首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To investigate the role of mitochondrial farnesyl diphosphate synthase (FPS) in plant isoprenoid biosynthesis we characterized transgenic Arabidopsis thaliana plants overexpressing FPS1L isoform. This overexpressed protein was properly targeted to mitochondria yielding a mature and active form of the enzyme of 40 kDa. Leaves from transgenic plants grown under continuous light exhibited symptoms of chlorosis and cell death correlating to H2O2 accumulation, and leaves detached from the same plants displayed accelerated senescence. Overexpression of FPS in mitochondria also led to altered leaf cytokinin profile, with a reduction in the contents of physiologically active trans-zeatin- and isopentenyladenine-type cytokinins and their corresponding riboside monophosphates as well as enhanced levels of cis-zeatin 7-glucoside and storage cytokinin O-glucosides. Overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase did not prevent chlorosis in plants overexpressing FPS1L, but did rescue accelerated senescence of detached leaves and restored wild-type levels of cytokinins. We propose that the overexpression of FPS1L leads to an enhanced uptake and metabolism of mevalonic acid-derived isopentenyl diphosphate and/or dimethylallyl diphosphate by mitochondria, thereby altering cytokinin homeostasis and causing a mitochondrial dysfunction that renders plants more sensitive to the oxidative stress induced by continuous light.  相似文献   

2.
Cao R  Chen CK  Guo RT  Wang AH  Oldfield E 《Proteins》2008,73(2):431-439
We report the X-ray crystallographic structures of the bisphosphonate N-[methyl(4-phenylbutyl)]-3-aminopropyl-1-hydroxy-1,1-bisphosphonate (BPH-210), a potent analog of pamidronate (Aredia), bound to farnesyl diphosphate synthase (FPPS) from Trypanosoma brucei as well as to geranylgeranyl diphosphate synthase from Saccharomyces cerevisiae. BPH-210 binds to FPPS, together with 3 Mg(2+), with its long, hydrophobic phenylbutyl side-chain being located in the same binding pocket that is occupied by allylic diphosphates and other bisphosphonates. Binding is overwhelmingly entropy driven, as determined by isothermal titration calorimetry. The structure is of interest since it explains the lack of potency of longer chain analogs against FPPS, since these would be expected to have a steric clash with an aromatic ring at the distal end of the binding site. Unlike shorter chain FPPS inhibitors, such as pamidronate, BPH-210 is also found to be a potent inhibitor of human geranylgeranyl diphosphate synthase. In this case, the bisphosphonate binds only to the GGPP product inhibitory site, with only 1 (chain A) or 0 (chain B) Mg(2+), and DeltaS is much smaller and DeltaH is approximately 6 k cal more negative than in the case of FPPS binding. Overall, these results are of general interest since they show that some bisphosphonates can bind to more than one trans-prenyl synthase enzyme which, in some cases, can be expected to enhance their overall activity in vitro and in vivo.  相似文献   

3.
We and others have recently shown that the major molecular target of nitrogen-containing bisphosphonate drugs is farnesyl diphosphate synthase, an enzyme in the mevalonate pathway. In an in vitro screen, we discovered a bisphosphonate, NE21650, that potently inhibited farnesyl diphosphate synthase but, unlike other N-BPs investigated, was also a weak inhibitor of isopentenyl diphosphate isomerase. NE21650 was a more potent inhibitor of protein prenylation in osteoclasts and macrophages, and a more potent inhibitor of bone resorption in vitro, than alendronate, despite very similar IC(50) values for inhibition of farnesyl diphosphate synthase. Our observations show that minor changes to the structure of bisphosphonates allow inhibition of more than one enzyme in the mevalonate pathway and suggest that loss of protein prenylation due to inhibition of more than one enzyme in the mevalonate pathway may lead to an increase in antiresorptive potency compared to bisphosphonates that only inhibit farnesyl diphosphate synthase.  相似文献   

4.
Farnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis.  相似文献   

5.
A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.  相似文献   

6.
Ubiquinone (coenzyme Q) is the generic name of a class of lipid-soluble electron carriers formed of a redox active benzoquinone ring attached to a prenyl side chain. The length of the latter varies among species, and depends upon the product specificity of a trans-long-chain prenyl diphosphate synthase that elongates an allylic diphosphate precursor. In Arabidopsis, this enzyme is assumed to correspond to an endoplasmic reticulum-located solanesyl diphosphate synthase, although direct genetic evidence was lacking. In this study, the reconstruction of the functional network of Arabidopsis genes linked to ubiquinone biosynthesis singled out an unsuspected solanesyl diphosphate synthase candidate--product of gene At2g34630--that, extraordinarily, had been shown previously to be targeted to plastids and to contribute to the biosynthesis of gibberellins. Green fluorescent protein (GFP) fusion experiments in tobacco and Arabidopsis, and complementation of a yeast coq1 knockout lacking mitochondrial hexaprenyl diphosphate synthase demonstrated that At2g34630 is also targeted to mitochondria. At2g34630 is the main--if not sole--contributor to solanesyl diphosphate synthase activity required for the biosynthesis of ubiquinone, as demonstrated by the dramatic (75-80%) reduction of the ubiquinone pool size in corresponding RNAi lines. Overexpression of At2g34630 gave up to a 40% increase in ubiquinone content compared to wild-type plants. None of the silenced or overexpressing lines, in contrast, displayed altered levels of plastoquinone. Phylogenetic analyses revealed that At2g34630 is the only Arabidopsis trans-long-chain prenyl diphosphate synthase that clusters with the Coq1 orthologs involved in the biosynthesis of ubiquinone in other eukaryotes.  相似文献   

7.
A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar “White Winter Pearmain”. When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4 °C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples.  相似文献   

8.
李锐  陈晓仪  张阳  张甜甜  赵琦 《广西植物》2018,38(9):1111-1116
为了探究卷叶贝母(Fritillaria cirrhosa)法尼基焦磷酸合酶基因(FcFPPS)是否参与甾类生物碱合成、萜类合成等代谢过程,该研究基于转录组测序结果,通过PCR技术克隆卷叶贝母FPPS基因(FcFPPS)开放阅读框(Open Reading Frame,ORF)序列,运用生物信息学方法对该基因进行分析,预测其编码蛋白的结构与功能,并通过qRT-PCR检测FcFPPS基因在野生鳞茎和再生鳞茎(通过激素组合刺激获得的组织培养物)中的表达情况,以及利用煎煮法测定野生鳞茎和再生鳞茎的总生物碱含量。结果表明:获得了1 059bp的FcFPPS ORF片段,编码352个氨基酸,并与NCBI上公布的麝香百合、虎眼万年青、春兰等植物FPPS蛋白的相似性在85%以上;对FcFPPS蛋白的二级、三级结构预测发现FcFPPS蛋白主要由α螺旋构成;qRT-PCR与总生物碱含量测定结果显示FcFPPS基因的表达水平与总生物碱含量的变化趋势一致,都是再生鳞茎高于野生鳞茎。FcFPPS蛋白质特征区及同源性等生物信息学分析结合qRT-PCR的测定结果证明FcFPPS可能是一个有生物学功能的蛋白质,这为后续利用基因工程手段提高卷叶贝母中生物碱含量奠定了理论基础。  相似文献   

9.
Tie-Zhong Cui 《FEBS letters》2010,584(4):652-873
The length of the isoprenoid-side chain in ubiquinone, an essential component of the electron transport chain, is defined by poly-prenyl diphosphate synthase, which comprises either homomers (e.g., IspB in Escherichia coli) or heteromers (e.g., decaprenyl diphosphate synthase (Dps1) and D-less polyprenyl diphosphate synthase (Dlp1) in Schizosaccharomyces pombe and in humans). We found that expression of either dlp1 or dps1 recovered the thermo-sensitive growth of an E. coli ispBR321A mutant and restored IspB activity and production of Coenzyme Q-8. IspB interacted with Dlp1 (or Dps1), forming a high-molecular weight complex that stabilized IspB, leading to full functionality.

Structured summary:

MINT-7385426:Dlp1 (uniprotkb:Q86YH6) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385083, MINT-7385058:IspB (uniprotkb:P0AD57) and IspB (uniprotkb:P0AD57) bind (MI:0407) by blue native page (MI:0276)MINT-7385413:Dlp1 (uniprotkb:O13851) and IspB (uniprotkb:P0AD57) physically interact (MI:0915) by blue native page (MI:0276)MINT-7385024:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dps1 (uniprotkb:O43091) by pull down (MI:0096)MINT-7385041:IspB (uniprotkb:P0AD57) physically interacts (MI:0915) with Dlp1 (uniprotkb:O13851) by pull down (MI:0096)MINT-7385388:IspB (uniprotkb:P0AD57) and Dps1 (uniprotkb:O43091) physically interact (MI:0915) by blue native page (MI:0276)  相似文献   

10.
To facilitate X-ray crystal structure solution of farnesyl diphosphate (FPP) synthase of Bacillus stearothermophilus, selenomethionyl recombinant enzyme was overproduced in a methionine (Met) auxotrophic strain of Escherichia coli, and purified to homogeneity by two chromatographic steps. About 50 mg of the pure selenomethionyl enzyme was obtained from 2 g of E. coli cells. Inductively coupled plasma (ICP) emission spectrometric analysis for selenium content showed that all of the Met residues in the FPP synthase were substituted by selenomethionine (SeMet). The selenomethionyl recombinant enzyme showed similar chromatographic behavior, heat stability, immunochemical property, product specificity, and kinetic parameters to those of the wild-type enzyme, indicating that SeMet substitution has little effect on the prenyltransferase with respect to substrate binding, enzymatic activity, and structure.  相似文献   

11.
The role of peroxisomes in isoprenoid metabolism, especially in plants, has been questioned in several reports. A recent study of Sapir-Mir et al.1 revealed that the two isoforms of isopentenyl diphosphate (IPP) isomerase, catalyzing the isomerisation of IPP to dimethylallyl diphosphate (DMAPP) are found in the peroxisome. In this addendum, we provide additional data describing the peroxisomal localization of 5-phosphomevalonate kinase and mevalonate 5-diphosphate decarboxylase, the last two enzymes of the mevalonic acid pathway leading to IPP.2 This finding was reinforced in our latest report showing that a short isoform of farnesyl diphosphate, using IPP and DMAPP as substrates, is also targeted to the organelle.3 Therefore, the classical sequestration of isoprenoid biosynthesis between plastids and cytosol/ER can be revisited by including the peroxisome as an additional isoprenoid biosynthetic compartment within plant cells.  相似文献   

12.
Farnesyl diphosphate (FPP) synthase (FPS) catalyses the synthesis of FPP, the major substrate used by cytosolic and mitochondrial branches of the isoprenoid pathway. Arabidopsis contains two farnesyl diphosphate synthase genes, FPS1 and FPS2, that encode isozymes FPS1L (mitochondrial), FPS1S and FPS2 (both cytosolic). Here we show that simultaneous knockout of both FPS genes is lethal for Arabidopsis, and embryo development is arrested at the pre‐globular stage, demonstrating that FPP‐derived isoprenoid metabolism is essential. In addition, lack of FPS enzyme activity severely impairs male genetic transmission. In contrast, no major developmental and metabolic defects were observed in fps1 and fps2 single knockout mutants, demonstrating the redundancy of the genes. The levels of sterols and ubiquinone, the major mitochondrial isoprenoid, are only slightly reduced in the single mutants. Although one functional FPS gene is sufficient to support isoprenoid biosynthesis for normal growth and development, the functions of FPS1 and FPS2 during development are not completely redundant. FPS1 activity has a predominant role during most of the plant life cycle, and FPS2 appears to have a major role in seeds and during the early stages of seedling development. Lack of FPS2 activity in seeds, but not of FPS1 activity, is associated with a marked reduction in sitosterol content and positive feedback regulation of 3‐hydroxy‐3‐methylglutaryl CoA reductase activity that renders seeds hypersensitive to the 3‐hydroxy‐3‐methylglutaryl CoA reductase inhibitor mevastatin.  相似文献   

13.
In this paper, we report on the generation of transgenic Arabidopsis plants containing elevated levels of the gene product encoding the enzyme catalysing the first committed step in inositol biosynthesis, D-myo-inositol-3-phosphate (Ins3P) synthase. These plants exhibit both an increase in Ins3P synthase activity and an increase in the level of free inositol of over four-fold compared to wild-type plants. Despite these changes, we could detect no significant difference in phenotype in the transgenic plants for a number of characteristics linked with putative functions of inositol and inositol-derived metabolites. Our results indicate that the proposed engineering of inositol metabolism to generate specific plant phenotypes (e.g. salt tolerance) may require the manipulation of several genes, and that Ins3P synthase activity can be manipulated to increase the pool size of free inositol.  相似文献   

14.
Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O3) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O3-induced cell death. Treatment with O3 induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O3 individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O3 induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O3-induced SA accumulation. The O3-sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 ( Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1 ), a mutant with decreased production of NO, was also O3 sensitive. This, together with experiments combining O3 and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O3 exposure, and that a functional NO production is needed for a proper O3 response. In summary, NO is an important signalling molecule in the response to O3.  相似文献   

15.
Treatment of a Cinchona robusta How. cell suspension culture with a homogenate of Phytophthora cinnamomi resulted in cessation of growth and a rapid induction of the biosynthesis of anthraquinone-type phytoalexins. The strongest induction of anthraquinone biosynthesis was obtained when the elicitor was added in the early growth phase of the growth cycle. The accumulation of anthraquinones was accompanied by a tri-phasic response in the activity of isopentenyl diphosphate (IPP) isomerase (EC 5.3.3.2): phase I was characterised by a rapid induction of activity, reaching a maximum at 12 h after elicitation. During phase II, IPP isomerase rapidly decreased to levels below those found in untreated cells. At phase III, IPP isomerase activity increased again, reaching a second maximum at about 72 h after elicitation. During phase I, the activity of farnesyl diphosphate synthase (EC 2.5.1.10) was found to be suppressed. Extraction and assay conditions were optimised for IPP isomerase. The presence of Mn2+ in the incubation buffer resulted in a marked increase in the activity of the enzymes obtained from cells in phase I. The induction of IPP isomerase in combination with a concomitant inhibition of farnesyl diphosphate synthase might result in an efficient channeling of C5-precursors into phytoalexin biosynthesis. Received: 23 August 1996 / Accepted: 20 March 1997  相似文献   

16.
采用PCR及RT-PCR法分别克隆了拟南芥SDIR1基因的DNA和cDNA序列。根据序列比对分析结果,发现了3种不同的转录本,提示SDIR1基因的转录中存在选择性剪接。3种转录本的长度分别为822bp、691bp和666bp,依次命名为:SDIR1-822、SDIR1-691、SDIR1-666。与SDIR1基因的DNA序列及已报道的SDIR1cDNA序列比较,除转录本SDIR1-822包含了完整的编码序列外,其余2种转录本的编码序列都存在不同长度的缺失。其中,SDIR1-691缺失了131bp的片段:第2外显子3′端缺失33bp,第3外显子53bp全部缺失,第4外显子5′端缺失45bp;转录本SDIR1-666缺失了156bp的片段:第3外显子3′端缺失18bp,第4外显子5′端缺失138bp。进而随机挑取101个克隆子对三种转录本的表达比例进行初步分析,结果表明3种分子的比值为SDIR1-822:SDIR1-691:SDIR1-666=26.00:1.33:1.00,反映出SDIR1基因不同转录本在拟南芥中的相对表达量。  相似文献   

17.
Phytochelatin (PC), a class of heavy metal-binding peptides, is synthesized from the tripeptide glutathione (GSH) and/or previously synthesized PC in a reaction mediated by PC synthase (PCS). In the present study, the PC production rate catalyzed by recombinant Arabidopsis PCS1 (rAtPCS1) in the presence of a constant free Cd(II) level increased steadily and the kinetic parameters were approximated using a substituted-enzyme mechanism in which GSH and bis(glutathionato)cadmium acted as co-substrates. In contrast, the PC production rate as a function of GSH concentration at a constant total Cd(II) concentration reached a maximum, which shifted toward higher GSH concentrations as the concentration of Cd(II) was increased. These observations are consistent with the suggestion that rAtPCS1 possesses a Cd(II) binding site where Cd(II) binds to activate the enzyme. The affinity constant, optimized using a one-site mathematical model, successfully simulated the experimental data for the assay system using lower concentrations of Cd(II) (5 or 10 μM) but not for the assay using higher concentrations (50 or 500 μM), where a sigmoidal increase in PCS activity was evident. Furthermore, the PCS activity determined at a constant GSH concentration as a function of Cd(II) concentration also reached a maximum. These findings demonstrate that rAtPCS1 also possesses a second Cd(II) binding site where Cd(II) binds to induce an inhibitory effect. A two-site mathematical model was applied successfully to account for the observed phenomena, supporting the suggestion that rAtPCS1 possesses two Cd(II) binding sites.  相似文献   

18.
Degradation of the plant hormone cytokinin is catalyzed by cytokinin oxidase/dehydrogenase (CKX) enzymes. The Arabidopsis thaliana genome encodes seven CKX proteins which differ in subcellular localization and substrate specificity. Here we analyze the CKX7 gene, which to the best of our knowledge has not yet been studied. pCKX7:GUS expression was detected in the vasculature, the transmitting tissue and the mature embryo sac. A CKX7–GFP fusion protein localized to the cytosol, which is unique among all CKX family members. 35S:CKX7‐expressing plants developed short, early terminating primary roots with smaller apical meristems, contrasting with plants overexpressing other CKX genes. The vascular bundles of 35S:CKX7 primary roots contained only protoxylem elements, thus resembling the wol mutant of the CRE1/AHK4 receptor gene. We show that CRE1/AHK4 activity is required to establish the CKX7 overexpression phenotype. Several cytokinin metabolites, in particular cis‐zeatin (cZ) and N‐glucoside cytokinins, were depleted stronger in 35S:CKX7 plants compared with plants overexpressing other CKX genes. Interestingly, enhanced protoxylem formation together with reduced primary root growth was also found in the cZ‐deficient tRNA isopentenyltransferase mutant ipt2,9. However, different cytokinins were similarly efficient in suppressing 35S:CKX7 and ipt2,9 vascular phenotypes. Therefore, we hypothesize that the pool of cytosolic cytokinins is particularly relevant in the root procambium where it mediates the differentiation of vascular tissues through CRE1/AHK4. Taken together, the distinct consequences of CKX7 overexpression indicate that the cellular compartmentalization of cytokinin degradation and substrate preference of CKX isoforms are relevant parameters that define the activities of the hormone.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号