报》2014,34(24):7465-7474
土壤种子库与地上植被的关系是土壤种子库研究的重要组成部分。当前,湿地生态系统面临严重威胁,研究湿地土壤种子库和地上植被关系既可以加强对土壤种子库和植物群落特征的认识,又可以为湿地保护与管理提供理论指导。检索了科学引文索引扩展版(SCIE)数据库中收录的1900—2012年间研究湿地土壤种子库与地上植被关系的文献,通过分析土壤种子库与地上植被的Srensen相似性系数,结果发现:不同湿地类型的土壤种子库和地上植被的相似性存在显著差异,河流湿地中两者的相似性最小;不同植被类型中土壤种子库与地上植被的相似性差异显著:草本群落的相似性大于乔木群落;不同气候带的湿地中两者的相似性也存在显著差异,其中亚热带地区相似性最小。总结了湿地种子库与地上植被相似性关系的时空变化特征。二者的相似性通常随着植物群落的演替而减小,在空间上也随着环境梯度而变化。分析了两者关系的影响因素,如种子传播、环境条件和繁殖策略等。对研究中存在的问题及发展方向提出建议。  相似文献   

13.
Wetlands densely populate the ecoregion transecting the center of the Prairie Pothole Region (PPR) known as the Missouri Coteau and epicenter to the most productive waterfowl‐breeding habitat in North America. These palustrine, depressional basin waters vacillate with regional drought and deluge, so surface water fluctuations over time modulate wetland productivity, habitat, and water quality functions. Models predict formidable effects of climate change on glacial basin surface waters, yet large‐scale, long‐term observation data are lacking to compare against predicted changes. Current, optical‐based water detection models do not delineate marsh vegetation from shallow, turbid, high‐chlorophyll waters common to the region. We developed a palustrine wetland spectral model for tracking open surface waters using Landsat imagery, which we evaluated for a 2500 km2 landscape that estimates seasonal and annual open water variability for thousands of individual wetlands in the Missouri Coteau ecoregion. Detection accuracy of 96% was achieved for water bodies greater than a half‐pixel in size. We identified shifts in the distribution of water permanence classes within and between years for waters emerging in spring, mid‐summer, and late summer from 1997 to 2005 and identified a maximum of 19 047 basins with open water (12% of the landscape) populating 2500 km2. For the 2005 growing season, we observed only 8757 basins with open water (6% of the landscape) for the same area. Declines were greatest for water bodies detected only in spring, suggesting a loss of those wetlands functioning to recharge groundwater stores early in the season and a high sensitivity to observed reductions in snowfall. If landscape factors driving open water coverage and wetland density are similar for the entire Missouri Coteau, we estimate the number of basins containing at least a pixel of water for this region declined from 577 600 to 266 000 between 1997 and 2005.  相似文献   

14.
Salt marshes: biological controls of food webs in a diminishing environment   总被引:8,自引:0,他引:8  
This essay reviews two important topics in coastal ecology: the work on the relative role of bottom–up and top–down controls in natural communities and the loss of wetlands worldwide. In salt marshes and other coastal wetlands, bottom–up and top–down mechanisms of control on natural communities are pervasive. Bottom–up effects through nutrient supply may propagate to upper trophic levels via better food quality, or indirectly by altering water and sediment quality. Top–down control by consumers alters lower trophic levels through consumption of primary producers, and indirectly by trophic cascades in which higher predators feed on grazers. The combined forcing of bottom–up and top–down controls govern assemblages of species in natural communities, mediated by physical and biogeochemical factors. Although there is much information about biological controls of coastal food webs, more information is needed. Even more important is that large losses of wetland are occurring along coastlines worldwide due to a variety of economic and social activities including filling, wetland reclamation, and sediment interception. Such losses are of concern because these wetlands provide important functions, including export of energy-rich material to deeper waters, nursery and stock habitats, shoreline stabilization, and intercept land-derived nutrients and contaminants. These important functions justify conservation and restoration efforts; barring such efforts, we will find it increasingly difficult to find coastal wetlands where we can continue to gain further understanding of ecology and biogeochemistry and lack the aesthetic pleasure these wetlands provide to so many of us.  相似文献   

15.
Lillie  Richard A.  Evrard  James O. 《Hydrobiologia》1994,279(1):235-246
Waterfowl and limnological data were monitored on Waterfowl Production Area (WPA) wetlands in northwestern Wisconsin over a 6-yr period (1983–88) to determine the impact of macroinvertebrates and macrophytes on waterfowl utilization. Interrelationships between limnological conditions and Waterfowl Breeding Pair Densities (BPDs reported as pairs/ha water surface) were analyzed using correlation and general linear model analysis techniques.Annual changes in waterfowl BPDs differed between wetlands according to differences in the structure of macrophyte communities and basin morphometry. The strength of associations differed between the two dominant waterfowl species. In a wetland dominated by dense stands of submersed vegetation, annual fluctuations in blue-winged teal (Anas discors) BPDs corresponded directly with changes in macrophyte biomass, but not with changes in macroinvertebrate density. In a nearby less densely vegetated wetland of similar water chemistry and trophic status, fluctuations in teal BPDs corresponded directly with changes in macroinvertebrate density, but not with changes in macrophyte biomass. These associations occurred despite a significant positive correlation between macroinvertebrates and macrophyte biomass in the latter habitat. Annual fluctuations in mallard (Anas platyrhynchos) BPDs were not correlated significantly with either macrophyte biomass or macroinvertebrate density in either wetland.  相似文献   

16.
The one-dimensional Saint-Venant equations are modified to account for stem drag and volumetric displacement effects of dense emergent plants on free surface flow. The modified equations are solved with an implicit finite difference method to give velocities and depths for shallow flows through a vegetated wetland channel. Estimated flow profiles are used to investigate how vegetation density, downstream boundaries and aspect ratio affect detention time, an important parameter in determining nutrient and pollutant removal efficiencies of wetlands constructed to treat wastewater. Results show that free water surface wetlands may exhibit static, neutral or dynamic behavior. Under static conditions, the wetland behaves like a pond in which displacement effects caused by submerged plant mass invariably decrease detention times. Under dynamic conditions, stem drag induced by aquatic plants predominates and wetland detention times increase with vegetation density. These opposing responses are separated by a narrow neutral condition where the presence of vegetation has virtually no net effect on detention time. For a given flow rate and surface area, detention times and hence treatment efficiencies in vegetated free water surface wetlands can be managed to some degree by adjusting the downstream control or by changing the aspect ratio.  相似文献   

17.
SUMMARY

The major concepts involved in nutrient cycling in wetlands are discussed using phosphorus and nitrogen as examples. The differences in nutrient cycling patterns between hydrologically contrasting wetlands, and the significance of fluctuating water levels in wetlands, are stressed. In South Africa, some research into nutrient cycling in submerged aquatic macrophyte communities has been undertaken, but very little information is available on these processes in wetlands dominated by emergent vegetation forms. Generally, the information available on nutrient cycling processes in South African wetlands is of limited applicability to the assessment of nutrient cycling in whole wetland systems. Therefore, rational wetland management strategies require further research on nutrient cycling.  相似文献   

18.
The aquatic macrophytic vegetation constituting the wetlands situated along the coast of Lake Victoria provides valuable services to both local and regional communities as well as an important ecological function through the transition between terrestrial and aquatic ecosystems. The wetland vegetation is typically rooted in the substrate on the landward side of the lake, but forms a floating mat towards the middle of the wetland and at the wetland/lake interface. Cyperus papyrus and Miscanthidium violaceum vegetation typically dominate the permanently inundated wetland areas along most of the shores of Lake Victoria. Due to the prevailing climatic and hydrological catchment conditions, these macrophytic plants (papyrus in particular) tend to exhibit high net productivity and nutrient uptake which strongly influences both wetland status and lake water quality. In addition, these wetlands provide important economic livelihoods for the local populations. The integrity and physical structure of these wetlands strongly influences their associated mass transport mechanisms (water, nutrients and carbon) and ecosystem processes. Wetland degradation in Africa is an increasing problem, as these ecosystems are relied upon to attenuate industrial, urban and agricultural pollution and supply numerous services and resources. In an integrated project focused on the wetlands of Lake Victoria, the ecological and economic aspects of littoral wetlands were examined and new instruments developed for their sustainable management.  相似文献   

19.
We conducted an in situ decomposition experiment to better understand how habitat nutrient content controls aquatic plant decomposition and, more precisely, to determine the relative importance of the wetland conditions in decomposition, and the intrinsic degradability of plant tissues. We collected the green leaves of three aquatic plant species with contrasting plant strategies from three wetlands of differing nutrient contents, and allowed them to decompose in seven wetlands along a nutrient gradient. The plant mass loss was higher for competitive and ruderal species collected in nutrient richer wetlands as well as when they were led to decompose in nutrient richer wetlands. Plant water content correlated with mass loss for the competitive and ruderal species, which may explain the increase in mass loss with increasing nutrient content in the collection wetlands. Litter decomposition rate may be enhanced by wetland eutrophication, because of both the modification of wetland decomposition conditions and by changes in plant tissue quality.  相似文献   

20.
洱海低污染水处理湿地中应用海菜花的可行性   总被引:1,自引:0,他引:1  
人工湿地因其成本低、效率高、地区适宜性强等特点,成为洱海低污染水处理的优先考虑手段之一。人工湿地的建设及运行不仅仅是技术问题,而是要充分考虑当地的实际,挖掘其资源(植物产品)价值。从技术、环境、生态以及经济角度论证了将乡土经济植物海菜花应用于湿地系统中的可行性,结果表明:1)海菜花人工种植技术较为成熟,能为洱海低污染水处理湿地中海菜花的存活和丰产提供保障;2)洱海气候适宜应用湿地系统,低污染水营养足以保证海菜花生长。而海菜花四季生长旺盛,具有一定的净水能力。就环境可行性来讲,海菜花完全可以应用到洱海低污染水湿地净水系统中去;3)将海菜花应用到洱海低污染水湿地净水系统中,有助于增加洱海的生态景观效益,不仅可以规避外来物种入侵风险,而且有利于濒危物种的恢复,生态可行性较好;4)将海菜花应用到湿地净水系统中,可以充分利用来水中营养盐,变废为宝,同时持续稳定地产生较好地经济效益,为因湿地建设而失地的农民提供生活保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号