首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In Bolivia, four different Creole cattle breeds can be found, as well as other European and Zebu breeds adapted to local environments. The relationship between the occurrence of the 1/29 translocation and subfertility is well known, and analysis of Y chromosome morphology is useful to determine a possible introgression with Bos indicus. The incidence of the 1/29 translocation was analyzed in four Bolivian Creole cattle breeds and the Brahman Yacume?o population, as well as on four farms with phenotypical Creole-type cattle. In 259 (164 dams and 95 sires) Bolivian Creole cattle, 10.42% of the individuals demonstrated the 1/29 translocation, with a variation from 0 to 28.20% between the breeds. In contrast, 43 (19 dams and 24 sires) Yacume?o Brahman and the Creole-type cattle did not show the centric fusion. The highly significant differences between Creole cattle breeds in relation to the incidence of 1/29 translocation could be a consequence of factors such as founder group, genetic drift, and selection. The low frequency observed in the Saavedre?io Creole dairy cattle might be explained by its breeding under a more intensive system, and selection according to milk yield and fertility traits. Finally, no relation between acrocentric Y chromosomes and 1/29 translocation was observed.  相似文献   

2.
Initially, domesticated African cattle were of taurine type. Today, we find both African Bos taurus and Bos indicus cattle, as well as their crossbreeds, on the continent of Africa and they all share the same set of African taurine mitochondrial DNA haplogroups. In this study, we report genetic variation as substitutions and insertions/deletions (indels) on both the X and Y chromosomes, and use the variation to assess hybridization between taurine and indicine cattle. Six African cattle breeds (four Sanga breeds, including Raya Azebu, Danakil, Caprivi, Nguni; and two Zebu breeds, including Kilimanjaro Zebu and South Kavirondo Zebu) were screened for six new X-chromosomal markers, specifically three single nucleotide polymorphisms and three indels in the DDX3X (previously DBX ) and ZFX genes, and five previously identified Y-chromosomal markers in the DDX3Y (previously DBY ) and ZFY genes. In total, 90 (57 bulls and 33 cows) samples from the African breeds were analysed. We identify five diagnostic haplotypes of indicine and taurine origins on both the X and Y chromosomes. For each breed, the level of indicine introgression varies; in addition to pure taurine, indicine and hybrid X-chromosome individuals, recombinant X-chromosome variants were also detected. These markers are useful molecular tools for assessing the level of indicine admixture in African cattle breeds.  相似文献   

3.
Two Y chromosome specific microsatellites UMN2404 and UMN0103 were genotyped and assessed for polymorphisms in a total of 423 unrelated males from 25 indigenous Chinese cattle breeds. Consistently, both microsatellites displayed specific indicine and taurine alleles in each bull examined. The indicine and taurine alleles were detected in 248 males (58.6%), and 175 males (41.4%), respectively, although these frequencies varied amongst different breeds examined. The indicine alleles dominated in the southern group (92.4%), while the taurine alleles dominated in the northern group (95.5%). Hainan Island was possibly the site for the origin of Chinese zebu, and Tibetan cattle were probably independently domesticated from another strain of Bos primigenius. The geographical distribution of these frequencies reveals a pattern of male indicine introgression and a hybrid zone of indicine and taurine cattle in China. The declining south-to-north and east-to-west gradient of male indicine introgression in China could be explained by historical data, geographical segregation and temperature and weather conditions.  相似文献   

4.
DNA samples from 307 males of 13 Portuguese native cattle breeds, 57 males of the 3 major exotic breeds in Portugal (Charolais, Friesian, and Limousin), and 5 Brahman (Bos indicus) were tested for 5 single nucleotide polymorphisms, 1 "indel," and 7 microsatellites specific to the Y chromosome. The 13 Y-haplotypes defined included 3 previously described patrilines (Y1, Y2, and Y3) and 10 new haplotypes within Bos taurus. Native cattle contained most of the diversity with 7 haplotypes (H2Y1, H3Y1, H5Y1, H7Y2, H8Y2, H10Y2, and H12Y2) found only in these breeds. H6Y2 and H11Y2 occurred in high frequency across breeds including the exotics. Introgression of Friesian cattle into Ramo Grande was inferred through their sharing of haplotype H4Y1. Among the native breeds, Mertolenga had the highest haplotype diversity (0.68 +/- 0.07), Brava de Lide was the least differentiated. The analyses of molecular variance showed significant (P < 0.0001) differences between breeds with more than 64% of the total genetic variation found among breeds within groups and 33-35% within breeds. The detection of INRA189-104 allele in 8 native breeds suggested influence of African cattle in breeds of the Iberian Peninsula. The presence in Portuguese breeds of Y1 patrilines, also found in aurochs, could represent more ancient local haplotypes.  相似文献   

5.
The genetic diversity of the casein locus in cattle was studied on the basis of haplotype analysis. Consideration of recently described genetic variants of the casein genes which to date have not been the subject of diversity studies, allowed the identification of new haplotypes. Genotyping of 30 cattle breeds from four continents revealed a geographically associated distribution of haplotypes, mainly defined by frequencies of alleles at CSN1S1 and CSN3. The genetic diversity within taurine breeds in Europe was found to decrease significantly from the south to the north and from the east to the west. Such geographic patterns of cattle genetic variation at the casein locus may be a result of the domestication process of modern cattle as well as geographically differentiated natural or artificial selection. The comparison of African Bos taurus and Bos indicus breeds allowed the identification of several Bos indicus specific haplotypes (CSN1S1*C-CSN2*A2-CSN3*AI/CSN3*H) that are not found in pure taurine breeds. The occurrence of such haplotypes in southern European breeds also suggests that an introgression of indicine genes into taurine breeds could have contributed to the distribution of the genetic variation observed.  相似文献   

6.
We report for the first time, and for the whole of sub-Saharan Africa, the geographical distribution and the frequency of an indicine and a taurine Y specific allele amongst African cattle breeds. A total of 984 males from 69 indigenous African populations from 22 countries were analysed at the microsatellite locus INRA 124. The taurine allele is probably the oldest one on the continent. However, the taurine and the indicine alleles were present in 291 males (30%), and 693 males (70%), respectively. More particularly, 96% of zebu males (n = 470), 50% of taurine males (n = 263), 29% of sanga males (crossbreed Bos taurus x Bos indicus, n = 263) and 95% of zebu x sanga crossbred males (n = 56) had the indicine allele. The Borgou, a breed classified as zebu x taurine cross showed only the zebu allele (n = 12). The indicine allele dominates today in the Abyssinian region, a large part of the Lake Victoria region and the sahelian belt of West Africa. All the sanga males (n = 64) but only one from the Abyssinian region had the indicine allele. The taurine allele is the commonest only among the sanga breeds of the southern African region and the trypanotolerant taurine breeds of West Africa. In West Africa and in the southern Africa regions, zones of introgression were detected with breeds showing both Y chromosome alleles. Our data also reveal a pattern of male zebu introgression in Mozambique and Zimbabwe, probably originating from the Mozambique coast. The sanga cattle from the Lake Victoria region and the Kuri cattle of Lake Chad, cattle populations surrounded by zebu breeds were, surprisingly, completely devoid of the indicine allele. Human migration, phenotypic preferences by the pastoralists, adaptation to specific habitats and to specific diseases are the main factors explaining the present-day distribution of the alleles in sub-Saharan Africa.  相似文献   

7.
The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 ± 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African‐derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y‐haplotype diversity in Creoles was high (H = 0.779 ± 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y‐haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male‐mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189‐90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages.  相似文献   

8.
Paternal origins of Chinese cattle   总被引:2,自引:0,他引:2  
To determine the genetic diversity and paternal origin of Chinese cattle, 302 males from 16 Chinese native cattle breeds as well as 30 Holstein males and four Burma males as controls were analysed using four Y‐SNPs and two Y‐STRs. In Chinese bulls, the taurine Y1 and Y2 haplogroups and indicine Y3 haplogroup were detected in seven, 172 and 123 individuals respectively, and these frequencies varied among the Chinese cattle breeds examined. Y2 dominates in northern China (91.4%), and Y3 dominates in southern China (90.8%). Central China is an admixture zone, although Y2 predominates overall (72.0%). The geographical distributions of the Y2 and Y3 haplogroup frequencies revealed a pattern of male indicine introgression from south to north China. The three Y haplogroups were further classified into one Y1 haplotype, five Y2 haplotypes and one Y3 haplotype in Chinese native bulls. Due to the interplay between taurine and indicine types, Chinese cattle represent an extensive reservoir of genetic diversity. The Y haplotype distribution of Chinese cattle exhibited a clear geographical structure, which is consistent with mtDNA, historical and geographical information.  相似文献   

9.
The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT), all clearly distinct from the Przewalski horse (E. przewalskii). The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3) are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion “Eclipse” or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.  相似文献   

10.
Five cattle Y‐specific microsatellites, totalling six loci, were selected from a set of 44 markers and genotyped on 608 Bos taurus males belonging to 45 cattle populations from Europe and Africa. A total of 38 haplotypes were identified. Haplogroups (Y1 and Y2) previously defined using single nucleotide polymorphisms did not share haplotypes. Nine of the 27 Y2‐haplotypes were only present in African cattle. Network and correspondence analyses showed that this African‐specific subfamily clustered separately from the main Y2‐subfamily and the Y1 haplotypes. Within‐breed genetic variability was generally low, with most breeds (78%) showing haplotypes belonging to a single haplogroup. amova analysis showed that partitioning of genetic variation among breeds can be mainly explained by their geographical and haplogroup assignment. Between‐breed genetic variability summarized via Principal Component Analysis allowed the identification of three principal components explaining 94.2% of the available information. Projection of principal components on geographical maps illustrated that cattle populations located in mainland Europe, the three European Peninsulas and Mediterranean Africa presented similar genetic variation, whereas those breeds from Atlantic Europe and British Islands (mainly carrying Y1 haplotypes) and those from Sub‐Saharan Africa (belonging to Y2‐haplogroup) showed genetic variation of a different origin. Our study confirmed the existence of two large Y‐chromosome lineages (Y1 and Y2) in taurine cattle. However, Y‐specific microsatellites increased analytical resolution and allowed at least two different Y2‐haplotypic subfamilies to be distinguished, one of them restricted to the African continent.  相似文献   

11.
Historical hybridization between Bison bison (bison) and Bos taurus (cattle) has been well documented and resulted in cattle mitochondrial DNA (mtDNA) introgression, previously identified in six different bison populations. In order to examine Y chromosome introgression, a microsatellite marker (BYM-1) with non-overlapping allele size distributions in bison and cattle was isolated from a bacterial artificial chromosome (BAC) clone, and was physically assigned to the Y chromosome by fluorescence in situ hybridization. BYM-1 genotypes for a sample of 143 male bison from 10 populations, including all six populations where cattle mtDNA haplotypes were previously identified, indicated that cattle Y chromosome introgression had not occurred in these bison populations. The differential permeability of uniparentally inherited markers to introgression is consistent with observations of sterility among first generation hybrid males and a sexual asymmetry in the direction of hybridization favouring matings between male bison and female cattle.  相似文献   

12.
The Mongolian cattle are one of the most widespread breeds with strictly Bos taurus morphological features in northern China. In our current study, we presented a diversity of mitochondrial DNA (mtDNA) D-loop region and Y chromosome SNP markers in 25 male and 8 female samples of Mongolian cattle from the Xinjiang Uygur autonomous region in Western China, and detected 21 B. taurus and four Bos indicus (zebu) mtDNA haplotypes. Among four B. indicus mtDNA haplotypes, two haplotypes belonged to I1 haplogroup and the remaining two haplotypes belonged to I2 haplogroup. In contrast, all 25 male Mongolian cattle samples revealed B. taurus Y chromosome haplotype and no B. indicus haplotypes were found. Historical and archeological records indicate that B. taurus was introduced to Xinjiang during the second millennium BC and B. indicus appeared in this region by the second century AD. The two types of cattle coexisted for many centuries in Xinjiang, as depicted in clay and wooden figurines unearthed in the Astana cemetery in Turfan (3rd–8th century AD). Multiple lines of evidence suggest that the earliest B. indicus introgression in the Mongolian cattle may have occurred during the 2nd–7th centuries AD through the Silk Road around the Xinjiang region. This conclusion differs from the previous hypothesis that zebu introgression to Mongolian cattle happened during the Mongol Empire era in the 13th century.  相似文献   

13.
In order to clarify the origin and genetic diversity of cattle in North Eastern Asia, this study examined mitochondrial displacement loop sequence variation and frequencies of Bos taurus and Bos indicus Y chromosome haplotypes in Japanese, Mongolian, and Korean native cattle. In mitochondrial analyses, 20% of Mongolian cattle carried B. indicus mitochondrial haplotypes, but Japanese and Korean cattle carried only B. taurus haplotypes. In contrast, all samples revealed B. taurus Y chromosome haplotypes. This may be due to the import of zebu and other cattle during the Mongol Empire era with subsequent crossing with native taurine cattle. B. taurus mtDNA sequences fall into several geographically distributed haplogroups and one of these, termed here T4, is described in each of the test samples, but has not been observed in Near Eastern, European or African cattle. This may have been locally domesticated from an East Eurasian strain of Bos primigenius.  相似文献   

14.
The aim of this study was to determine the allele and genotype frequencies of the Insulin like growth factor 1 gene (IGF-1) and Insulin like growth factor 1 receptor gene (IGF-1R) polymorphisms in East Anatolian (EAR) and South Anatolian Red cattle (SAR). Polymorphisms in both genes are claimed to affect economic parameters like body weight and subcutaneous back fat. For the study, blood samples were collected from 50 SAR and 50 EAR cattle. In both breeds, high frequencies of allele B of IGF-1, which was supposed to have positive effect on carcass traits and allele A of IGF-1R, related to milk traits, were observed. Therefore, no relationship of the polymorphisms studied with economic traits was observed, as both breeds have respectively low carcass and milk parameters. However, distribution of allele frequencies of IGF-1 and IGF-1R in SAR and EAR cattle was similar with Zebu cattle that support Bos indicus introgression to Anatolian breeds.  相似文献   

15.
Y chromosome haplotype analysis in purebred dogs   总被引:3,自引:0,他引:3  
In order to evaluate the genetic structure of purebred dogs, six Y chromosome microsatellite markers were used to analyze DNA samples from 824 unrelated dogs from 50 recognized breeds. A relatively small number of haplotypes (67) were identified in this large sample set due to extensive sharing of haplotypes between breeds and low haplotype diversity within breeds. Fifteen breeds were characterized by a single Y chromosome haplotype. Breed-specific haplotypes were identified for 26 of the 50 breeds, and haplotype sharing between some breeds indicated a common history. A molecular variance analysis (AMOVA) demonstrated significant genetic variation across breeds (63.7%) and with geographic origin of the breeds (11.5%). A network analysis of the haplotypes revealed further relationships between the breeds as well as deep rooting of many of the breed-specific haplotypes, particularly among breeds of African origin.Michael J. Bannasch and Jeanne R. Ryun contributed equally to this work.  相似文献   

16.
Throughout its distribution across Eurasia, domestic pig (Sus scrofa) populations have acquired differences through natural and artificial selection, and have often interbred. We resequenced 80 Eurasian pigs from nine different Asian and European breeds; we identify 42,288 reliable SNPs on the Y chromosome in a panel of 103 males, among which 96.1% are newly detected. Based on these new data, we elucidate the evolutionary history of pigs through the lens of the Y chromosome. We identify two highly divergent haplogroups: one present only in Asia and one fixed in Europe but present in some Asian populations. Analyzing the European haplotypes present in Asian populations, we find evidence of three independent waves of introgression from Europe to Asia in last 200 years, agreeing well with the literature and historical records. The diverse European lineages were brought in China by humans and left significant imprints not only on the autosomes but also on the Y chromosome of geographically and genetically distinct Chinese pig breeds. We also find a general excess of European ancestry on Y chromosomes relative to autosomes in Chinese pigs, an observation that cannot be explained solely by sex-biased migration and genetic drift. The European Y haplotype is associated with leaner meat production, and we hypothesize that the European Y chromosome increased in frequency in Chinese populations due to artificial selection. We find evidence of Y chromosomal gene flow between Sumatran wild boar and Chinese pigs. Our results demonstrate how human-mediated admixture and selection shaped the distribution of modern swine Y chromosomes.  相似文献   

17.
Y chromosome diversity and paternal origin of Chinese cattle   总被引:2,自引:0,他引:2  
To determine the Y chromosome genetic diversity and paternal origin of Chinese cattle, 369 bulls from 17 Chinese native cattle breeds and 30 bulls from Holstein and four bulls from Burma were analyzed using a recently discovered USP9Y marker that could distinguish between taurine and indicine cattle more efficiently. In total, the taurine Y1, Y2 haplogroup and indicine Y3 haplogroup were detected in 7 (1.9 %), 193 (52.3 %) and 169 (45.8 %) individuals of 17 Chinese native breeds, respectively, although these frequencies varied amongst the Chinese native cattle breeds examined. Y2 dominates in northern China (91.4 %), while Y3 dominates in southern China (81.2 %). Central China is an admixture zone with Y2 predominating overall (72.0 %). Our results demonstrate that Chinese cattle have two paternal origins, one from B. taurus (Y2) and the other from B. indicus (Y3). The Y1 haplogroup may originate from the imported beef cattle breeds in western countries. The geographical distributions of the Y2 and Y3 haplogroup frequencies reveal a pattern of male indicine introgression from south to north China, and male taurine introgression from north to south China.  相似文献   

18.
Humped African cattle, which are differentiated into zebu and sanga types, have traditionally been classified as Bos indicus . This paper discusses existing evidence and presents new evidence supporting the classification of southern African sangas as Bos taurus and East African zebus as ' taurindicus '. Classification is based on karyotype, frequencies of DNA markers and protein polymorphisms. The Boran, an East African zebu, has an acrocentric Y chromosome typical of Bos indicus . The southern African sanga breeds have a submetacentric Y chromosome typical of Bos taurus . Frequencies of four DNA markers support the hypothesis that the Tuli, a southern African sanga, had taurine ancestors and the Boran had both taurine and indicine ancestors. Frequencies for several protein polymorphisms strongly suggest that southern African sangas have more in common with taurine than with indicine breeds, while East African zebus are an admixture of African taurine and Asian indicine breeds.  相似文献   

19.
Information is presented on the frequency of the Msp I (-) allele in the third intron of the bovine growth hormone gene in a large number of cattle breeds. Consideration of the breed frequencies in relation to their geographic origin shows a low frequency for breeds originating in Northern Europe, moderate frequencies for breeds originating in Eastern Europe or the countries surrounding the Mediterranean basin, and very high frequencies for breeds originating in the Indian subcontinent. Consideration of breed frequencies in relation to breed type, shows low to moderate frequencies for the humpless breeds, high frequencies for the humped breeds. Various explanations for this distribution are discussed, among them the possibility that the Msp I (-) allele originated in the Bos indicus breeds of the Indian subcontinent, from which it diffused through the humpless Bos taurus breeds of Eastern Europe, the Mediterranean basin, eventually reaching Western, Northern Europe, Western Africa in low frequencies.  相似文献   

20.
测定了13个黄牛品种125个个体的线粒体D-loop区段的全序列,包括12个中国地方黄牛品种的123个个体和德国黄牛2个个体,并进行了分析。结果显示,共检测到93个变异位点,57个单倍型,平均核苷酸差异(average number ofnucleotide differences,k)为22.708,核苷酸多样度(nucleotide diversity,π)为0.0251±0.00479,单倍型多样度(haplotypediversity,Hd)为0.888±0.026,表明我国黄牛品种遗传多样性非常丰富。构建的Neighbor-Joining进化树显示这13个品种主要分成两大类型:普通牛和瘤牛;新发现的特殊类型Ⅲ只有一个西藏阿沛甲咂牛的个体,它与牦牛D-loop序列最相近,证明西藏地区的黄牛与牦牛之间存在基因渗入现象。普通牛和瘤牛在日喀则驼峰牛中占的比例分别是64.3%和35.7%,在阿沛甲咂牛中占的比例分别是50.0%和50.0%,证明了西藏的黄牛也有瘤牛类型。云南牛品种的单倍型非常丰富证明了云南在中国黄牛起源上的重要地位;在27个中国黄牛品种中(本研究11个品种以及GenBank上的16个品种)找到了中国瘤牛的核心单倍型i1,并且对它进行了讨论。同时证明了西藏瘤牛独立于中国瘤牛核心类群的特殊性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号