首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
1. Standing dead plant litter of emergent macrophytes frequently constitutes a significant fraction of the detrital mass in many freshwater wetland and littoral habitats. Rates of leaf senescence and decomposition of the emergent macrophyte Juncus effusus were examined in a small freshwater wetland in central Alabama, U.S.A. Juncus effusus leaves in the initial stages of senescence were tagged in random plant tussocks and monitored periodically to determine in situ rates of leaf senescence and death. Fully senescent leaves were collected, placed in litter bags, and suspended above the sediments to simulate standing dead decay conditions. Litter bags were periodically retrieved over 2 years and analysed for weight loss, litter nutrient contents (N, P), associated fungal biomass and fungal taxa. 2. Senescence and death of J. effusus leaves proceeds from the leaf tip to the base at an exponential rate. The rate of senescence and death of leaf tissue increased with increasing temperatures. Plant litter decomposition was slow (k = 0.40 yr–1), with 49% weight loss observed in 2 years. Both the nitrogen (N) and phosphorus (P) concentration (%) of litter increased during decomposition. However, the total amount of nitrogen (mg) in litter bags remained stable and phosphorus increased slightly during the study period. 3. Fungal biomass associated with plant litter, as measured by ergosterol concentrations, varied between 3 and 8% of the total detrital weight. Values were not significantly different among sampling dates (P > 0.05, ANOVA, Tukey). Fungi frequently identified on decaying litter were Drechslera sp., Conioscypha lignicola (Hyphomycetes), Phoma spp. (Coelomycetes), Panellus copelandii and Marasmiellus sp. (Basidiomycota). 4. These results support previous findings that plant litter of emergent macrophytes does not require submergence or collapse to the sediment surface to initiate microbial colonization and litter decomposition.  相似文献   

2.
Macrophyte net primary productivity (NPP) is a significant but understudied component of the carbon budget in large Amazonian floodplains. Annual NPP is determined by the interaction between stem elongation (vertical growth) and plant cover changes (horizontal expansion), each affected differently by flood duration and amplitude. Therefore, hydrological changes as predicted for the Amazon basin could result in significant changes in annual macrophyte NPP. This study investigates the responses of macrophyte horizontal expansion and vertical growth to flooding variability, and its possible effects on the contribution of macrophytes to the carbon budget of Amazonian floodplains. Monthly macrophyte cover was estimated using satellite imagery for the 2003–2004 and 2004–2005 hydrological years, and biomass was measured in situ between 2003 and 2004. Regression models between macrophyte variables and river‐stage data were used to build a semiempirical model of macrophyte NPP as a function of water level. Historical river‐stage records (1970–2011) were used to simulate variations in NPP, as a function of annual flooding. Vertical growth varied by a factor of ca. 2 over the simulated years, whereas minimum and maximum annual cover varied by ca. 3.5 and 1.5, respectively. Results suggest that these processes act in opposite directions to determine macrophyte NPP, with larger sensitivity to changes in vertical growth, and thus maximum flooding levels. Years with uncommonly large flooding amplitude resulted in the highest NPP values, as both horizontal expansion and vertical growth were enhanced under these conditions. Over the simulated period, annual NPP varied by ca. 1.5 (1.06–1.63 TgC yr?1). A small increasing trend in flooding amplitude, and by extension NPP, was observed for the studied period. Variability in growth rates caused by local biotic and abiotic factors, and the lack of knowledge on macrophyte physiological responses to extreme hydrological conditions remain the major sources of uncertainty.  相似文献   

3.
We sampled periphyton in dominant habitats at oligotrophic and eutrophic sites in the northern Everglades during the wet and the dryseasons to determine the effects of nutrient enrichment on periphytonbiomass, taxonomic composition, productivity, and phosphorus storage. Arealbiomass was high (100–1600 g ash-free dry mass [AFDM]m−2) in oligotrophic sloughs and in stands of the emergentmacrophyte Eleocharis cellulosa, but was low in adjacent stands of sawgrass,Cladium jamaicense (7–52 g AFDM m−2). Epipelon biomasswas high throughout the year at oligotrophic sites whereas epiphyton andmetaphyton biomass varied seasonally and peaked during the wet season.Periphyton biomass was low (3–68 g AFDM m−2) and limitedto epiphyton and metaphyton in open-water habitats at eutrophic sites andwas undetectable in cattail stands (Typha domingensis) that covered morethan 90% of the marsh in these areas. Oligotrophic periphytonassemblages exhibited strong seasonal shifts in species composition and weredominated by cyanobacteria (e.g., Chroococcus turgidus, Scytonema hofmannii)during the wet season and diatoms (e.g. Amphora lineolata, Mastogloiasmithii) during the dry season. Eutrophic assemblages were dominated byCyanobacteria (e.g., Oscillatoria princeps) and green algae (e.g., Spirogyraspp.) and exhibited comparatively little seasonality. Biomass-specific grossprimary productivity (GPP) of periphyton assemblages in eutrophic openwaters was higher than for comparable slough assemblages, but areal GPP wassimilar in these eutrophic (0.9–9.1 g C m−2d−1) and oligotrophic (1.75–11.49 g C m−2d−1) habitats. On a habitat-weighted basis, areal periphytonGPP was 6- to 30-fold lower in eutrophic areas of the marsh due to extensiveTypha stands that were devoid of periphyton. Periphyton at eutrophic siteshad higher P content and uptake rates than the oligotrophic assemblage, butstored only 5% as much P because of the lower areal biomass.Eutrophication in the Everglades has resulted in a decrease in periphytonbiomass and its contribution to marsh primary productivity. These changesmay have important implications for efforts to manage this wetland in asustainable manner. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The presence of algae can greatly reduce the amount of light that reaches submerged macrophytes, but few experimental studies have been conducted to examine the effects of algae on biomass and structure of submerged macrophyte communities. We constructed communities with four submerged macrophytes (Hydrilla verticillata, Egeria densa, Ceratophyllum demersum, and Chara vulgaris) in three environments in which 0 (control), 50 and 100% of the water surface was covered by Spirogyra arcta. Compared to the control treatment, the 100% spirogyra treatment decreased biomass of the submerged macrophyte communities and of all the four macrophytes except C. demersum. Compared to the control and 50% treatments, the 100% treatment significantly increased relative abundance of C. demersum and decreased that of E. densa. Therefore, the presence of S. arcta can greatly affect the productivity and alter the structure of submerged macrophyte communities. To restore submerged macrophyte communities in conditions with abundant algae, assembling communities consisting of C. demersum or similar species may be a good practice.  相似文献   

5.
This study examines dissolved O2, CO2 and CH4 in waters of the Pantanal, a vast savanna floodplain in Brazil. Measurements are presented for 540 samples from throughout the region, ranging from areas of sheet flooding to sluggish marsh streams to the major rivers of the region. Dissolved O2 is often strongly depleted, particularly in waters filled with emergent vascular plants, which are the most extensive aquatic environment of the region. Median O2 concentrations were 35 M for vegetated waters, 116 M for the Paraguay River, 95 M for tributary rivers, and 165 M for open lakes (atmospheric equilibrium, 230–290 M). Airwater diffusive fluxes were calculated from dissolved gas concentrations for representative vegetated floodplain waters, based on data collected over the course of an annual cycle. These fluxes reveal about twice as much CO2 evasion as can be accounted for by invasion of O2 (overall means in nmol cm-2 s-1: O2 0.18, CO2 0.34, and CH4 0.017). Methanogenesis is estimated to account for ca. 20% of the total heterotrophic metabolism in the water column and sediments, with the remainder likely due mostly to aerobic respiration. Anaerobic respiration is limited by the low concentrations of alternate electron acceptors. We hypothesize that O2 transported through the stems of emergent plants is consumed in aerobic respiration by plant tissues or microorganisms, producing CO2 that preferentially dissolves into the water, and thus explaining most of the excess CO2 evasion. This hypothesis is supported by measurements of gases in submersed stems of emergent plants.  相似文献   

6.
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in‐lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate‐change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon‐specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil‐derived carbon and phosphorus. Our work suggests that climate‐induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems.  相似文献   

7.
1. The leaching rates of filterable reactive phosphorus (FRP) and dissolved organic carbon (DOC) from five leaf litter types commonly occurring in urban environments in Mediterranean regions of Southern Australia were compared. The relative composition, bioavailability and oxygen demand of this DOC were also assessed. Four tree species were assessed, including the native river red gum (Eucalyptus camaldulensis) and three introduced deciduous species, the English elm (Ulmus procera), London plane (Platanus acerifolia) and white poplar (Populus alba). Grass cuttings (mixed species) were selected as a common garden waste. 2. Except for English elm, the majority of FRP and DOC was released within the first 48 h. Grass cuttings released the highest amount of FRP with white poplar releasing the most DOC. Species that released relatively high amounts of DOC (white poplar, English elm, river red gum) released relatively low amounts of FRP. Conversely, species that released relatively low amounts of DOC (grass cuttings and London plane) tended to release relatively high amounts of FRP. 3. Analysis of DOC composition, combined with the differing oxygen demand and DOC depletion curves, demonstrated that there were substantial differences in the DOC leached from the leaf litter of the different species. Biochemical oxygen demand and the biodegradability of the DOC was positively correlated with the proportion of hydrophilic and hydrophobic acids present in the leachate. 4. These results demonstrate that simple measurements of nutrient release per gram of leaf litter would be insufficient to predict the ecological impact on receiving waters resulting from changes in dominant vegetation. Furthermore, the use of traps to prevent particulate leaf material from entering streams may have limited potential for reducing the load of dissolved nutrients. We conclude that any changes to vegetation type which substantially alter the timing of leaf fall or the composition of leaf leachates should be avoided.  相似文献   

8.
More and more agricultural land in the Netherlands is becoming available for ecological restoration projects. However, nutrient levels in the top layer of the soils are high because the agricultural lands have been heavily fertilized for decades. As drainage ditches are no longer maintained when agricultural use ends, the agricultural lands usually become much wetter. As a result, former agricultural soils tend to develop extensive monotonous stands of Juncus effusus , which have little value from an ecological point of view. In this article, we present the results of field measurements/observations and experiments to examine the relationship between nutrient availability and J. effusus growth. In addition, we present and discuss results of experiments to study the potential beneficial effects of liming. Our findings show that the growth of J. effusus on moist or wet soils seems to be strongly determined by the Olsen-P concentration in the soil. The restoration of diverse, species-rich vegetation types on former agricultural lands with a noncalcareous sandy soil will in most cases not be possible within a reasonable time span without topsoil removal. Liming might be a valuable additional measure to enhance the quality of the soil after topsoil removal, and to prevent mobilization of P to groundwater or surface water. If removal of the topsoil is considered to create P limitation, it is important to study P concentrations at various depths to establish the amount of soil that has to be removed.  相似文献   

9.
毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应   总被引:17,自引:1,他引:17  
万忠梅  宋长春  郭跃东  王丽  黄靖宇 《生态学报》2008,28(12):5980-5986
通过设置的W1(15cm)、W2(-5cm)、W3(-5~5cm)、W4(淹没)4种水分梯度的毛苔草(Carex lasiocarpa)盆栽培养实验,研究了湿地土壤酶活性、微生物量碳(MBC)、可溶性有机碳(DOC)及毛苔草地上生物量对水分梯度的响应及土壤酶活性与MBC、DOC、地上生物量的关系。土壤酸性磷酸酶、蔗糖酶和脲酶活性随着土壤水分增加而降低,但过氧化氢酶活性随着土壤水分增加而增加。与持续淹水相比,于湿交替(W3)增加了土壤酸性磷酸酶、蔗糖酶、脲酶和过氧化氢酶活性。土壤微生物量碳(MBC)含量表现为W3〉W1〉W2〉W4,蔗糖酶、脲酶、过氧化氢酶活性与MBC呈显著正相关(P〈0.05)。土壤可溶性有机碳(DOC)含量表现为W4〉W1〉W3〉W2,脲酶和酸性磷酸酶活性与DOC呈极显著负相关(P〈0.01)。毛苔草地上生物量与土壤酶活性呈正相关,其中,蔗糖酶、过氧化氢酶、脲酶活性与毛苔草生长状况密切相关。  相似文献   

10.
The responses of soil enzyme activity of freshwater marsh, microbial biomass carbon (MBC), dissolved organic carbon (DOC) and aboveground biomass to water gradients were studied with Carex lasiocarpa pot culture experiment. The relationships between soil enzyme activity and MBC, DOC and aboveground biomass were discussed. The water gradients were W1, 15 cm; W2, ?5 cm; W3, ?5–5 cm; W4, submerged. The results indicated that acid phosphatase, invertase and urease activities were decreased with the increase of water level, while catalase activity was increased with moisture content increasing. Drying-wetting alternation (W3) increased soil enzyme activities if compared with W1. MBC content followed the order of W3 > W1 > W2 > W4, and the activities of invertase, urease and catalase were significantly positively correlated with MBC (p < 0.05). DOC content presented the order of W4 > W1 > W3 > W2, and the activities of urease and acid phosphatase were most significantly negatively correlated with DOC (p < 0.01). In addition, drying-wetting alternation promoted the growth of Carex lasiocarpa. When water submerged plants, the growth of Carex lasiocarpa was significantly inhibited. The aboveground biomass was positively related to soil enzyme activities. There were close relationships between the activities of invertase, urease and catalase and the growth situation of Carex lasiocarpa.  相似文献   

11.
The responses of soil enzyme activity of freshwater marsh, microbial biomass carbon (MBC), dissolved organic carbon (DOC) and aboveground biomass to water gradients were studied with Carex lasiocarpa pot culture experiment. The relationships between soil enzyme activity and MBC, DOC and aboveground biomass were discussed. The water gradients were W1, 15 cm; W2, ?5 cm; W3, ?5–5 cm; W4, submerged. The results indicated that acid phosphatase, invertase and urease activities were decreased with the increase of water level, while catalase activity was increased with moisture content increasing. Drying-wetting alternation (W3) increased soil enzyme activities if compared with W1. MBC content followed the order of W3 > W1 > W2 > W4, and the activities of invertase, urease and catalase were significantly positively correlated with MBC (p < 0.05). DOC content presented the order of W4 > W1 > W3 > W2, and the activities of urease and acid phosphatase were most significantly negatively correlated with DOC (p < 0.01). In addition, drying-wetting alternation promoted the growth of Carex lasiocarpa. When water submerged plants, the growth of Carex lasiocarpa was significantly inhibited. The aboveground biomass was positively related to soil enzyme activities. There were close relationships between the activities of invertase, urease and catalase and the growth situation of Carex lasiocarpa.  相似文献   

12.
1. Agricultural and urban land use may increase dissolved inorganic nitrogen (DIN) concentrations in streams and saturate biotic nutrient demand, but less is known about their impacts on the cycling of organic nutrients. To assess these impacts we compared the uptake of DIN (as ammonium, NH4+), dissolved organic carbon (DOC, as acetate), and dissolved organic nitrogen (DON, as glycine) in 18 low‐gradient headwater streams in southwest Michigan draining forested, agricultural, or urban land‐use types. Over 3 years, we quantified uptake in two streams in each of the three land‐use types during three seasons (spring, summer and autumn). 2. We found significantly higher NH4+ demand (expressed as uptake velocity, Vf) in urban compared to forested streams and NH4+Vf was greater in spring compared to summer and autumn. Acetate Vf was significantly higher than NH4+ and glycine Vf, but neither acetate nor glycine Vf were influenced by land‐use type or season. 3. We examined the interaction between NH4+ and acetate demand by comparing simultaneous short‐term releases of both solutes to releases of each solute individually. Acetate Vf did not change during the simultaneous release with NH4+, but NH4+Vf was significantly higher with increased acetate. Thus, labile DOC Vf was not limited by the availability of NH4+, but NH4+Vf was limited by the availability of labile DOC. In contrast, neither glycine nor NH4+Vf changed when released simultaneously indicating either that overall N‐uptake was saturated or that glycine and NH4+ uptake were controlled by different factors. 4. Our results suggest that labile DOC and DON uptake can be equivalent to, or even higher than NH4+ uptake, a solute known to be highly bioreactive, but unlike NH4+ uptake, may not differ among land‐use types and seasons. Moreover, downstream export of nitrogen may be exacerbated by limitation of NH4+ uptake by the availability of labile DOC in headwater streams from the agricultural Midwestern United States. Further research is needed to identify the factors that influence cycling of DOC and DON in streams.  相似文献   

13.
菌渣化肥配施对稻田土壤微生物量碳氮和可溶性碳氮的影响   总被引:12,自引:0,他引:12  
石思博  王旭东  叶正钱  陈绩  龚臣  李婷  任泽涛 《生态学报》2018,38(23):8612-8620
菌渣作为一种养分丰富的有机物料还田,可减少化肥施用,同时保持土壤肥力;而土壤微生物量碳、氮和可溶性碳、氮是土壤活性碳氮库的重要组成部分,其含量和比例变化对土壤肥力均具有重要作用。因此,探讨不同比例菌渣化肥配施对土壤微生物量碳、氮及可溶性碳、氮的影响,评价菌渣在优化土壤肥力方面的生态作用具有重要意义。本研究在水稻田间定位试验条件下,设置3个化肥水平(C) 0%、50%、100%,菌渣相对用量(F) 0%、50%、100%,共9个处理,分析了各处理土壤微生物量碳(MBC)、氮(MBN)和可溶性碳(DOC)、氮(DON)的变化特征,及其占土壤有机碳(SOC)和全氮(TN)的比例与相关关系。结果表明:菌渣化肥配施后,微生物量碳和可溶性碳、氮均在C100F50最高,微生物量氮在C50F100最高,与不施肥处理相比,分别显著增加了49.40%、43.65%、83.52%、207.19%;MBC/SOC和DOC/SOC均随着菌渣化肥配施量的增加而减少,MBN/TN和DON/TN均在C100F50最高。相关分析表明,MBC、DOC与SOC,MBN与TN均呈极显著正相关,DON和TN呈显著正相关。总体来讲,菌渣化肥配施能够显著提高土壤微生物量碳、氮和可溶性碳、氮含量,但不是随着用量的增加一直呈增加趋势,高量菌渣或者化肥下会有降低趋势;菌渣化肥配施降低了土壤微生物量和可溶性碳氮比,因此适宜的菌渣化肥配施是提高土壤有机碳周转速度、微生物活性及其氮素供应能力和有效性的最佳选择。  相似文献   

14.
Dissolved organic carbon (DOC) concentrations and export were studied in two small catchments in central Ontario to examine DOC sources and to assess the hypothesis that organic matter adjacent to the stream is a significant contributor of DOC during storms. Different DOC dynamics and exports were observed according to the depth of the riparian water table. In Harp 4-21, riparian flowpaths were predominantly through A and upper B soil horizons and riparian soils contributed between 73 and 84% of the stream DOC export during an autumn storm. In Harp 3A, riparian flowpaths were predominantly through lower B horizons. Consequently, riparian soils were less important and hillslopes contributed more than 50% of the stream DOC export in subcatchments without wetlands during storms. Wetlands and adjacent soils contributed significantly to DOC export in Harp 3A; 8% of the total catchment area exported 32 to 46% of the storm runoff DOC. DOC export dynamics in wetlands and riparian soils were distinctly different. In wetlands, transport was affected by leaching and flushing of DOC at the wetland surface leading to lower DOC concentrations with successive storms. In riparian soils, groundwater flowpaths were more important and stronger positive relationships between discharge and DOC concentration were observed. Precipitation, throughfall and stemflow were minor sources of stream DOC during storms and contributed less than 20% of the total export.  相似文献   

15.
Wan Z M  Song C C  Guo Y D  Wang L  Huang J Y 《农业工程》2008,28(12):5980-5986
The responses of soil enzyme activity of freshwater marsh, microbial biomass carbon (MBC), dissolved organic carbon (DOC) and aboveground biomass to water gradients were studied with Carex lasiocarpa pot culture experiment. The relationships between soil enzyme activity and MBC, DOC and aboveground biomass were discussed. The water gradients were W1, 15 cm; W2, ?5 cm; W3, ?5–5 cm; W4, submerged. The results indicated that acid phosphatase, invertase and urease activities were decreased with the increase of water level, while catalase activity was increased with moisture content increasing. Drying-wetting alternation (W3) increased soil enzyme activities if compared with W1. MBC content followed the order of W3 > W1 > W2 > W4, and the activities of invertase, urease and catalase were significantly positively correlated with MBC (p < 0.05). DOC content presented the order of W4 > W1 > W3 > W2, and the activities of urease and acid phosphatase were most significantly negatively correlated with DOC (p < 0.01). In addition, drying-wetting alternation promoted the growth of Carex lasiocarpa. When water submerged plants, the growth of Carex lasiocarpa was significantly inhibited. The aboveground biomass was positively related to soil enzyme activities. There were close relationships between the activities of invertase, urease and catalase and the growth situation of Carex lasiocarpa.  相似文献   

16.
外源有机物的输入可以通过正负激发效应影响土壤有机碳(SOC)的矿化。然而, 当前的研究较少考虑不同植物及器官来源可溶性有机质(DOM)输入对土壤激发效应的影响及其作用机理。该研究以武夷山森林土壤为研究对象, 以室内培养的方式向土壤中添加13C标记青冈(Cyclobalanopsis glauca)、杉木(Cunninghamia lanceolata)、木莲(Manglietia fordiana)和相思(Acacia confusa)这4种植物的根和叶来源DOM, 研究不同植物及器官来源DOM输入对土壤激发效应的影响及其作用机理。主要结果: 不同植物及器官来源DOM添加初期加快了SOC的矿化, 呈现正激发效应, 随后转为负激发效应。从整个培养期(90天)的累积激发效应来看, DOM的输入均抑制了SOC的矿化, 使其矿化量减少22%-49%, 其中青冈根DOM输入使SOC的矿化量减少最多, 而由木莲叶DOM输入减少的SOC矿化量最少。DOM输入引起的土壤激发效应强度受不同植物器官影响明显, 具体表现在植物根来源DOM输入所引起的土壤激发效应强度显著高于植物叶来源DOM输入所引起的激发效应强度(相思除外)。DOM的输入总体上提高了土壤微生物生物量碳(MBC)含量、土壤β-葡萄糖苷酶活性、纤维素酶活性以及土壤有效氮含量, 而对微生物群落组成无明显影响。从结构方程模型来看, DOM输入所引起的土壤激发效应主要受土壤微生物对外源碳的利用(13C-MBC)、纤维素酶活性以及土壤有效氮含量的影响, 这些因子的变化可解释植物叶来源DOM和根来源DOM添加处理下土壤激发效应变化的68%和86%。该研究结果表明在土壤氮充足的条件下, DOM的输入可以通过提高微生物生物量、土壤酶活性来加快分解所添加的外源有机物, 从而减少了对SOC的分解。因此, 在该研究中“底物优先利用”是土壤激发效应的主要作用机理。  相似文献   

17.
A field and laboratory based bioassay has been developed to investigate the effects of the quantity and duration of simulated pollutant nitrogen (N) deposition on root-surface phosphomonoesterase (PME) activities in calcareous and acid grasslands. Seedlings of Plantago lanceolata were transplanted to a calcareous grassland and Agrostis capillaris seedlings were grown in microcosms containing soil from an acid grassland that had received either 7 yr (long-term) N additions or 18 months (short-term) N and phosphorus (P) additions. The bioassay revealed that short-term N treatments had little effect on the enzyme activity, whereas long-term N additions significantly increased PME activity within 7 d of transplanting into the field plots. Root-surface PME activity of A. capillaris was significantly reduced in soil that received additions of P. In the plots receiving long-term additions of N, a strong relationship was observed between extractable soil ammonium and root-surface PME activity. Soil ammonium concentrations accounted for 67% of the variation in PME activity of P. lanceolata in the calcareous grassland, and 86% of the variation in PME activity of A. capillaris in the acid grassland. These results provide evidence that N deposition may have considerable effects on the demand and turnover of P in ecosystems that are approaching or have reached N saturation.  相似文献   

18.
1. Microbial decomposition of dissolved organic carbon (DOC) contributes to overall stream metabolism and can influence many processes in the nitrogen cycle, including nitrification. Little is known, however, about the relative decomposition rates of different DOC sources and their subsequent effect on nitrification. 2. In this study, labile fraction and overall microbial decomposition of DOC were measured for leaf leachates from 18 temperate forest tree species. Between 61 and 82% (mean, 75%) of the DOC was metabolized in 24 days. Significant differences among leachates were found for labile fraction rates (P < 0.0001) but not for overall rates (P=0.088). 3. Nitrification rates in stream sediments were determined after addition of 10 mg C L–1 of each leachate. Nitrification rates ranged from below detection to 0.49 μg N mL sediment–1 day–1 and were significantly correlated with two independent measures of leachate DOC quality, overall microbial decomposition rate (r=–0.594, P=0.0093) and specific ultraviolet absorbance (r=0.469, P=0.0497). Both correlations suggest that nitrification rates were lower in the presence of higher quality carbon. 4. Nitrification rates in sediments also were measured after additions of four leachates and glucose at three carbon concentrations (10, 30, and 50 mg C L–1). For all carbon sources, nitrification rates decreased as carbon concentration increased. Glucose and white pine leachate most strongly depressed nitrification. Glucose likely increased the metabolism of heterotrophic bacteria, which then out‐competed nitrifying bacteria for NH4+. White pine leachate probably increased heterotrophic metabolism and directly inhibited nitrification by allelopathy.  相似文献   

19.
Mercury is a contaminant of concern in polar regions due to long‐range atmospheric transport of this metal from southern latitudes followed by intense deposition on snow. We surveyed zooplankton in 16 lakes and ponds in the Canadian Arctic Archipelago (74–76°N) to determine methylmercury (MeHg) content and the role of environmental characteristics and taxonomic composition on accumulation processes. Zooplankton communities containing Daphnia (mainly D. middendorffiana) had on average five times the MeHg content of copepod‐dominated communities. The percent biomass of Daphnia best explained MeHg variation in bulk zooplankton compared with water chemistry and morphometric variables. Water‐column concentrations of MeHg were low at most study sites (mainly ≤0.07 ng L−1), and Daphnia strongly bioaccumulated mercury through species‐specific processes. As we observed Daphnia in more productive water bodies (i.e., ponds, a eutrophied lake), we then tested the role of productivity in determining the distribution of this keystone herbivore using a broad‐scale literature dataset of 47 High Arctic lakes (65–77°N). Daphnia density was positively related to the amount of organic carbon in the water column in both dissolved and particulate fractions [dissolved organic carbon (DOC) partial , P < 0.001; particulate organic carbon (POC) partial , P=0.032]. The strong influence of DOC suggests that bacterial production is an important energy source for Arctic Daphnia. Our findings indicate that productivity influences the MeHg content of zooplankton communities through its control of species composition; specifically, low productivity limits the presence of mercury‐rich Daphnia in many copepod‐dominated lakes of the High Arctic. Aquatic productivity is expected to increase with climate warming, and we present a conceptual model that predicts how environmental drivers could extend the distribution of Daphnia in lakes and alter the movement of mercury in food webs of the Canadian High Arctic.  相似文献   

20.
The supplies of nutrients, and their elemental stoichiometry, can have significant impacts upon the structure and function of microbial communities. This review focuses on the effects of nutrient supplies on the biodegradation of organic matter, and on the dynamics of host-pathogen interactions. Analyses of data from the literature suggest significant effects of nitrogen:phosphorus supply ratios on the microbial decomposition of organic matter, and it is argued that these stoichiometric effects may have important implications for the fate and fluxes of carbon in natural ecosystems. In addition, it is shown that the supplies of nitrogen and phosphorus to the host can strongly influence the outcome of infections in both terrestrial and aquatic plants, suggesting that resource availability and resource supply ratios potentially may have significant effects on the health of many plant communities. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号