首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Glycogen storage disease type I (GSD-I) is a group of autosomal recessive disorders with an incidence of 1 in 100,000. The two major subtypes are GSD-Ia (MIM232200), caused by a deficiency of glucose-6-phosphatase (G6Pase), and GSD-Ib (MIM232220), caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Both G6Pase and G6PT are associated with the endoplasmic reticulum (ER) membrane. G6PT translocates glucose-6-phosphate (G6P) from the cytoplasm into the lumen of the ER, where G6Pase hydrolyses the G6P into glucose and phosphate. Together G6Pase and G6PT maintain glucose homeostasis. G6Pase is expressed in gluconeogenic tissues, the liver, kidney, and intestine. However G6PT, which transports G6P efficiently only in the presence of G6Pase, is expressed ubiquitously. This suggests that G6PT may play other roles in tissues lacking G6Pase. Both GSD-Ia and GSD-Ib patients manifest phenotypic G6Pase deficiency, characterized by growth retardation, hypoglycemia, hepatomegaly, nephromegaly, hyperlipidemia, hyperuricemia, and lactic academia and the current treatment is a dietary therapy. GSD-Ib patients also suffer from chronic neutropenia and functional deficiencies of neutrophils and monocytes, which is treated with granulocyte colony stimulating factor to restore myeloid function. The GSD-Ia and GSD-Ib genes have been cloned. To date, 76 G6Pase and 69 G6PT mutations have been identified in GSD-I patients. A database of the residual enzymatic activity retained by the G6Pase missense mutants is facilitating the correlation of the disease phenotype with the patients' genotype. While the molecular basis for the GSD-I disorders are now known and symptomatic therapies are available, many aspects of the diseases are still poorly understood, and there are no cures. Recently developed animal models of the disorders are now being exploited to delineate the disease more precisely and develop new, more causative therapies.  相似文献   

4.
Deficiencies in glucose 6-phosphate (G6P) transporter (G6PT), a 10-helical endoplasmic reticulum transmembrane protein of 429 amino acids, cause glycogen storage disease type 1b. To date, only three missense mutations in G6PT have been shown to abolish microsomal G6P transport activity. Here, we report the results of structure-function studies on human G6PT and demonstrate that 15 missense mutations and a codon deletion (delta F93) mutation abolish microsomal G6P uptake activity and that two splicing mutations cause exon skipping. While most missense mutants support the synthesis of G6PT protein similar to that of the wild-type transporter, immunoblot analysis shows that G20D, delta F93, and I278N mutations, located in helix 1, 2, and 6, respectively, destabilize the G6PT. Further, we demonstrate that G6PT mutants lacking an intact helix 10 are misfolded and undergo degradation within cells. Moreover, amino acids 415-417 in the cytoplasmic tail of the carboxyl-domain, extending from helix 10, also play a critical role in the correct folding of the transporter. However, the last 12 amino acids of the cytoplasmic tail play no essential role(s) in functional integrity of the G6PT. Our results, for the first time, elucidate the structural requirements for the stability and transport activity of the G6PT protein.  相似文献   

5.
Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT). Sequence alignments identify a signature motif shared by G6PT and a family of transporters of phosphorylated metabolites. Two null signature motif mutations have been identified in the G6PT gene of GSD-Ib patients. In this study, we characterize the activity of seven additional mutants within the motif. Five mutants lack microsomal G6P uptake activity and one retains residual activity, suggesting that in G6PT the signature motif is a functional element required for microsomal glucose-6-phosphate transport.  相似文献   

6.
Glycogen storage disease type 1 (GSD-1), also known as von Gierke disease, is a group of autosomal recessive metabolic disorders caused by deficiencies in the activity of the glucose-6-phosphatase (G6Pase) system that consists of at least two membrane proteins, glucose-6-phosphate transporter (G6PT) and G6Pase. G6PT translocates glucose-6-phosphate (G6P) from cytoplasm to the lumen of the endoplasmic reticulum (ER) and G6Pase catalyzes the hydrolysis of G6P to produce glucose and phosphate. Therefore, G6PT and G6Pase work in concert to maintain glucose homeostasis. Deficiencies in G6Pase and G6PT cause GSD-1a and GSD-1b, respectively. Both manifest functional G6Pase deficiency characterized by growth retardation, hypoglycemia, hepatomegaly, kidney enlargement, hyperlipidemia, hyperuricemia, and lactic acidemia. GSD-1b patients also suffer from chronic neutropenia and functional deficiencies of neutrophils and monocytes, resulting in recurrent bacterial infections as well as ulceration of the oral and intestinal mucosa. The G6Pase gene maps to chromosome 17q21 and encodes a 36-kDa glycoprotein that is anchored to the ER by 9 transmembrane helices with its active site facing the lumen. Animal models of GSD-1a have been developed and are being exploited to delineate the disease more precisely and to develop new therapies. The G6PT gene maps to chromosome 11q23 and encodes a 37-kDa protein that is anchored to the ER by 10 transmembrane helices. A functional assay for the recombinant G6PT protein has been established, which showed that G6PT functions as a G6P transporter in the absence of G6Pase. However, microsomal G6P uptake activity was markedly enhanced in the simultaneous presence of G6PT and G6Pase. The cloning of the G6PT gene now permits animal models of GSD-1b to be generated. These recent developments are increasing our understanding of the GSD-l disorders and the G6Pase system, knowledge that will facilitate the development of novel therapeutic approaches for these disorders.  相似文献   

7.
8.
D-Glucose-6-phosphatase is a key regulator of endogenous glucose production, and its inhibition may improve glucose control in type 2 diabetes. Herein, 2'-O-(2-methoxy)ethyl-modified phosphorothioate antisense oligonucleotides (ASOs) specific to the glucose 6-phosphate transporter-1 (G6PT1) enabled reduction of hepatic D-Glu-6-phosphatase activity in diabetic ob/ob mice. Treatment with G6PT1 ASOs decreased G6PT1 expression, reduced G6PT1 activity, blunted glucagon-stimulated glucose production, and lowered plasma glucose concentration in a dose-dependent manner. In contrast to G6PT1 knock-out mice and patients with glycogen storage disease, excess hepatic and renal glycogen accumulation, hyperlipidemia, neutropenia, and elevations in plasma lactate and uric acid did not occur. In addition, hypoglycemia was not observed in animals during extended periods of fasting, and the ability of G6PT1 ASO-treated mice to recover from an exogenous insulin challenge was not impaired. Together, these results demonstrate that effective glucose lowering by G6PT1 inhibitors can be achieved without adversely affecting carbohydrate and lipid metabolism.  相似文献   

9.
10.
Glucose-6-phosphatase is a multicomponent system located in the endoplasmic reticulum, involving both a catalytic subunit (G6PC) and several substrate and product carriers. The glucose-6-phosphate carrier is called G6PT1. Using light scattering, we determined K(D) values for phosphate and glucose transport in rat liver microsomes (45 and 33mM, respectively), G6PT1 K(D) being too low to be estimated by this technique. We provide evidence that phosphate transport may be carried out by an allosteric multisubunit translocase or by two distinct proteins. Using chemical modifications by sulfhydryl reagents with different solubility properties, we conclude that in G6PT1, one thiol group important for activity is facing the cytosol and could be Cys(121) or Cys(362). Moreover, a different glucose-6-phosphate translocase, representing 20% of total glucose-6-phosphate transport and insensitive to N-ethylmaleimide modification, could coexist with liver G6PT1. In the G6PC protein, an accessible thiol group is facing the cytosol and, according to structural predictions, could be Cys(284).  相似文献   

11.
Cyanovirin-N (CVN), a cyanobacterial lectin, exemplifies a class of antiviral agents that inhibit HIV by binding to the highly glycosylated envelope protein gp120. Here, we investigate the energetics of glycan recognition using a computationally inexpensive flexible docking approach, backbone perturbation docking (BP-Dock). We benchmarked our method using two mutants of CVN: P51G-m4-CVN, which binds dimannose with high affinity through domain B, and CVN(mutDB), in which binding to domain B has been abolished through mutation of five polar residues to small nonpolar side chains. We investigated the energetic contribution of these polar residues along with the additional position 53 by docking dimannose to single-point CVN mutant models. Analysis of the docking simulations indicated that the E41A/G and T57A mutations led to a significant decrease in binding energy scores due to rearrangements of the hydrogen-bond network that reverberated throughout the binding cavity. N42A decreased the binding score to a level comparable to that of CVN(mutDB) by affecting the integrity of the local protein structure. In contrast, N53S resulted in a high binding energy score, similar to P51G-m4-CVN. Experimental characterization of the five mutants by NMR spectroscopy confirmed the binding affinity pattern predicted by BP-Dock. Despite their mostly conserved fold and stability, E41A, E41G, and T57A displayed dissociation constants in the millimolar range. N53S showed a binding constant in the low micromolar range, similar to that observed for P51G-m4-CVN. No binding was observed for N42A. Our results show that BP-Dock is a useful tool for rapidly screening the relative binding affinity pattern of in silico-designed mutants compared with wild-type, supporting its use to design novel mutants with enhanced binding properties.  相似文献   

12.
Cyanovirin-N (CVN), a cyanobacterial lectin, exemplifies a class of antiviral agents that inhibit HIV by binding to the highly glycosylated envelope protein gp120. Here, we investigate the energetics of glycan recognition using a computationally inexpensive flexible docking approach, backbone perturbation docking (BP-Dock). We benchmarked our method using two mutants of CVN: P51G-m4-CVN, which binds dimannose with high affinity through domain B, and CVN(mutDB), in which binding to domain B has been abolished through mutation of five polar residues to small nonpolar side chains. We investigated the energetic contribution of these polar residues along with the additional position 53 by docking dimannose to single-point CVN mutant models. Analysis of the docking simulations indicated that the E41A/G and T57A mutations led to a significant decrease in binding energy scores due to rearrangements of the hydrogen-bond network that reverberated throughout the binding cavity. N42A decreased the binding score to a level comparable to that of CVN(mutDB) by affecting the integrity of the local protein structure. In contrast, N53S resulted in a high binding energy score, similar to P51G-m4-CVN. Experimental characterization of the five mutants by NMR spectroscopy confirmed the binding affinity pattern predicted by BP-Dock. Despite their mostly conserved fold and stability, E41A, E41G, and T57A displayed dissociation constants in the millimolar range. N53S showed a binding constant in the low micromolar range, similar to that observed for P51G-m4-CVN. No binding was observed for N42A. Our results show that BP-Dock is a useful tool for rapidly screening the relative binding affinity pattern of in silico-designed mutants compared with wild-type, supporting its use to design novel mutants with enhanced binding properties.  相似文献   

13.
Effect of 5-100 microM epigallocatechin gallate (EGCG) on hepatic glucose 6-phosphatase (G6Pase) system was investigated. EGCG inhibited G6Pase in intact but not in permeabilized rat liver microsomes, suggesting the interference with the transport. However, EGCG did not hinder microsomal glucose 6-phosphate (G6P) uptake. Instead, it increased the accumulation of radioactivity after the addition of [(14)C]G6P, presumably due to a slower release of [(14)C]glucose, the product of luminal hydrolysis. Indeed, EGCG was found to inhibit microsomal glucose efflux. Since G6Pase activity is depressed by glucose in a concentration-dependent manner, we concluded that EGCG inhibits G6Pase through an elevated luminal glucose level.  相似文献   

14.
Jiang P  Du W  Wang X  Mancuso A  Gao X  Wu M  Yang X 《Nature cell biology》2011,13(3):310-316
Cancer cells consume large quantities of glucose and primarily use glycolysis for ATP production, even in the presence of adequate oxygen. This metabolic signature (aerobic glycolysis or the Warburg effect) enables cancer cells to direct glucose to biosynthesis, supporting their rapid growth and proliferation. However, both causes of the Warburg effect and its connection to biosynthesis are not well understood. Here we show that the tumour suppressor p53, the most frequently mutated gene in human tumours, inhibits the pentose phosphate pathway (PPP). Through the PPP, p53 suppresses glucose consumption, NADPH production and biosynthesis. The p53 protein binds to glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the PPP, and prevents the formation of the active dimer. Tumour-associated p53 mutants lack the G6PD-inhibitory activity. Therefore, enhanced PPP glucose flux due to p53 inactivation may increase glucose consumption and direct glucose towards biosynthesis in tumour cells.  相似文献   

15.
Glucose-6 phosphatase (G6Pase), a key enzyme of glucose homeostasis, catalyses the hydrolysis of glucose-6 phosphate (G6P) to glucose and inorganic phosphate. A deficiency in G6Pase activity causes type 1 glycogen storage disease (GSD-1), mainly characterised by hypoglycaemia. Genetic analyses of the two forms of this rare disease have shown that the G6Pase system consists of two proteins, a catalytic subunit (G6PC) responsible for GSD-1a, and a G6P translocase (G6PT), responsible for GSD-1b. However, since their identification, few investigations concerning their structural relationship have been made. In this study, we investigated the localisation and membrane organisation of the G6Pase complex. To this aim, we developed chimera proteins by adding a fluorescent protein to the C-terminal ends of both subunits. The G6PC and G6PT fluorescent chimeras were both addressed to perinuclear membranes as previously suggested, but also to vesicles throughout the cytoplasm. We demonstrated that both proteins strongly colocalised in perinuclear membranes. Then, we studied G6PT organisation in the membrane. We highlighted FRET between the labelled C and N termini of G6PT. The intramolecular FRET of this G6PT chimera was 27%. The coexpression of unlabelled G6PC did not modify this FRET intensity. Finally, the chimera constructs generated in this work enabled us for the first time to analyze the relationship between GSD-1 mutations and the intracellular localisation of both G6Pase subunits. We showed that GSD1 mutations did neither alter the G6PC or G6PT chimera localisation, nor the interaction between G6PT termini. In conclusion, our results provide novel information on the intracellular distribution and organisation of the G6Pase complex.  相似文献   

16.
The correct intracellular sorting of lysosomal enzymes such as arylsulfatase A depends on the presence of mannose 6-phosphate residues on high mannose type oligosaccharides. The arylsulfatase A cDNA contains three potential N-glycosylation sites, two of which are utilized. We have mutated one or two of the N-glycosylation sites and analyzed the glycosylation, phosphorylation, and intracellular sorting of the mutant arylsulfatase A polypeptides. The results show that each of the three glycosylation sites (I, II, and III) can be glycosylated, but glycosylation at sites I and II is mutually exclusive. In mutants with one oligosaccharide side chain at positions I, II, or III all side chains can acquire mannose 6-phosphate residues irrespective of their location. This demonstrates spatial flexibility of the phosphotransferase, which specifically recognizes lysosomal enzymes and initiates the addition of mannose 6-phosphate residues on oligosaccharide side chains. However, these mutants have different intracellular sorting efficiencies and seem to use different (mannose 6-phosphate receptor-dependent and -independent) sorting pathways.  相似文献   

17.
Song Y  Azakami H  Hamasu M  Kato A 《FEBS letters》2001,491(1-2):63-66
The mutant hen egg white lysozymes Ile55Thr and Asp66His, corresponding to human amyloidogenic mutant lysozymes Ile56Thr and Asp67His, respectively, were secreted in Saccharomyces cerevisiae. The amyloidogenic mutants (I55T and D66H) of hen egg white lysozymes were remarkably less soluble than that of the wild-type protein. To enhance the secretion of these mutants, we constructed the glycosylated amyloidogenic lysozymes (I55T/G49N and D66H/G49N) having the N-glycosylation signal sequence (Asn-X-Ser) by the substitution of glycine with asparagine at position 49. The secretion of these glycosylated mutant proteins is greatly increased in S. cerevisiae, compared with that of non-glycosylated type. Both the glycosylated mutants retained about 40% enzymatic activity when incubated at pH 7.4 for 1 h at the physiological temperature of 37 degrees C whereas the non-glycosylated proteins eventually lost all activity under these conditions. These results suggest that the glycosylated chains could mask the beta-strand of amyloidogenic lysozymes from the intermolecular cross-beta-sheet association, thus improving the solubility of amyloidogenic lysozymes.  相似文献   

18.
Leuconostoc mesenteroides glucose 6-phosphate dehydrogenase (G6PD) was isolated in high yield and purified to homogeneity from a newly constructed strain of Escherichia coli which lacks its own glucose 6-phosphate dehydrogenase gene. Lys-21 is one of two lysyl residues in the enzyme previously modified by the affinity labels pyridoxal 5'-phosphate and pyridoxal 5'-diphosphate-5'-adenosine, which are competitive inhibitors of the enzyme with respect to glucose 6-phosphate (LaDine, J.R., Carlow, D., Lee, W.T., Cross, R.L., Flynn, T.G., & Levy, H.R., 1991, J. Biol. Chem. 266, 5558-5562). K21R and K21Q mutants of the enzyme were purified to homogeneity and characterized kinetically to determine the function of Lys-21. Both mutant enzymes showed increased Km-values for glucose 6-phosphate compared to wild-type enzyme: 1.4-fold (NAD-linked reaction) and 2.1-fold (NADP-linked reaction) for the K21R enzyme, and 36-fold (NAD-linked reaction) and 53-fold (NADP-linked reaction) for the K21Q enzyme. The Km for NADP+ was unchanged in both mutant enzymes. The Km for NAD+ was increased 1.5- and 3.2-fold, compared to the wild-type enzyme, in the K21R and K21Q enzymes, respectively. For the K21R enzyme the kcat for the NAD- and NADP-linked reactions was unchanged. The kcat for the K21Q enzyme was increased in the NAD-linked reaction by 26% and decreased by 30% in the NADP-linked reaction from the values for the wild-type enzyme. The data are consistent with Lys-21 participating in the binding of the phosphate group of the substrate to the enzyme via charge-charge interaction.  相似文献   

19.
The induction of the hexose-6-phosphate transport system was investigated. Glucose-6-phosphate (G6P) at concentrations as low as 10(-4)m was able to induce this system in wild-type cells, as well as in mutants lacking phosphoglucose isomerase or G6P dehydrogenase. Growth in the presence of fructose-6-phosphate (F6P) induced the system only if the cells contained phosphoglucose isomerase. Furthermore, glucose and F6P were found to induce the system only if the extracellular concentration of G6P became appreciable in the medium as a consequence of the leakage of intracellular G6P formed from the glucose or F6P. Intracellular G6P was not an inducer even at high concentrations. The metabolism of glucose inhibited the induction of the hexose-6-phosphate transport system. Hypotheses for this compartmentalization of inducer and membrane-associated induction are presented.  相似文献   

20.
Pan CJ  Chen SY  Jun HS  Lin SR  Mansfield BC  Chou JY 《PloS one》2011,6(9):e23157
Blood glucose homeostasis between meals depends upon production of glucose within the endoplasmic reticulum (ER) of the liver and kidney by hydrolysis of glucose-6-phosphate (G6P) into glucose and phosphate (P(i)). This reaction depends on coupling the G6P transporter (G6PT) with glucose-6-phosphatase-α (G6Pase-α). Only one G6PT, also known as SLC37A4, has been characterized, and it acts as a P(i)-linked G6P antiporter. The other three SLC37 family members, predicted to be sugar-phosphate:P(i) exchangers, have not been characterized functionally. Using reconstituted proteoliposomes, we examine the antiporter activity of the other SLC37 members along with their ability to couple with G6Pase-α. G6PT- and mock-proteoliposomes are used as positive and negative controls, respectively. We show that SLC37A1 and SLC37A2 are ER-associated, P(i)-linked antiporters, that can transport G6P. Unlike G6PT, neither is sensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, and neither couples to G6Pase-α. We conclude that three of the four SLC37 family members are functional sugar-phosphate antiporters. However, only G6PT/SLC37A4 matches the characteristics of the physiological ER G6P transporter, suggesting the other SLC37 proteins have roles independent of blood glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号