首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Serial killers: ordering caspase activation events in apoptosis   总被引:13,自引:0,他引:13  
Caspases participate in the molecular control of apoptosis in several guises; as triggers of the death machinery, as regulatory elements within it, and ultimately as a subset of the effector elements of the machinery itself. The mammalian caspase family is steadily growing and currently contains 14 members. At present, it is unclear whether all of these proteases participate in apoptosis. Thus, current research in this area is focused upon establishing the repertoire and order of caspase activation events that occur during the signalling and demolition phases of cell death. Evidence is accumulating to suggest that proximal caspase activation events are typically initiated by molecules that promote caspase aggregation. As expected, distal caspase activation events are likely to be controlled by caspases activated earlier in the cascade. However, recent data has cast doubt upon the functional demarcation of caspases into signalling (upstream) and effector (downstream) roles based upon their prodomain lengths. In particular, caspase-3 may perform an important role in propagating the caspase cascade, in addition to its role as an effector caspase within the death programme. Here, we discuss the apoptosis-associated caspase cascade and the hierarchy of caspase activation events within it.  相似文献   

2.
In the intrinsic death pathway, cytochrome C (CC) released from mitochondria to the cytosol triggers Apaf-1 apoptosome formation and subsequent caspase activation. This process can be recapitulated using recombinant Apaf-1 and CC in the presence of nucleotides ATP or dATP [(d)ATP] or using fresh cytosol and CC without the need of exogenous nucleotides. Surprisingly, we found that stored cytosols failed to support CC-initiated caspase activation. Storage of cytosols at different temperatures led to the loss of all (deoxy)nucleotides including (d)ATP. Addition of (d)ATP to such stored cytosols partially restored CC-initiated caspase activation. Nevertheless, CC could not induce complete caspase-9/3 activation in stored cytosols, even with the addition of (d)ATP, despite robust Apaf-1 oligomerization. The Apaf-1 apoptosome, which functions as a proteolytic-based molecular timer appeared to be defective as auto-processing of recruited procaspase-9 was inhibited. Far Western analysis revealed that procaspase-9 directly interacted with Apaf-1 and this interaction was reduced in the presence of physiological levels of ATP. Co-incubation of recombinant Apaf-1 and procaspase-9 prior to CC and ATP addition inhibited CC-induced caspase activity. These findings suggest that in the absence of nucleotide such as ATP, direct association of procaspase-9 with Apaf-1 leads to defective molecular timer, and thus, inhibits apoptosome-mediated caspase activation. Altogether, our results provide novel insight on nucleotide regulation of apoptosome.  相似文献   

3.
Early events of pepsinogen activation   总被引:1,自引:0,他引:1  
H E Auer  D M Glick 《Biochemistry》1984,23(12):2735-2739
Stopped-flow measurements both with native pig pepsinogen and with a fluorescent derivative, labeled near the carboxyl terminus with a toluidinylnaphthalenesulfonyl (TNS) group at Lys364, show rapid fluorescence changes following acidification. The rate constants observed by intrinsic fluorescence of the native zymogen are distinctly greater than those exhibited by the TNS derivative in the pH range examined. The rate constants for two early events in the activation of the derivative increase as the pH decreases from pH 3 to pH 2. The fluorescent intensities of these two processes also vary with pH. Because the ratios of these amplitudes fit the Henderson-Hasselbalch equation, it is concluded that the two processes represent concurrent events, rather than sequential ones. It is proposed that a protonation separates two forms of the zymogen. The conjugate acid undergoes the slower event, whereas the conjugate base, which predominates at pH 3, undergoes the faster event. It is proposed that both these pathways result in activation.  相似文献   

4.
Airway epithelial cells (AEC) contain both pro- and anti-apoptotic factors but little is known about mechanisms regulating apoptosis of these cells. In this study we have examined the localization of pro-caspase-3 and Zn(2+), a cellular regulator of pro-caspase-3, in primary sheep and human AEC. Zn(2+) was concentrated in both cytoplasmic vesicles and ciliary basal bodies, in the vicinity of both pro-caspase-3 and the antioxidant Cu/Zn superoxide dismutase (Cu/Zn SOD). Depletion of intracellular Zn(2+) in sheep AEC, using the membrane permeant Zn(2+) chelator TPEN, increased lipid peroxidation in the apical cell membranes (as assessed by immunofluorescence with anti-hydroxynonenal) as well as increasing activated pro-caspase-3 and apoptosis. There were smaller increases in caspase-2 and -6 but not other caspases. Activation of caspase-3 in TPEN-treated AEC was inhibited strongly by N-acetylcysteine and partially by vitamin C and vitamin E. These findings suggest that cytoplasmic pro-caspase-3 is positioned near the lumenal surface of AEC where it is under the influence of Zn(2+) and other anti-oxidants.  相似文献   

5.
P-glycoprotein (P-gp) can induce multidrug resistance (MDR) through the ATP-dependent efflux of chemotherapeutic agents. We have previously shown that P-gp can inhibit nondrug apoptotic stimuli by suppressing the activation of caspases. To determine if this additional activity is functionally linked to ATP hydrolysis, we expressed wild-type and ATPase-mutant P-gp and showed that cells expressing mutant P-gp could not efflux chemotherapeutic drugs but remained relatively resistant to apoptosis. CEM lymphoma cells expressing mutant P-gp treated with vincristine showed a decrease in the fraction of cells with apoptotic morphology, cytochrome c release from the mitochondria and suppression of caspase activation, yet still accumulated in mitosis and showed a loss of clonogenic potential. The loss of clonogenicity in vincristine-treated cells expressing mutant P-gp was associated with accumulation of cells in mitosis and the presence of multinucleated cells consistent with mitotic catastrophe. The antiapoptotic effect of mutant P-gp was not affected by antibodies that inhibit the efflux function of the protein. These data are consistent with a dual activity model for P-gp-induced MDR involving both ATPase-dependent drug efflux and ATPase-independent inhibition of apoptosis. The structure-function analyses described herein provide novel insight into the mechanisms of action of P-gp in mediating MDR.  相似文献   

6.
In cells undergoing apoptosis, mitochondrial outer-membrane permeabilization (MOMP) is followed by caspase activation promoted by released cytochrome c. Although caspases mediate the apoptotic phenotype, caspase inhibition is generally not sufficient for survival following MOMP; instead cells undergo a "caspase-independent cell death" (CICD). Thus, MOMP may represent a point of commitment to cell death. Here, we identify glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a critical regulator of CICD. GAPDH-expressing cells preserved their clonogenic potential following MOMP, provided that caspase activation was blocked. GAPDH-mediated protection of cells from CICD involved an elevation in glycolysis and a nuclear function that correlated with and was replaced by an increase in Atg12 expression. Consistent with this, protection from CICD reflected an increase in and a dependence upon autophagy, associated with a transient decrease in mitochondrial mass. Therefore, GAPDH mediates an elevation in glycolysis and enhanced autophagy that cooperate to protect cells from CICD.  相似文献   

7.
Mechanisms of caspase activation   总被引:37,自引:0,他引:37  
The core effectors of apoptosis encompass proteolytic enzymes of the caspase family, which reside as latent precursors in most nucleated metazoan cells. A majority of studies on apoptosis are based on the assumption that caspase precursors are activated by cleavage, a common mechanism for most protease zymogen activations. Although this appears to be true for the executioner caspases, recent research points to a distinct activation mechanism for the initiator caspases that trigger the apoptotic pathways. This mechanism is proximity-induced dimerization without cleavage, and its elucidation has led to the revision of concepts of feedback regulation of apoptosis.  相似文献   

8.
9.
Amstad PA  Yu G  Johnson GL  Lee BW  Dhawan S  Phelps DJ 《BioTechniques》2001,31(3):608-10, 612, 614, passim
Apoptosis is dependent on the activation of a group of proteolytic enzymes called caspases. Caspase activation can be detected by immunoblotting using caspase-specific antibodies or by caspase activity measurement employing pro-fluorescent substrates that become fluorescent upon cleavage by the caspase. Most of these methods require the preparation of cell extracts and, therefore, are not suitable for the detection of active caspases within the living cell. Using FAM-VAD-FMK, we have developed a simple and sensitive assay for the detection of caspase activity in living cells. FAM-VAD-FMK is a carboxyfluorescein (FAM) derivative of benzyloxycarbonyl-valine-alanine-aspartic acid-fluoromethyl ketone (zVAD-FMK), which is a potent broad-spectrum inhibitor of caspases. FAM-VAD-FMK enters the cell and irreversibly binds to activated caspases. Cells containing bound FAM-VAD-FMK can be analyzed by flow cytometry, fluorescence microscopy, or a fluorescence plate reader. Using FAM-VAD-FMK, we have measured caspase activation in live non-adherent and adherent cells. We show that FAM-VAD-FMK labeled Jurkat and HeLa cells that had undergone apoptosis following treatment with camptothecin or staurosporine. Non-stimulated negative control cells were not stained. Pretreatment with the general caspase inhibitor zVAD-FMK blocked caspase-specific staining in induced Jurkat and HeLa cells. Pretreatment of staurosporine-induced Jurkat cells with FAM-VAD-FMK inhibited affinity labeling of caspase-3, -6, and -7, blocked caspase-specific cell staining, and led to the inhibition of apoptosis. In contrast, the fluorescent control inhibitor FAM-FA-FMK had no effect. Measurement of caspase activation in 96-well plates showed a 3- to 5-fold increase in FAM-fluorescence in staurosporine-treated cells compared to control cells. In summary, we show that FAM-VAD-FMK is a versatile and specific tool for detecting activated caspases in living cells.  相似文献   

10.
The endoplasmic reticulum (ER) is the site of assembly of polypeptide chains destined for secretion or routing into various subcellular compartments. It also regulates cellular responses to stress and intracellular Ca(2+) levels. A variety of toxic insults can result in ER stress that ultimately leads to apoptosis. Apoptosis is initiated by the activation of members of the caspase family and serves as a central mechanism in the cell death process. The present study was carried out to determine the role of caspases in triggering ER stress-induced cell death. Treatment of cells with ER stress inducers such as brefeldin-A or thapsigargin induces the expression of caspase-12 protein and also leads to translocation of cytosolic caspase-7 to the ER surface. Caspase-12, like most other members of the caspase family, requires cleavage of the prodomain to activate its proapoptotic form. Caspase-7 associates with caspase-12 and cleaves the prodomain to generate active caspase-12, resulting in increased cell death. We propose that any cellular insult that causes prolonged ER stress may induce apoptosis through caspase-7-mediated caspase-12 activation. The data underscore the involvement of ER and caspases associated with it in the ER stress-induced apoptotic process.  相似文献   

11.
The Arabidopsis FLAGELLIN SENSITIVE2 (FLS2) protein is a leucine-rich repeat receptor-like kinase (LRR-RLK) that plays important roles in pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). The binding of bacterial flagellin, one of the PAMPs, to the extracellular domain of FLS2 leads to activation of signaling cascades resulting in activation or repression of a specific set of genes involved in plant defense. The mechanisms at the cell membrane that lead to the activation of this signalling pathway are, however, not fully understood. Recently, we have shown that after ligand-treatment the mobility of FLS2 in the cell membrane is reduced and that the activation of FLS2 does not involve its constitutive or ligand-dependent homodimerization. Our data together with recently published reports suggest that FLS2 activation involves its association with other proteins, including BRI1-associated kinase 1 (BAK1), another LRR-RLK, and localization to less mobile areas, probably lipid rafts, in a ligand-dependent manner to initiate PTI.Key words: PTI, BiFC, flg22, FLS2, FRAP, FRET, membrane protein, RLK  相似文献   

12.
Mitochondria trigger apoptosis by releasing caspase activators, including cytochrome c (cytC). Here we show, using a pH-sensitive green fluorescent protein (GFP), that mitochondria-dependent apoptotic stimuli (such as Bax, staurosporine and ultraviolet irradiation) induce rapid, Bcl-2-inhibitable mitochondrial alkalinization and cytosol acidification, followed by cytC release, caspase activation and mitochondrial swelling and depolarization. These events are not induced by mitochondria-independent apoptotic stimuli, such as Fas. Activation of cytosolic caspases by cytC in vitro is minimal at neutral pH, but maximal at acidic pH, indicating that mitochondria-induced acidification of the cytosol may be important for caspase activation; this finding is supported by results obtained from cells using protonophores. Cytosol acidification and cytC release are suppressed by oligomycin, a FoF1-ATPase/H +-pump inhibitor, but not by caspase inhibitors. Ectopic expression of Bax in wild-type, but not FoF1/H+-pump-deficient, yeast cells similarly results in mitochondrial matrix alkalinization, cytosol acidification and cell death. These findings indicate that mitochondria-mediated alteration of intracellular pH may be an early event that regulates caspase activation in the mitochondrial pathway for apoptosis.  相似文献   

13.
Environmental stress activates sigma B, the general stress response sigma factor of Bacillus subtilis, by a pathway that is negatively controlled by the RsbX protein. To determine whether stress activation of sigma B occurs by a direct effect of stress on RsbX, we constructed B. subtilis strains which synthesized various amounts of RsbX or lacked RsbX entirely and subjected these strains to ethanol stress. Based on the induction of a sigma B-dependent promoter, stress activation of sigma B can occur in the absence of RsbX. Higher levels of RsbX failed to detectably influence stress induction, but reduced levels of RsbX resulted in greater and longer-lived sigma B activation. The data suggest that RsbX is not a direct participant in the sigma B stress induction process but rather serves as a device to limit the magnitude of the stress response.  相似文献   

14.
15.
Osteopontin is an RGDS-containing protein that acts as a ligand for the alpha(v)beta(3) integrin, which is abundantly expressed in osteoclasts, cells responsible for bone resorption in osteopenic diseases such as osteoporosis and hyperparathyroidism. However, the role of osteopontin in the process of bone resorption has not yet been fully understood. Therefore, we investigated the direct function of osteopontin in bone resorption using an organ culture system. The amount of (45)Ca released from the osteopontin-deficient bones was not significantly different from the basal release from wild type bones. However, in contrast to the parathyroid hormone (PTH) enhancement of the (45)Ca release from wild type bones, PTH had no effect on (45)Ca release from organ cultures of osteopontin-deficient bones. Because PTH is located upstream of receptor activator of NF-kappaB ligand (RANKL), that directly promotes bone resorption, we also examined the effect of RANKL. Soluble RANKL with macrophage-colony stimulating factor enhanced (45)Ca release from the bones of wild type fetal mice but not from the bones of osteopontin-deficient mice. To obtain insight into the cellular mechanism underlying the phenomena observed in osteopontin-deficient bone, we investigated the number of tartrate-resistant acid phosphatase (TRAP)-positive cells in the bones subjected to PTH treatment in cultures. The number of TRAP-positive cells was increased significantly by PTH in wild type bone; however, no such PTH-induced increase in TRAP-positive cells was observed in osteopontin-deficient bones. These results indicate that the absence of osteopontin suppressed PTH-induced increase in bone resorption via preventing the increase in the number of osteoclasts in the local milieu of bone.  相似文献   

16.
17.
The initial activation of a caspase in a caspase cascade is a crucial event that determines whether a cell will ultimately undergo cell death. Although each cell contains a number of different caspases, only a small subset may be required for apoptosis in response to a specific stimulus. It now seems that each caspase cascade has two types of caspases involved, the upstream or class I caspases, and the downstream or class II caspases. Class I caspases are characterised by long amino-terminal prodomains that carry specific protein - protein interaction domains which mediate oligomerisation of caspases, often assisted by specific adaptor molecules. Oligomerisation appears to be sufficient for autocatalytic activation of class I caspases. Once the first caspase in the pathway has been activated, it processes downstream caspases initiating a cascade of amplifying events that lead to the apoptotic death of a cell. This article reviews our current understanding of mechanisms that mediate the activation of caspases.  相似文献   

18.
Most forms of apoptosis involve activation of caspases and it is likely that differences between cells in their ability to activate caspases contributes to the responsiveness of any given cell within a population to apoptotic stimuli. To study the molecular mechanisms that underlie such differences, it is necessary to measure caspase activity in individual cells. Here, we describe a method that allows the continuous monitoring of caspase activity in individual, living mammalian cells. This approach allows studies of the kinetics of caspase activation to be performed in individual cells within a population. We demonstrate that in a group of cells where some cells die and some cells survive in response to the same stimulus, the cells that die can be differentiated from those that survive based on the amount of caspase activity in each cell several hours before death occurs.  相似文献   

19.
During apoptosis, initiator caspases (8, 9 and 10) activate downstream executioner caspases (3, 6 and 7) by cleaving the IDC (interdomain connector) at two sites. Here, we demonstrate that both activation sites, site 1 and site 2, of caspase 7 are suboptimal for activation by initiator caspases 8 and 9 in cellulo, and in vitro using recombinant proteins and activation kinetics. Indeed, when both sites are replaced with the preferred motifs recognized by either caspase 8 or 9, we found an up to 36-fold improvement in activation. Moreover, cleavage at site 1 is preferred to site 2 because of its location within the IDC, since swapping sites does not lead to a more efficient activation. We also demonstrate the important role of Ile195 of site 1 involved in maintaining a network of contacts that preserves the proper conformation of the active enzyme. Finally, we show that the length of the IDC plays a crucial role in maintaining the necessity of proteolysis for activation. In fact, although we were unable to generate a caspase 7 that does not require proteolysis for activity, shortening the IDC of the initiator caspase 8 by four residues was sufficient to confer a requirement for proteolysis, a key feature of executioner caspases. Altogether, the results demonstrate the critical role of the primary structure of caspase 7's IDC for its activation and proteolytic activity.  相似文献   

20.
Three new lymphocyte activation antigens are described whose kinetics of appearance place them very early in the activation pathway. The 78,000 dalton early antigen (Ea) 1 is present at low levels on resting lymphocytes, and its expression is enhanced twofold to threefold within 3 hr of stimulation. Ea2, a nondisulfide-bonded 86,000 and 73,000 dalton heterodimer, is first detectable 3 hr after activation and peaks by 9 hr. Its presence on all but a few cell lines, plus the variable association with a lower m.w. (28,000) structure, suggest that it may serve as a receptor for a growth factor. Neither Ea1 nor Ea2 are restricted to lymphocytes. The 31,000 dalton Ea3 antigen is induced only by PHA but not by other means of activation, and may pre-exist within the cell. The Ea3 antibody blocks PHA-induced but not OKT3-induced mitogenesis, suggesting differences in the pathways of activation by these two stimuli. These reagents, and OKT3, were used to define the cyclosporine A (CSA)-sensitive stage of lymphocyte activation. CSA blocks at a point before the biosynthesis of Ea1 and after that of T3/T cell receptor loss from the cell surface, at a point close to Ea2 biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号