首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tocopherols and tocotrienols are metabolized by side chain degradation initiated by cytochrome P450 (CYP)-catalyzed omega-hydroxylation followed by beta-oxidation. Whereas alpha-tocopherol is only poorly metabolized, high amounts of the final products, carboxyethyl hydroxychroman (CEHC), are found from other tocols in HepG2 cells and in human urine. CYP3A4 and CYP4F2 were suggested to be involved in tocopherol degradation. CYP3A4 metabolizes most of the drugs and is induced by many of its substrates via the activation of the pregnane X receptor (PXR). Also tocopherols and in particular tocotrienols induce the expression of a PXR-driven reporter gene and the expression of endogenous CYP3A4 and CYP3A5 which is supported by sporadic publications spread over the last 30 years. The potential interference of vitamin E with drug metabolism is discussed in the light of related complications evoked by herbal remedies.  相似文献   

2.
The aim of this paper is to provide an overview of vitamin E metabolism. The topics covered include: major classes of vitamin E metabolites; their production pathways and route of excretion; possible biological activities of vitamin E metabolites; and use of vitamin E metabolites as markers of oxidant generation. Recent investigations into vitamin E metabolism have also highlighted important new areas of research, such as the potential for high dose vitamin E supplementation to interfere with drug metabolism, as well as alternative methods to alter vitamin E bioavailability in vivo. These issues will also be discussed in the review.  相似文献   

3.
Bile acids (BAs) are steroid acids found predominantly in the bile of mammals and other vertebrates. Though BAs have been known as digestive juice, recent studies have revealed that BAs act as signaling molecules to control metabolism and inflammation. Today, BAs are considered as potential therapeutic molecules for treatment of complex metabolic liver disease. However, the detergent properties of BAs lead to hepatic injury and intrahepatic cholestasis when BAs are accumulated in the liver with impaired bile flow into gall bladder. Cholestasis is a pathological condition of hepatic retention of cytotoxic bile acids. To date, hydrophilic ursodeoxycholic acid has been currently used to treat cholestasis, but the efficacy of UDCA for cholestasis is still limited. Given that BAs are endogenous ligands of several nuclear receptors, including Farnesoid X receptor and Pregnane X receptor, novel synthetic ligands for those nuclear receptors are promising for the treatment of cholestatic liver diseases.  相似文献   

4.
Sulfenic acid reactive intermediates are formed during the oxidation of cysteine residues of proteins and play key roles in enzyme catalysis, redox homeostasis and regulation of cell signalling. However few data are presently available on the formation and fate of sulfenic acids as reactive intermediates during the metabolism of xenobiotics. This article is a review of the xenobiotic metabolism situations in which the intermediate formation of a sulfenic acid has been reported. Formation of these intermediates has been either proposed on the basis of the isolation of products possibly deriving from sulfenic acids or shown after trapping of the sulfenic acid by specific nucleophiles. This review indicates the different mechanisms by which a sulphur-containing xenobiotic can be metabolized with the intermediate formation of a sulfenic acid. It also indicates the different possible fates of these sulfenic acids that have been reported in the literature. Finally, it discusses the possible implications of the formation of xenobiotic-derived sulfenic acid reactive metabolites in pharmacology and toxicology.  相似文献   

5.
The arylamide 2-acetylaminofluorene (AAF) is a powerful carcinogen displaying a marked promoting activity, also known to regulate expression of liver detoxifying proteins. In this study we identified CYP3A23, a major inducible cytochrome P-450 (CYP) isoform, as an AAF target in hepatocytes. Indeed, exposure to AAF of primary rat hepatocytes resulted in a marked up-regulation of CYP3A23 expression at both mRNA and protein levels. Using CYP3A23 reporter gene constructs, we further demonstrated that AAF activated the CYP3A23 Direct Repeat 3 (DR3) promoter element interacting with the nuclear pregnane X receptor (PXR). Moreover, the PXR antagonist ecteinascidin-743 fully suppressed AAF-related CYP3A23 induction. Low doses of AAF inhibiting DNA synthesis in hepatocytes however failed to trigger PXR-related CYP3A23 induction and PXR-negative epithelial liver cells remained sensitive to the mito-inhibitory effects of AAF. Such data indicate that AAF up-regulates CYP3A23 through PXR activation but does not require PXR for exerting its carcinogenic promoting properties based on inhibition of cell growth.  相似文献   

6.
7.
8.
Y459H and V492E mutations of cytochrome P450 reductase (CYPOR) cause Antley-Bixler syndrome due to diminished binding of the FAD cofactor. To address whether these mutations impaired the interaction with drug-metabolizing CYPs, a bacterial model of human liver expression of CYP1A2 and CYPOR was implemented. Four models were generated: PORnull, PORwt, PORYH, and PORVE, for which equivalent CYP1A2 and CYPOR levels were confirmed, except for PORnull, not containing any CYPOR. The mutant CYPORs were unable to catalyze cytochrome c and MTT reduction, and were unable to support EROD and MROD activities. Activity was restored by the addition of FAD, with V492E having a higher apparent FAD affinity than Y459H. The CYP1A2-activated procarcinogens, 2-aminoanthracene, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-amino-3-methylimidazo(4,5-f)quinoline, were significantly less mutagenic in PORYH and PORVE models than in PORwt, indicating that CYP1A2, and likely other drug-metabolizing CYPs, are impaired by ABS-related POR mutations as observed in the steroidogenic CYPs.  相似文献   

9.
Timsit YE  Negishi M 《Steroids》2007,72(3):231-246
The xenobiotic receptors CAR and PXR constitute two important members of the NR1I nuclear receptor family. They function as sensors of toxic byproducts derived from endogenous metabolism and of exogenous chemicals, in order to enhance their elimination. This unique function of CAR and PXR sets them apart from the steroid hormone receptors. In contrast, the steroid receptors, exemplified by the estrogen receptor (ER) and glucocorticoid receptor (GR), are the sensors that tightly monitor and respond to changes in circulating steroid hormone levels to maintain body homeostasis. This divergence of the chemical- and steroid-sensing functions has evolved to ensure the fidelity of the steroid hormone endocrine regulation while allowing development of metabolic elimination pathways for xenobiotics. The development of the xenobiotic receptors CAR and PXR also reflect the increasing complexity of metabolism in higher organisms, which necessitate novel mechanisms for handling and eliminating metabolic by-products and foreign compounds from the body. The purpose of this review is to discuss similarities and differences between the xenobiotic receptors CAR and PXR with the prototypical steroid hormone receptors ER and GR. Interesting differences in structure explain in part the divergence in function and activation mechanisms of CAR/PXR from ER/GR. In addition, the physiological roles of CAR and PXR will be reviewed, with discussion of interactions of CAR and PXR with endocrine signaling pathways.  相似文献   

10.
11.
The role of hepatic xenobiotic regulatory mechanisms in modulating hepatic α-tocopherol concentrations during excess vitamin E administration remains unclear. We hypothesized that increased hepatic α-tocopherol would cause a marked xenobiotic response. Thus, we assessed cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III) after daily α-tocopherol injections (100mg/kg body wt) for up to 9days in rats. α-Tocopherol injections increased hepatic α-tocopherol concentrations nearly 20-fold, along with a 10-fold increase in the hepatic α-tocopherol metabolites α-CEHC and α-CMBHC. Expression of phase I (CYP3A2, CYP3A1, CYP2B2) and phase II (SULT2A1) proteins and/or mRNAs was variably affected by α-tocopherol injections; however, expression of phase III transporter genes was consistently changed by α-tocopherol. Two liver efflux transporter genes, ABCB1b and ABCG2, were up-regulated after α-tocopherol injections, whereas OATP, a liver influx transporter, was down-regulated. Thus, an overload of hepatic α-tocopherol increases its own metabolism and increases expression of genes of transporters that are postulated to lead to increased excretion of both vitamin E and its metabolites.  相似文献   

12.
α-Tocopherol (α-TOH) is the primary lipophilic radical trapping antioxidant in human tissues. Oxidative catabolism of α-tocopherol (αTOH) is initiated by ω-hydroxylation of the terminal carbon (C-13) of the isoprenoid sidechain followed by oxidative transformations that sequentially truncate the chain to yield the 2,5,7,8-tetramethyl(3′carboxyethyl)-6-hydroxychroman (α-CEHC). After conjugation to glucuronic acid, 3′-carboxyethyl-6-hydroxychroman glucuronide is excreted in urine. We report here that the same enzyme that accomplishes this task, the cytochrome P450 monooxygenase CYP-4F2, can also ω-hydroxylate the terminal carbon of α-tocopheryl quinone. A standard sample of ω-OH-α-tocopheryl quinone (ω-OH-α-TQ) was synthesized as a mixture of stereoisomers by allylic oxidation of α-tocotrienol using SeO2 followed by double-bond reduction and oxidation to the quinone. After incubating human liver microsomes or insect cell microsomes expressing only recombinant human CYP-4F2, cytochrome b5, and NADPH P450 reductase with d6-α-tocopheryl quinone (d6-αTQ), we showed that the ω-hydroxylated (13-OH) d6-α-TQ was produced. We further identified the production of the terminal carboxylic acid d6-13-COOH-αTQ. The ramifications of this discovery to the understanding of tocopherol utilization and metabolism, including the quantitative importance of the αTQ-ω-hydroxylase pathway in humans, are discussed.  相似文献   

13.
The plant diastereoisomeric diterpenes ent-pimara-8(14)-15-dien-19-oic acid, obtained from Viguiera arenaria, and isopimara-8(14)-15-dien-18-oic acid, isolated from Cupressus lusitanica, were distinctly functionalized by the enzymes produced in whole cell cultures of the fungus Preussia minima, isolated from surface sterilized stems of C. lusitanica. The ent-pimaradienoic acid was transformed into the known 7β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid, and into the novel diterpenes 7-oxo-8 β-hydroxy-ent-pimara-8(14)-15-dien-19-oic and 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acids. Isopimara-8(14)-15-dien-18-oic acid was converted into novel diterpenes 11α-hydroxyisopimara-8(14)-15-dien-18-oic acid, 7β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, and 1β,11α-dihydroxyisopimara-8(14)-15-dien-18-oic acid, along with the known 7β-hydroxyisopimara-8(14)-15-dien-18-oic acid. All compounds were isolated and fully characterized by 1D and 2D NMR, especially 13C NMR. The diterpene bioproduct 7-oxo-9β-hydroxy-ent-pimara-8(14)-15-dien-19-oic acid is an isomer of sphaeropsidin C, a phytotoxin that affects cypress trees produced by Shaeropsis sapinea, one of the main phytopathogen of Cupressus. The differential metabolism of the diterpene isomers used as substrates for biotransformation was interpreted with the help of computational molecular docking calculations, considering as target enzymes those of cytochrome P450 group.  相似文献   

14.
15.
16.
Previous studies suggested that the onset of phenytoin-induced gingival overgrowth depended on serum phenytoin concentration. Cytochrome P450 2C (CYP2C) plays an important role in phenytoin metabolism. Recently, single nucleotide polymorphisms in the coding region of CYP 2C influencing phenytoin metabolism were identified. The purpose of the present study was to see if CYP 2C polymorphisms might relate to the onset and severity of phenytoin-induced gingival overgrowth. Twenty-eight epileptic patients taking phenytoin aged 15 to 75 (mean age: 42.2 years old, 20 males and 8 females) and 56 unrelated healthy subjects aged 30 to 48 (mean age: 36.8 years old, 48 males and 8 females) were examined for CYP 2C polymorphisms. All epileptic subjects were examined for the degree of gingival overgrowth, daily phenytoin dose and serum phenytoin concentration. The results indicated about 7% of the subjects including epileptic and healthy subjects examined were positive for CYP 2C9*3. However, the degree of gingival overgrowth did not directly correlate with CYP 2C polymorphisms. Nevertheless, the subjects with severer gingival overgrowth exhibited significantly higher serum phenytoin concentration, indicating that phenytoin metabolism is an important determinant for the severity of the disease. Additionally, CYP 2C9*3 carriers exhibited significantly higher serum drug concentration to drug dose. Therefore, we concluded although the gene analysis is not directly related to diagnose the disease itself, it can be utilized in estimating serum phenytoin concentration from drug dose, which in turn serves to predict the future development and clinical course of the disease.  相似文献   

17.
CYP3A4 and CYP3A7 mRNA expression levels were markedly up-regulated by dexamethasone (DEX), but not by rifampicin (RIF). CYP3A5 mRNA level was not increased significantly by DEX, RIF, or phenobarbital. Testosterone 6beta-hydroxylase activity was induced to about 2-fold of control by DEX. However, concomitant treatment with RIF did not alter DEX-mediated induction of CYP3A mRNA expression and testosterone 6beta-hydroxylase activity. DEX-mediated induction of CYP3A mRNA was suppressed in a dose-dependent manner by RU486, a glucocorticoid receptor (GR) antagonist. At 5microM RU486, DEX-mediated induction of CYP3A4, CYP3A5, and CYP3A7 mRNA expression was inhibited almost completely. These results suggest that, in human fetal hepatocytes, PXR is not involved in DEX-mediated induction of CYP3A4 and CYP3A7, and that the induction is mediated directly by GR.  相似文献   

18.
The adiponectin receptors AdipoR1 and AdipoR2 have been identified to mediate the insulin-sensitizing effects of adiponectin. Although AdipoR2 was suggested to be the main receptor for this adipokine in hepatocytes, AdipoR1 protein is highly abundant in primary human hepatocytes and hepatocytic cell lines. Nuclear receptors are main regulators of lipid metabolism and activation of peroxisome proliferator-activated receptor alpha and gamma, retinoid X receptor (RXR), and liver X receptor (LXR) by specific ligands may influence AdipoR1 abundance. AdipoR1 protein is neither altered by RXR or LXR agonists nor by pioglitazone. In contrast, fenofibric acid reduces AdipoR1 whereas hepatotoxic troglitazone upregulates AdipoR1 protein in HepG2 cells. Taken together this work shows for the first time that AdipoR1 protein is expressed in human hepatocytes but that it is not a direct target gene of nuclear receptors. Elevated AdipoR1 induced by hepatotoxic troglitazone may indicate a role of this receptor in adiponectin-mediated beneficial effects in liver damage.  相似文献   

19.
We have previously observed that the quadruple (S407T-N417D-A419T-K473M) and triple (S407T-N17D-A419T) mutants of the chimeric construct of P450 2B1/2B2 do not undergo mechanism-based inactivation by 17alpha-ethynylestradiol (17EE) and tert-butyl 1-methyl-2-propynyl ether (tBMP). The ability of these mutants to metabolize 17EE, benzphetamine, and testosterone has been investigated. The profile for 17EE metabolism by both mutants was characteristic of both wild-types. The two mutants metabolized testosterone to form androstenedione with no formation of the hydroxy products as was seen with both the wild-types. Benzphetamine metabolism by the mutants showed that both mutants exhibited an increased tendency to catalyze demethylation rather than debenzylation. In the presence of the alternate oxidants cumene hydroperoxide and tert-butyl hydroperoxide, the wild-type 2B1 was not inactivated by 17EE. Metabolism of 17EE by 2B1 supported by these alternate oxidants revealed differences in the metabolites that may be related to the inability of 2B1 to be inactivated under these conditions.  相似文献   

20.
Physiological stresses (heat, hemodynamics, genetic mutations, oxidative injury and myocardial ischemia) produce pathological states in which protein damage and misfolded protein structures are a common denominator. The specialized proteins family of antistress proteins - molecular chaperons (HSPs) - are responsible for correct protein folding, dissociating protein aggregates and transport of newly synthesized polypeptides to the target organelles for final packaging, degradation or repair. They are inducible at different cell processes such as cell division, apoptosis, signal transduction, cell differentiation and hormonal stimulation. HSPs are involved in numerous diseases including cardiovascular pathologies, revealing changes of expression and cell localization. We studied the possible changes in expression level of abundant mitochondrial chaperon Hsp60 and main human cytochrome P450 monooxygenase (2E1 isoform) at dilated cardiomyopathy (DCM) progression at the end stage of heart failure using Western blot analysis. The ischemic and normal humans' hearts were studied as control samples. We observed the decrease of Hsp60 level in cytoplasmic fraction of DCM- and ischemia-affected hearts' left ventricular and significant increase of Hsp60 in mitochondrial fractions of all hearts investigated. At the same time we detected the increase of P450 2E1 expression level in ischemic and dilated hearts' cytoplasmic fractions in comparison with normal myocardium and no detectable changes in microsomal fractions of hearts investigated which could be linked with increased level of oxidative injury for DCM heart muscle. In addition, all the changes described are accompanied by significant decrease of ATPase activity of myosin purified from DCM-affected heart in comparison with normal and ischemic myocardia as well. The data obtained allow us to propose a working hypothesis of functional link between antistress (HSPs) and antioxidative (cytochromes) systems at DCM progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号