首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian antimicrobial peptides provide rapid defense against infection by inactivating pathogens and by influencing the functions of cells involved in defense responses. Although the direct antibacterial properties of these peptides have been widely characterized, their multiple effects on host cells are only beginning to surface. Here we investigated the mechanistic and functional aspects of the interaction of the proline-rich antimicrobial peptide Bac7(1-35) with mammalian cells, as compared with a truncated analog, Bac7(5-35), lacking four critical N-terminal residues (RRIR) of the Bac7(1-35) sequence. By using confocal microscopy and flow cytometry, we showed that although the truncated analog Bac7(5-35) remains on the cell surface, Bac7(1-35) is rapidly taken up into 3T3 and U937 cells through a nontoxic energy- and temperature-dependent process. Cell biology-based assays using selective endocytosis inhibitors and spectroscopic and surface plasmon resonance studies of the interaction of Bac7(1-35) with phosphatidylcholine/cholesterol model membranes collectively suggest the concurrent contribution of macropinocytosis and direct membrane translocation. Structural studies with model membranes indicated that membrane-bound Bac7(5-35) is significantly more aggregated than Bac7(1-35) due to the absence of the N-terminal cationic cluster, thus providing an explanation for hampered cellular internalization of the truncated form. Further investigations aimed to reveal functional implications of intracellular uptake of Bac7(1-35) demonstrated that it correlates with enhanced S phase entry of 3T3 cells, indicating a novel function for this proline-rich peptide.  相似文献   

2.
Ten peptides from 13 to 35 residues in length and covering the whole sequence of the Pro-rich peptide Bac7 were synthesized to identify the domain responsible for its antimicrobial activity. At least 16 residues of the highly cationic N-terminal sequence were required to maintain the activity against Gram-negative bacteria. The fragments Bac7(1–35) and, to a lesser extent, Bac7(1–16) proved active against a panel of antibiotic-resistant clinical isolates of Gram-negative bacteria, with the notable exception of Burkholderia cepacia. In addition, when tested against fungi, the longer fragment was also active against collection strains and clinical isolates of Cryptococcus neoformans, but not towards clinical isolates of Candida albicans.  相似文献   

3.
The histidine-rich peptides of the LAH4 family were designed using cationic antimicrobial peptides such as magainin and PGLa as templates. The LAH4 amphipathic helical sequences exhibit a multitude of interesting biological properties such as antimicrobial activity, cell penetration of a large variety of cargo and lentiviral transduction enhancement. The parent peptide associates with lipid bilayers where it changes from an orientation along the membrane interface into a transmembrane configuration in a pH-dependent manner. Here we show that LAH4 adopts a transmembrane configuration in fully saturated DMPC membranes already at pH 3.5, i.e. much below the pKa of the histidines whereas the transition pH in POPC correlates closely with histidine neutralization. In contrast in POPG membranes the in-planar configuration is stabilized by about one pH unit. The differences in pH can be converted into energetic contributions for the in-plane to transmembrane transition equilibrium, where the shift in the transition pH due to lipid saturation corresponds to energies which are otherwise obtained by the exchange of several cationic with hydrophobic residues. A similar dependence on lipid saturation has also been observed when the PGLa and magainin antimicrobial peptides interact within lipid bilayers suggesting that the quantitative evaluation presented in this paper also applies to other membrane polypeptides.  相似文献   

4.
In contrast to many antimicrobial peptides, members of the proline-rich group of antimicrobial peptides inactivate Gram-negative bacteria by a non-lytic mechanism. Several lines of evidence indicate that they are internalized into bacteria and their activity mediated by interaction with unknown cellular components. With the aim of identifying such interactors, we selected mutagenized Escherichia coli clones resistant to the proline-rich Bac7(1-35) peptide and analysed genes responsible for conferring resistance, whose products may thus be involved in the peptide's mode of action. We isolated a number of genomic regions bearing such genes, and one in particular coding for SbmA, an inner membrane protein predicted to be part of an ABC transporter. An E. coli strain carrying a point mutation in sbmA, as well as other sbmA-null mutants, in fact showed resistance to several proline-rich peptides but not to representative membranolytic peptides. Use of fluorescently labelled Bac7(1-35) confirmed that resistance correlated with a decreased ability to internalize the peptide, suggesting that a bacterial protein, SbmA, is necessary for the transport of, and for susceptibility to, proline-rich antimicrobial peptides of eukaryotic origin.  相似文献   

5.
Protein transduction is based on the ability of certain peptides, designated as cell penetrating peptides (CPPs), to intracellularly deliver cargo molecules, such as peptides and proteins. In combination with site specific recombination, CPP-mediated delivery of recombinases enables a precise and highly efficient control of gene expression in cultured cells and mice. Herein, we provide detailed protocols for engineering and purification of a cell-permeant FLP recombinase protein. Two examples describe the use of cell permeant FLP for excising prespecified fragments from transgenes expressed in fibroblasts and mouse embryonic stem cells. A third example describes the combined use of cell-permeant Cre and FLP recombinases to reversibly induce transgenes in embryonic stem cells. We anticipate that the protocols described herein will be widely used for various genetic interventions addressing complex biological questions.  相似文献   

6.
Bactenecins are highly cationic polypeptides of the large granules of bovine neutrophils, exerting in vitro a potent antimicrobial activity. Two bactenecins, with an approximate molecular weight of 7000 and 5000, called Bac7 and Bac5, are characterized by a high content of proline (greater than 45%) and arginine (greater than 23%) residues. Their complete amino acid sequences were determined by automated Edman degradation combined, in the case of Bac5, with plasma desorption mass spectrometry. Bac7 comprises 59 residues and includes three tandem repeats of a tetradecamer characterized by several Pro-Arg-Pro triplets spaced by single hydrophobic amino acids. Resolution of the primary structure of Bac5 required fragmentation with N-bromosuccinimide as well as digestion of the obtained C-terminal fragment with carboxypeptidases P and Y directly in the mass spectrometer. Bac5 comprises 42 amino acid residues with a repeated motif of Arg-Pro-Pro triplets also alternating with single apolar residues.  相似文献   

7.
Won HS  Kim SS  Jung SJ  Son WS  Lee B  Lee BJ 《Molecules and cells》2004,17(3):469-476
The anuran (frogs and toads) skin is a rich source of antimicrobial peptides that can be developed therapeutically. We searched the skin secretions of Korean Rana esculenta for antimicrobial peptides, and isolated two cationic peptides with antimicrobial activity and little hemolytic activity: a 46-residue peptide of the esculentin-1 family and a 24-residue peptide of the brevinin-1 family. Their sequences showed some differences from the esculentins-1 and brevinins-1 of European Rana esculenta, indicating that sequence diversification of anuran skin antimicrobial peptides can arise from differences in habitat as well as from species differences. The 46-residue peptide named esculentin-1c had broad antimicrobial activity, while the 24-residue peptide named brevinin-1Ed exhibited limited activity. The solution structure of brevinin-1Ed was in good agreement with that of other brevinin-1-like peptides, with an amphipathic alpha-helix spanning residues 3-20, stabilized in membrane-mimetic environments. The weak bioactivity of brevinin-1Ed was attributable to the unusual presence of an anionic amino acid in the middle of the helical hydrophilic face. This report contributes to world-wide investigations of the structure-activity relationships and evolutional diversification of anuran-skin antimicrobial peptides.  相似文献   

8.
The in vitro antimicrobial activities and biological effects on host cells were compared for the bovine cathelicidins BMAP-28, an alpha-helical AMP, and Bac5 and Bac7, proline-rich AMPs. Our results confirm that the broad-spectrum activity of BMAP-28 correlates with a high capacity to interact with and permeabilize bacterial membranes, whereas the proline-rich AMPs selectively internalize into the cytoplasm of susceptible Gram-negative bacteria with a non-lytic mechanism. All peptides efficiently translocated into mammalian fibroblastic cells, but while Bac5 and Bac7(1–35) localized to nuclear structures and induced cellular proliferation, BMAP-28 associated with mitochondria and did not induce proliferation. Moreover, BMAP-28 was considerably more cytotoxic than the proline-rich peptides due to cytolytic and pro-apoptotic effects. Our results highlight important functional differences among the bovine cathelicidins and suggest that they contribute to an integrated response of the host to infection, with distinct but complementary activities.  相似文献   

9.
We performed a comparative study of effects of two structurally different cationic antimicrobial peptides of cathelicidin family, porcine protegrin 1 (PG1) and caprine bactenecin 5 (Bac5) on selected tumor and normal mammalian cells in vitro. Protegrins are amphiphilic beta-hairpin molecules having broad-spectrum antimicrobial activity due to their marked membranolytic properties. Bac5 belongs to the group of proline-rich peptides, which adopt a polyproline type II extended helix and kill microorganisms rather by a non-lytic mechanism. We have shown that while PG1 exerts distinct and fast cytotoxic effects on most of used tumor cells being slightly less toxic for nontransformed host cell, the proline-rich Bac5 is much less cytotoxic for all the cells tested. The toxic effects of PG1 were partially declined in the presence of 10% fetal calf serum. It was revealed that PG1 was able to interact with proteins of serpin family (as had been previously established for human defensins by Panyutich et al., 1995). Pre-incubation of PG1 with alpha1-antitrypsin caused the decrease of the cytotoxic activity of the peptide and, on the other hand, the antiprotease activity of alpha1-antitrypsin was reduced after interaction of the serpin with PG1 (not with Bac5). Confocal microscopy experiments allowed to monitor the internalization of fluorescent labeled (by BODIPY FL) peptides into target cells and their intracellular distribution. Bac5-BODIPY (at 5 microM) was rapidly taken into the cells. PG1-BODIPY at non-toxic concentrations was also able to enter the cells without significant damage to them. The comparative study of the kinetics of the peptides uptake into the target cells and the influence of low temperature, energy-depletion and endocytosis inhibitors on the process of the internalization of the peptides into the cells was carried out using flow cytometry.  相似文献   

10.
Dual mode of action of Bac7, a proline-rich antibacterial peptide   总被引:3,自引:0,他引:3  
Proline-rich peptides are a unique group of antimicrobial peptides that exert their activity selectively against Gram-negative bacteria through an apparently non-membranolytic mode of action that is not yet well understood. We have investigated the mechanism underlying the antibacterial activity of the proline-rich cathelicidin Bac7 against Salmonella enterica and Escherichia coli. The killing and membrane permeabilization kinetics as well as the cellular localization were assessed for the fully active N-terminal fragment Bac7(1-35), its all-D enantiomer and for differentially active shortened fragments. At sub-micromolar concentrations, Bac7(1-35) rapidly killed bacteria by a non-lytic, energy-dependent mechanism, whereas its D-enantiomer was inactive. Furthermore, while the L-enantiomer was rapidly internalized into bacterial cells, the D-enantiomer was virtually excluded. At higher concentrations (>or=64 microM), both L- and D-Bac7(1-35) were instead able to kill bacteria also via a lytic mechanism. Overall, these results suggest that Bac7 may inactivate bacteria via two different modes of action depending on its concentration: (i) at near-MIC concentrations via a mechanism based on a stereospecificity-dependent uptake that is likely followed by its binding to an intracellular target, and (ii) at concentrations several times the MIC value, via a non-stereoselective, membranolytic mechanism.  相似文献   

11.
We carried out a study of the effects of two structurally different cationic antimicrobial peptides of cathelicidin family, porcine protegrin 1 (PG1) and caprine Bac5 on selected tumor and normal mammalian cells in vitro. Protegrins are amphiphilic β-hairpin molecules having broad-spectrum antimicrobial activity due to their marked membranolytic effects. Bac5 belongs to a group of proline-rich peptides, which adopt a polyproline type II extended helix and kill microorganisms rather by a nonlytic mechanism. We have shown that while PG1 exerted distinct and fast cytotoxic effects towards most of used tumor cells being in a lesser degree toxic for nontransformed host cells; the proline-rich peptide Bac5 possessed modest cytotoxic activity for all tested cells. The toxic effects of PG1 were partially declined in the presence of 10% fetal calf serum. It was revealed that PG1 was able to interact with proteins of serpin family (as was previously established for human defensins by Panyutich at al., 1995). Pre-incubation of PG1 with α1-antitrypsin caused the decrease of the cytotoxic activity of the peptide and, on the other hand, the antiprotease activity of α1-antitrypsin was reduced after the interaction of the serpin with PG1 (while Bac5 did not affect the antiprotease activity of α1-antitrypsin). We used BODIPY FL-tagged PG1 and Bac5 to study the internalization of the labeled peptides into target cells and their intracellular distribution by confocal microscopy. Bac5-BODIPY (at 5 μ M) was rapidly taken into the cells. PG1-BODIPY at non-toxic concentrations (1—3 μM) was also able to enter the cells without their damaging. By using flow cytometry we showed that lowering a temperature to 4°C caused a significant decrease in the uptake into K562 and U937 cells for both Bac5-BODIPY and PG1-BODIPY. A decline of target cells metabolism also diminished the process of both peptides internalization but for a lesser degree. In the presence of endocytosis inhibitors the penetration of Bac5-BODIPY and PG1-BODIPY into K562 cells was also reduced, but not completely abolished, suggesting that along with endocytosis process some direct penetration of the peptides across cell membranes takes place. The ability of the peptides to internalize into eukaryotic cells may contribute to the idea of participation of AMPs in varied intracellular events, occurring in normal or malignant host cells, for instance, in the modulation of intracellular serpins activity.  相似文献   

12.
The powerful antimicrobial properties of bovine lactoferricin (LfcinB) make it attractive for the development of new antimicrobial agents. An 11-residue linear peptide portion of LfcinB has been reported to have similar antimicrobial activity to lactoferricin itself, but with lower hemolytic activity. The membrane-binding and membrane-perturbing properties of this peptide were studied together with an amidated synthetic version with an added disulfide bond, which was designed to confer increased stability and possibly activity. The antimicrobial and cytotoxic properties of the peptides were measured against Staphylococcus aureus and Escherichia coli and by hemolysis assays. The peptides were also tested in an anti-cancer assay against neuroblastoma cell lines. Vesicle disruption caused by these LfcinB derivatives was studied using the fluorescent reporter molecule calcein. The extent of burial of the two Trp residues in membrane mimetic environments were quantitated by fluorescence. Finally, the solution NMR structures of the peptides bound to SDS micelles were determined to provide insight into their membrane bound state. The cyclic peptide was found to have greater antimicrobial potency than its linear counterpart. Consistent with this property, the two Trp residues of the modified peptide were suggested to be embedded deeper into the membrane. Although both peptides adopt an amphipathic structure without any regular alpha-helical or beta-sheet conformation, the 3D-structures revealed a clearer partitioning of the cationic and hydrophobic faces for the cyclic peptide.  相似文献   

13.
Penaeidins are a family of antimicrobial peptides of 47-63 residues isolated from several species of shrimp. These peptides display a proline-rich domain (N-terminal part) and a cysteine-rich domain (C-terminal part) stabilized by three conserved disulfide bonds whose arrangement has not yet been characterized. The recombinant penaeidin-3a of Litopenaeus vannamei (63 residues) and its [T8A]-Pen-3a analogue were produced in Saccharomyces cerevisiae and showed similar antimicrobial activity. The solution structure of the [T8A]-Pen-3a analogue was determined by using two-dimensional 1H NMR and simulated annealing calculations. The proline-rich domain, spanning residues 1-28 was found to be unconstrained. In contrast, the cysteine-rich domain, spanning residues 29-58, displays a well defined structure, which consists of an amphipathic helix (41-50) linked to the upstream and the downstream coils by two disulfide bonds (Cys32-Cys47 and Cys48-Cys55). These two coils are in turn linked together by the third disulfide bond (Cys36-Cys54). Such a disulfide bond packing, which is in agreement with the analysis of trypsin digests by ESI-MS, contributes to the highly hydrophobic core. Side chains of Arg45 and Arg50, which belong to the helix, and side chains of Arg37 and Arg53, which belong to the upstream and the downstream coils, are located in two opposite parts of this globular and compact structure. The environment of these positively charged residues, either by hydrophobic clusters at the surface of the cysteine-rich domain or by sequential hydrophobic residues in the unconstrained proline-rich domain, gives rise to the amphipathic character required for antimicrobial peptides. We hypothesize that the antimicrobial activity of penaeidins can be explained by a cooperative effect between the proline-rich and cysteine-rich features simultaneously present in their sequences.  相似文献   

14.
A small library of amphiphilic peptides has been evaluated for duplex RNA carrier function into A549 cells. We studied peptides in which a C-terminal 7-residue cationic domain is attached to a neutral/hydrophobic 23-residue domain that is based on the viral fusion peptide of HIV. We also examined peptides in which the cationic charge was evenly distributed throughout the peptide. Strikingly, subtle sequence variations in the hydrophobic domain that do not alter net hydrophobicity result in wide variation in RNA uptake. Additionally, cyclic cystine variants are much less active as RNA carriers than their open-chain cysteine analogs. With regard to electrostatic effects, we find that lysine is less effective than arginine in facilitating uptake, and that even distribution of cationic residues throughout the peptide sequence results in especially effective RNA carrier function. Overall, minor changes in peptide hydrophobicity, flexibility and charge distribution can significantly alter carrier function. We hypothesize this is due to altered properties of the peptide-RNA assembly rather than peptide secondary structure.  相似文献   

15.
Small polybasic peptides derived from the transduction domains of certain proteins, such as the third alpha-helix of the Antennapedia (Antp) homeodomain, can cross the cell membrane through a receptor-independent mechanism. These cell-permeable molecules have been used as 'Trojan horses' to introduce biologically active cargo molecules such as DNA, peptides or proteins into cells. Using these cell-permeable peptides, we have developed an efficient and simple method to increase virally mediated gene delivery and protein expression in vitro and in vivo. Here, we show that cell-permeable peptides increase viral cell entry, improve gene expression at reduced titers of virus and improve efficacy of therapeutically relevant genes in vivo.  相似文献   

16.
Direct antimicrobial activities of PR-bombesin   总被引:1,自引:0,他引:1  
Li J  Xu X  Yu H  Yang H  Huang Z  Lai R 《Life sciences》2006,78(17):1953-1956
PR-bombesin is a bombesin-like peptide derived from the skin of the Chinese red belly toad, Bombina maxima. The 8-residue segment of N-terminal of RP-bombesin, comprising four prolines and three basic residues, is extensively different from other bombesin-like peptides. Since sequence of Pro-Arg-Pro generally plays an important role in the antimicrobial activity of proline-rich antimicrobial peptides, the componential feature of PR-bombesin indicates that it may have antimicrobial activity. In this paper, we presented the first evidence that bombesin-like peptides possess direct antimicrobial activities as some neuropeptides. It was determined by CD spectroscopy that PR-bombesin adopted a combination of random coil and beta-sheet structure, suggesting RP-bombesin is a new member of antimicrobial peptides having beta structure but without disulfide bonds. Current results also supported that PR-bombesin plays a direct defensive role besides its neuro-endocrological functions.  相似文献   

17.
Cell penetrating peptides (CPPs) are short amphipathic and cationic peptides that are rapidly internalized across cell membranes. They can be used to deliver molecular cargo, such as imaging agents (fluorescent dyes and quantum dots), drugs, liposomes, peptide/protein, oligonucleotide/DNA/RNA, nanoparticles and bacteriophage into cells. The utilized CPP, attached cargo, concentration and cell type, all significantly affect the mechanism of internalization. The mechanism of cellular uptake and subsequent processing still remains controversial. It is now clear that CPP can mediate intracellular delivery via both endocytic and non-endocytic pathways. In addition, the orientation of the peptide and cargo and the type of linkage are likely important. In gene therapy, the designed cationic peptides must be able to 1) tightly condense DNA into small, compact particles; 2) target the condensate to specific cell surface receptors; 3) induce endosomal escape; and 4) target the DNA cargo to the nucleus for gene expression. The other studies have demonstrated that these small peptides can be conjugated to tumor homing peptides in order to achieve tumor-targeted delivery in vivo. On the other hand, one of the major aims in molecular cancer research is the development of new therapeutic strategies and compounds that target directly the genetic and biochemical agents of malignant transformation. For example, cell penetrating peptide aptamers might disrupt protein-protein interactions crucial for cancer cell growth or survival. In this review, we discuss potential functions of CPPs especially for drug and gene delivery in cancer and indicate their powerful promise for clinical efficacy.  相似文献   

18.
Extensive effort is currently being expended on the innovative design and engineering of new molecular carrier systems for the organelle-targeted delivery of biological cargoes (e.g., peptide aptamers or biological proteins) as tools in cell biology and for developing novel therapeutic approaches. Although cell-permeable Tat peptides are useful carriers for delivering biological molecules into the cell, much internalized Tat-fused cargo is trapped within macropinosomes and thus not delivered into organelles. Here, we devised a novel intracellular targeting technique to deliver Tat-fused cargo into the nucleus using an endosome-disruptive peptide (hemagglutinin-2 subunit) and a nuclear localization signal peptide. We show for the first time that Tat-conjugated peptide aptamers can be selectively delivered to the nucleus by using combined hemagglutinin-2 subunit and nuclear localization signal peptides. This nuclear targeting technique resulted in marked enhancement of the cytostatic activity of a Tat-fused p53-derived peptide aptamer against human MDM2 (mouse double minute 2) that inhibits p53-MDM2 binding. Thus, our technique provides a unique methodology for the development of novel therapeutic approaches based on intracellular targeting.  相似文献   

19.
20.
Improvement of the methods for oligonucleotide delivery into cells is necessary for the development of antisense therapy. In the present work, a new strategy for oligonucleotide delivery into cells was tested using cationic peptides as a vector. At first, to understand what structure of the peptide is required for binding with an oligonucleotide, several kinds of alpha-helical and non-alpha-helical peptides containing cationic amino acids were employed. As a result, the amphiphilic alpha-helix peptides were best for binding with the oligonucleotide, and the long chain length and large hydrophobic region in the amphiphilic structure of the peptide were necessary for the binding and forming of aggregates with the oligonucleotide. In the case of non-alpha-helical peptides, no significant binding ability was observed even if their chain lengths and number of cationic amino acid residues were equal to those of the alpha-helical peptides. The remarkable ability of oligonucleotide delivery into COS-7 cells was observed in the alpha-helical peptides with a long chain length and large hydrophobic region in the amphiphilic structure, but was not observed in the non-alpha-helical peptides. It is considered that such alpha-helical peptides could form optimum aggregates with the ODN for uptake into cells. Based on these results, the alpha-helical peptide with a long chain length and large hydrophobic region is applicable as a vector for the delivery of oligonucleotides into cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号