首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

2.
Hepatitis delta virus (HDV) encodes two isoforms of delta antigens (HDAgs). The small form of HDAg is required for HDV RNA replication, while the large form of HDAg inhibits the viral replication and is required for virion assembly. In this study, we found that the expression of B23, a nucleolar phosphoprotein involved in disparate functions including nuclear transport, cellular proliferation, and ribosome biogenesis, is up-regulated by these two HDAgs. Using in vivo and in vitro experimental approaches, we have demonstrated that both isoforms of HDAg can interact with B23 and their interaction domains were identified as the NH(2)-terminal fragment of each molecule encompassing the nuclear localization signal but not the coiled-coil region of HDAg. Sucrose gradient centrifugation analysis indicated that the majority of small HDAg, but a lesser amount of the large HDAg, co-sedimented with B23 and nucleolin in the large nuclear complex. Transient transfection experiments also indicated that introducing exogenous full-length B23, but not a mutated B23 defective in HDAg binding, enhanced HDV RNA replication. All together, our results reveal that HDAg has two distinct effects on nucleolar B23, up-regulation of its gene expression and the complex formation, which in turn regulates HDV RNA replication. Therefore, this work demonstrates the important role of nucleolar protein in regulating the HDV RNA replication through the complex formation with the key positive regulator being small HDAg.  相似文献   

3.
The large hepatitis delta antigen (HDAg) has been found to be essential for the assembly of the hepatitis delta virion. Furthermore, in a cotransfection experiment, the large HDAg itself, without the hepatitis delta virus (HDV) genome and small HDAg, could be packaged into hepatitis B surface antigen (HBsAg) particles. By deletion analysis, it was shown that the amino-terminal leucine zipper domain was dispensable for packaging. The large HDAg could also help in copackaging of the small HDAg into HBsAg particles without the need for HDV RNA. This process was probably mediated through direct interaction of the two HDAgs as a mutated large HDAg whose leucine zipper domain was deleted such that it could not help in copackaging of the small HDAg. This mutated large HDAg did not suppress HDV replication, suggesting that this effect is probably also via protein interaction. These results indicated that functional domains of the large HDAg responsible for packaging with HBsAg particles and for the trans-negative effect on HDV replication can be separated.  相似文献   

4.
S B Hwang  M M Lai 《Journal of virology》1993,67(12):7659-7662
Hepatitis delta antigen (HDAg) consists of two protein species of 195 and 214 amino acids, respectively, which are identical in sequence except that the large HDAg has additional 19 amino acids at its C terminus and is prenylated. Previous studies have shown that the large HDAg and the surface antigen of hepatitis B virus (HBsAg) together can form empty hepatitis delta virus (HDV) particles. To understand the molecular mechanism of HDV virion morphogenesis, we investigated the possible direct protein-protein interaction between HDAg and HBsAg. We constructed recombinant baculoviruses expressing the major form of HBsAg and various mutant HDAgs and used these proteins for far-Western protein binding assays. We demonstrated that HBsAg interacted specifically with the large HDAg but not with the small HDAg. Using mutant HDAgs which have defective or aberrant prenylation, we showed that this interaction required isoprenylates on the cysteine residue of the C terminus of the large HDAg. Isoprenylation alone, without the remainder of the C-terminal amino acids of the large HDAg, was insufficient to mediate interaction with HBsAg. This study demonstrates a novel role of prenylates in HDV virion assembly.  相似文献   

5.
The small hepatitis delta virus (HDV) antigen (SHDAg) plays an essential role in HDV RNA double-rolling-circle replication. Several posttranslational modifications (PTMs) of HDAgs, including phosphorylation, acetylation, and methylation, have been characterized. Among the PTMs, the serine 177 residue of SHDAg is a phosphorylation site, and its mutation preferentially abolishes HDV RNA replication from antigenomic RNA to genomic RNA. Using coimmunoprecipitation analysis, the cellular kinases extracellular signal-related kinases 1 and 2 (ERK1/2) are found to be associated with the Flag-tagged SHDAg mutant (Ser-177 replaced with Cys-177). In an in vitro kinase assay, serine 177 of SHDAg was phosphorylated directly by either Flag-ERK1 or Flag-ERK2. Activation of endogenous ERK1/2 by a constitutively active MEK1 (hemagglutinin-AcMEK1) increased phosphorylation of SHDAg at Ser-177; this phosphorylation was confirmed by immunoblotting using an antibody against phosphorylated S177 and mass spectrometric analysis. Interestingly, we found an increase in the HDV replication from antigenomic RNA to genomic RNA but not in that from genomic RNA to antigenomic RNA. The Ser-177 residue was critical for SHDAg interaction with RNA polymerase II (RNAPII), the enzyme proposed to regulate antigenomic RNA replication. These results demonstrate the role of ERK1/2-mediated Ser-177 phosphorylation in modulating HDV antigenomic RNA replication, possibly through RNAPII regulation. The results may shed light on the mechanisms of HDV RNA replication.  相似文献   

6.
M F Chang  C Y Sun  C J Chen    S C Chang 《Journal of virology》1993,67(5):2529-2536
The functions of delta antigens (HDAgs) in the replication of hepatitis delta virus (HDV) have been identified previously. The small HDAg acts as a transactivator, whereas the large HDAg has a negative effect on replication. To understand the molecular mechanisms involved in the control of HDV replication, we have established a replication system in Huh-7 cells by cotransfecting a monomeric cDNA genome of HDV and a plasmid encoding the small HDAg. We demonstrate that a leucine repeat in the middle domain of the small HDAg is involved in binding to the HDV genome and transactivation of HDV replication. When the leucine repeat was disrupted by a substitution of valine for leucine at position 115, both RNA-binding and transactivation activity of the small HDAg were abolished. In contrast, the binding and transactivation activities were not affected when Leu-37 and Leu-44 of the small HDAg were replaced by valines. In addition, small and large HDAgs can interact with each other to form protein complexes in vitro. The complex formation that may lead to the trans-dominant negative regulation of large HDAg in HDV replication is mediated by a cryptic signal located between amino acid residues 35 and 65 other than the putative N-terminal leucine zipper motif. Furthermore, an extra 21-amino-acid extension near the N terminus converts the small HDAg into a pseudo-large HDAg with negative regulation activity of HDV replication even though the extreme C-terminal residue is unchanged.  相似文献   

7.
Y P Xia  M M Lai 《Journal of virology》1992,66(11):6641-6648
Two forms of hepatitis delta antigen (HDAg) have different roles in the replication cycle of hepatitis delta virus (HDV); the small forms trans activates HDV RNA replication, whereas the large form suppresses it but is needed for virion assembly. To understand the mechanism of these regulatory activities, we studied the possible HDAg oligomerization and its role in HDV replication. In this report, we provide direct biochemical evidence for the in vitro and in vivo formation of homodimers and heterodimers between these two HDAg species. By deletion mutagenesis, we showed that this protein interaction is mediated by the leucine zipper-like sequence residing in the N-terminal one-third of HDAg. Furthermore, site-specific mutants with various substitutions on two of the leucine residues in this stretch of sequence had reduced or no ability to form HDAg dimers. Correspondingly, the small HDAg with mutations in the leucine zipper-like sequence had reduced abilities to trans activate HDV RNA replication. Similar mutations on the leucine zipper-like sequence of the large HDAg also resulted in loss of the ability of large HDAg to inhibit HDV RNA replication. The in vivo biological activities of both forms of HDAg (trans activation and trans-dominant inhibition of HDV RNA replication, respectively) correlated with the extent of HDAg oligomerization in vitro. Thus, we conclude that the small HDAg participates in HDV RNA replication as an oligomer form and that the large HDAg inhibits HDV RNA replication as a result of its complex formation with small HDAg. A "black sheep" model for the mechanism of trans-dominant inhibition by the large HDAg is presented.  相似文献   

8.
Hsu SC  Wu JC  Sheen IJ  Syu WJ 《Journal of virology》2004,78(6):2693-2700
The nucleotide sequences of hepatitis D viruses (HDV) vary 5 to 14% among isolates of the same genotype and 23 to 34% among different genotypes. The only viral-genome-encoded antigen, hepatitis delta antigen (HDAg), has two forms that differ in size. The small HDAg (HDAg-S) trans-activates viral replication, while the large form (HDAg-L) is essential for viral assembly. Previously, it has been shown that the packaging efficiency of HDAg-L is higher for genotype I than for genotype II. In this study, the question of whether other functional properties of the HDAgs are affected by genotype differences is addressed. By coexpression of the two antigens in HuH-7 cells followed by specific antibody precipitation, it was found that HDAgs of different origins interacted without genotypic discrimination. Moreover, in the presence of hepatitis B virus surface antigen, HDAg-S was incorporated into virion-like particles through interaction with HDAg-L without genotype restriction. As to the differences in replication activation of genotype I HDV RNA, all HDAg-S clones tested had some trans-activation activity, and this activity varied greatly among isolates. As to the support of HDV genotype II replication, only clones of HDAg-S from genotype II showed trans-activation activity, and this activity also varied among isolates. In conclusion, genotype has no effect on HDAg interaction and genotype per se only partly predicts how much the HDAg-S of an HDV isolate affects the replication of a second HDV isolate.  相似文献   

9.
Li YJ  Stallcup MR  Lai MM 《Journal of virology》2004,78(23):13325-13334
Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.  相似文献   

10.
H W Wang  P J Chen  C Z Lee  H L Wu    D S Chen 《Journal of virology》1994,68(10):6363-6371
Hepatitis delta virus (HDV) is composed of four specific components. The first component is envelope protein which contains hepatitis B surface antigens. The second and third components are nucleocapsid proteins, referred to as small and large hepatitis delta antigens (HDAgs). The final component is a single-stranded circular RNA molecule known as the viral genome. In order to study the mechanism of HDV RNA packaging, a four-plasmid cotransfection system in which each viral component was provided by a separate plasmid was employed. Virus-like particles released from Huh-7 cells receiving such a cotransfection were found to contain HDV RNA along with three proteins. Therefore, the four-plasmid cotransfection system could lead to successful HDV RNA packaging in vitro. The system was then used to show that the large HDAg alone was able to achieve a low level of HDV RNA packaging. Analysis of a variety of large HDAg mutants revealed that the RNA-binding domain was essential for viral RNA packaging. By increasing the incorporation of small HDAg into virus-like particles, we found a three- to fourfold enhancement of HDV RNA packaging. This effect was probably through a direct binding of HDV RNA, independent from that of large HDAg, with the small HDAg. The subsequent RNA-protein complex was packaged into particles. The results provided insight into the roles and functional domains of small and large HDAgs in HDV RNA packaging.  相似文献   

11.
12.
Hepatitis delta virus (HDV) is a small RNA virus that contains one 1.7-kb single-stranded circular RNA of negative polarity. The HDV particle also contains two isoforms of hepatitis delta antigen (HDAg), small (SHDAg) and large HDAg. SHDAg is required for the replication of HDV, which is presumably carried out by host RNA-dependent RNA polymerases. The localization and the HDAg and host RNA polymerase responsible for HDV replication remain important issues to be addressed. In this study, using recombinant SHDAg fused with a heterologous nucleolar localization sequence (NoLS) to confine its subcellular localization in nucleoli, we aimed to study the effect of SHDAg subcellular localization on HDV RNA replication. The initiation of genomic RNA synthesis from antigenomic template was hardly detectable when SHDAg was fused with the NoLS motif and localized mainly in nucleoli. In contrast, the initiation of antigenomic RNA synthesis was not affected. Drug treatment to release a SHDAg-NoLS mutant from nucleoli could partially restore the replication of HDV genomic RNA from antigenomic RNA. This also recovered the cointeraction between SHDAg and RNA polymerase II. These data strongly suggest that nuclear polymerase (RNA polymerase II) is involved in the synthesis of genomic RNA and that the synthesis of antigenomic RNA can occur in nucleoli. Our results support the idea that the replication of HDV genomic RNA or antigenomic RNA is likely to be carried out by different machineries in different subcellular localizations.  相似文献   

13.
Hepatitis delta antigen (HDAg) consists of two species, large (LHDAg) and small (SHDAg), which are identical in sequence except that the large form contains 19 extra amino acids at the C terminus. The large form is prenylated on the Cxxx motif. The small form can trans activate HDV RNA replication, while the large form inhibits it. To determine the molecular basis for their differential functions, we examined the effects of prenylation on the conformation and function of HDAg. We show that the presence of prenylates masks a conformational epitope which is present in SHDAg but hidden in wild-type LHDAg; this epitope becomes exposed in all of the nonprenylated mutant LHDAgs. Prenylation also plays a major role in conferring the trans-dominant negative inhibitory activity of LHDAg, since the loss of prenylation in LHDAg reduced its inhibitory activity. The primary amino acids of the C-terminal sequence also contributed to the maintenance of the HDAg protein conformation; a prenylated LHDAg mutant with a five-amino-acid deletion had an exposed C-terminal epitope. By examining LHDAg mutants which have deletions of various extents of C-terminal sequence, with or without the prenylation motif, we have further shown that all of the prenylated mutants have much higher levels of trans-dominant suppressor activities than do the corresponding nonprenylated mutants. Surprisingly, a few nonprenylated LHDAg mutants were able to trans activate HDV RNA replication, while all of the prenylated ones lost this function. These results suggest that isoprenylates cause the masking of a conformational epitope of HDAg and that conformational differences between the large and small HDAgs account for the differences in their trans-activating and trans-dominant inhibitory biological activities.  相似文献   

14.
During the hepatitis delta virus (HDV) RNA replication, synthesis of either the mRNA for the delta antigen (HDAg) or the full-length antigenomic RNA is determined by selective usage of the potent poly(A) signal on the antigenome. To elucidate the regulatory mechanism, HDV cDNA cotransfection system was used to examine the potential effect of the secondary structure of the nascent RNA and that of the HDAg on HDV polyadenylation in transfected cells. We found that when the nascent RNA species could fold itself to form the rodlike structure, the HDV polyadenylation was suppressed 3 to 5 fold by the HDAg. In addition, we observed that the small and the large HDAg exerted a similar suppressive effect on the HDV polyadenylation, though they played different roles in HDV replication. We concluded that the HDV polyadenylation could be regulated by the structure of the nascent antigenomic RNA and by either the small or large HDAg.  相似文献   

15.
Hepatitis delta virus requires a helper function from hepatitis B virus for packaging, release, and infection of hepatocytes. The assembly of large delta antigen (HDAg) is mediated by copackaging with the small surface antigen of hepatitis B virus (HBsAg), and the assembly of small HDAg requires interactions with large HDAg. To examine the molecular mechanisms by which small HBsAg, large HDAg, and small HDAg interact, we have established a virion assembly system in COS7 cells by cotransfecting plasmids encoding the small HBsAg, the small HDAg, and large HDAg mutants. Results indicate that sequences within the C-terminal 19-amino-acid domain flanking the Cxxx isoprenylation motif are important for the assembly of large HDAg. In addition, a large HDAg mutant bearing extra sequences separating the C-terminal 19-amino-acid domain from the common regions of the small and large HDAgs is capable, like the wild-type large HDAg, of copackaging with small HBsAg. The ability of assembly is also demonstrated for a large HDAg mutant from which nuclear localization signals have been removed. Furthermore, a cryptic signal within the N-terminal 50 amino acid residues other than the putative N-terminal coiled-coil structure and a subdomain between amino acid residues 50 and 65 of the large HDAg are important for the assembly of small HDAg as well as the trans-dominant negative regulation of large HDAg in hepatitis delta virus replication.  相似文献   

16.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

17.
Modahl LE  Lai MM 《Journal of virology》2000,74(16):7375-7380
Hepatitis delta virus (HDV) contains two types of hepatitis delta antigens (HDAg) in the virion. The small form (S-HDAg) is required for HDV RNA replication, whereas the large form (L-HDAg) potently inhibits it by a dominant-negative inhibitory mechanism. The sequential appearance of these two forms in the infected cells regulates HDV RNA synthesis during the viral life cycle. However, the presence of almost equal amounts of S-HDAg and L-HDAg in the virion raised a puzzling question concerning how HDV can escape the inhibitory effects of L-HDAg and initiate RNA replication after infection. In this study, we examined the inhibitory effects of L-HDAg on the synthesis of various HDV RNA species. Using an HDV RNA-based transfection approach devoid of any artificial DNA intermediates, we showed that a small amount of L-HDAg is sufficient to inhibit HDV genomic RNA synthesis from the antigenomic RNA template. However, the synthesis of antigenomic RNA, including both the 1.7-kb HDV RNA and the 0.8-kb HDAg mRNA, from the genomic-sense RNA was surprisingly resistant to inhibition by L-HDAg. The synthesis of these RNAs was inhibited only when L-HDAg was in vast excess over S-HDAg. These results explain why HDV genomic RNA can initiate replication after infection even though the incoming viral genome is complexed with equal amounts of L-HDAg and S-HDAg. These results also suggest that the mechanisms of synthesis of genomic versus antigenomic RNA are different. This study thus resolves a puzzling question about the early events of the HDV life cycle.  相似文献   

18.
Characterizations of genetic variations among hepatitis delta virus (HDV) isolates have focused principally on phylogenetic analysis of sequences, which vary by 30 to 40% among three genotypes and about 10 to 15% among isolates of the same genotype. The significance of the sequence differences has been unclear but could be responsible for pathogenic variations associated with the different genotypes. Studies of the mechanisms of HDV replication have been limited to cDNA clones from HDV genotype I, which is the most common. To perform a comparative analysis of HDV RNA replication in genotypes I and III, we have obtained a full-length cDNA clone from an HDV genotype III isolate. In transfected Huh-7 cells, the functional roles of the two forms of the viral protein, hepatitis delta antigen (HDAg), in HDV RNA replication are similar for both genotypes I and III; the short form is required for RNA replication, while the long form inhibits replication. For both genotypes, HDAg was able to support replication of RNAs of the same genotype that were mutated so as to be defective for HDAg production. Surprisingly, however, neither genotype I nor genotype III HDAg was able to support replication of such mutated RNAs of the other genotype. The inability of genotype III HDAg to support replication of genotype I RNA could have been due to a weak interaction between the RNA and HDAg. The clear genotype-specific activity of HDAg in supporting HDV RNA replication confirms the original categorization of HDV sequences in three genotypes and further suggests that these should be referred to as types (i.e., HDV-I and HDV-III) rather than genotypes.  相似文献   

19.
20.
Hepatitis delta virus (HDV) is a subviral human pathogen that uses specific RNA editing activity of the host to produce two essential forms of the sole viral protein, hepatitis delta antigen (HDAg). Editing at the amber/W site of HDV antigenomic RNA leads to the production of the longer form (HDAg-L), which is required for RNA packaging but which is a potent trans-dominant inhibitor of HDV RNA replication. Editing in infected cells is thought to be catalyzed by one or more of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). We examined the effects of increased ADAR1 and ADAR2 expression on HDV RNA editing and replication in transfected Huh7 cells. We found that both ADARs dramatically increased RNA editing, which was correlated with strong inhibition of HDV RNA replication. While increased HDAg-L production was the primary mechanism of inhibition, we observed at least two additional means by which ADARs can suppress HDV replication. High-level expression of both ADAR1 and ADAR2 led to extensive hyperediting at non-amber/W sites and subsequent production of HDAg variants that acted as trans-dominant inhibitors of HDV RNA replication. Moreover, we also observed weak inhibition of HDV RNA replication by mutated forms of ADARs defective for deaminase activity. Our results indicate that HDV requires highly regulated and selective editing and that the level of ADAR expression can play an important role: overexpression of ADARs inhibits HDV RNA replication and compromises virus viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号