首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ecologists have examined the synchronization of population dynamics across space as a means to understand how populations respond to climate variation. However, response diversity may reflect important variation among local population dynamics driven by population‐specific responses to regional environmental change. We used long‐term data on sockeye salmon Oncorhynchus nerka from pristine watersheds of southwestern Alaska to show that populations spawning in close proximity (<40 km) to one another have a limited degree of synchrony in their dynamics, even after accounting for density‐dependent processes. In fact, the dynamics of local populations of stream‐spawning sockeye salmon were no more coherent than those of stocks at a much coarser resolution across this region of Alaska. We examined four hypotheses to explain the observed patterns of asynchrony among stream‐spawning populations, and found that populations spawning in dissimilar habitats, and using different nursery lakes were less synchronized in their productivity. Similarity in the age structure of spawning adults was less correlated with synchrony in productivity. These results emphasize the importance of maintaining diverse spawning and rearing habitat for the conservation of Pacific salmon, and should guide conservation planning for Pacific salmon populations in regions where natural dynamics have been altered by habitat loss, hatchery practices, and over‐fishing.  相似文献   

2.
The ecosystems supporting Pacific salmon (Oncorhynchus spp.) are changing rapidly as a result of climate change and habitat alteration. Understanding how—and how consistently—salmon populations respond to changes at regional and watershed scales has major implications for fisheries management and habitat conservation. Chinook salmon (O. tshawytscha) populations across Alaska have declined over the past decade, resulting in fisheries closures and prolonged impacts to local communities. These declines are associated with large‐scale climate drivers, but uncertainty remains about the role of local conditions (e.g., precipitation, streamflow, and stream temperature) that vary among the watersheds where salmon spawn and rear. We estimated the effects of these and other environmental indicators on the productivity of 15 Chinook salmon populations in the Cook Inlet basin, southcentral Alaska, using a hierarchical Bayesian stock‐recruitment model. Salmon spawning during 2003–2007 produced 57% fewer recruits than the previous long‐term average, leading to declines in adult returns beginning in 2008. These declines were explained in part by density dependence, with reduced population productivity following years of high spawning abundance. Across all populations, productivity declined with increased precipitation during the fall spawning and early incubation period and increased with above‐average precipitation during juvenile rearing. Above‐average stream temperatures during spawning and rearing had variable effects, with negative relationships in many warmer streams and positive relationships in some colder streams. Productivity was also associated with regional indices of streamflow and ocean conditions, with high variability among populations. The cumulative effects of adverse conditions in freshwater, including high spawning abundance, heavy fall rains, and hot, dry summers may have contributed to the recent population declines across the region. Identifying both coherent and differential responses to environmental change underscores the importance of targeted, watershed‐specific monitoring and conservation efforts for maintaining resilient salmon runs in a warming world.  相似文献   

3.
Consumption choice by bears feeding on salmon   总被引:4,自引:0,他引:4  
Consumption choice by brown (Ursus arctos) and black bears (U. americanus) feeding on salmon was recorded for over 20,000 bear-killed fish from 1994 to 1999 in Bristol Bay (sockeye salmon, Oncorhynchus nerka) and southeastern Alaska (pink, O. gorbuscha and chum salmon O. keta). These data revealed striking patterns of partial and selective consumption that varied with relative availability and attributes of the fish. As the availability of salmon decreased, bears consumed a larger proportion of each fish among both years and habitats. When availability was high (absolute number and density of salmon), bears consumed less biomass per captured fish, targeting energy-rich fish (those that had not spawned) or energy-rich body parts (eggs in females; brain in males). In contrast, individual fish were consumed to a much greater extent, regardless of sex or spawning status, in habitats or years of low salmon availability. The proportion of biomass consumed per fish was similar for males and females, when spawning status was statistically controlled, but bears targeted different body parts: the body flesh, brain and dorsal hump in males and the roe in females. Bears thus appeared to maximize energy intake by modifying the amount and body parts consumed, based on availability and attributes of spawning salmon.  相似文献   

4.
It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such “compensatory” density dependence, the alternative “depensatory” process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner–recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80 % of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner–recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.  相似文献   

5.
A harvested stock of chum salmon homing to Kurilskiy Bay, Iturup Island, consists of two genetically distinct river populations that reproduce in two rivers that drain into the bay and are characterized by limited gene flow. One of these is small and can be regarded as wild, whereas the other is much larger and, until recently, was composed of naturally reproducing components spawning in the river??s mainstem and tributaries, with almost no hatchery reproduction during the past two decades. The only human impact on reproduction of the chum salmon stock was regulation of the escapement, with officially accepted limits to avoid ??over-escapement??. Recently the hatchery began to release a large amount of chum salmon juveniles. As confirmed by data on variation in both age composition and microsatellite DNA, first-generation hatchery-origin fish that returned from the first large releases occupied spawning grounds and presumably competed directly with, and potentially displaced wild fish. The most dramatic example is a genetically distinct beach-spawning form of chum salmon that was swamped by much more numerous hatchery-origin fish of the river-spawning form. In order to restore and support naturally reproduced population components, careful estimation of the carrying capacity of natural spawning grounds is necessary with efforts to increase escapement to these habitats. We also recommend concerted efforts to restore and conserve a unique beach-spawning population of chum salmon. We further recommend development of a marking program for direct estimation of straying and evaluation of ecological and genetic impacts of hatchery fish on neighboring wild and natural populations.  相似文献   

6.
Aim To quantitatively explore the extent to which many different populations of the same species (chinook salmon, Oncorhynchus tshawytscha) respond cohesively to a common large‐scale climatic trend. Location The Columbia River basin of the northwestern US. Methods I used regression analyses to describe the downward trend in population growth (number of recruits per spawning adult) for thirteen populations of chinook salmon distributed among three geographical regions: Snake River, Upper Columbia River and Middle Columbia River. I then used residuals from these regressions to characterize per capita productivity for each brood year. Positive residuals indicated productivity higher than that predicted by the time series, while negative residuals revealed years in which productivity was lower than predicted. I next used analysis of covariance (ancova ) to test the null hypothesis that associations between ocean/climate conditions and deviations from predicted population growth did not vary among geographical regions. All ancova s used residuals generated from the regressions as the response variable, geographical region as the main effect, and climatic condition [characterized by the Pacific Decadal Oscillation index (PDO)] as the covariate. A major climate shift occurred in 1977, and because the association of the PDO with salmon productivity varied between the pre‐ and post‐1977 climate regimes, I analysed data from the two regimes separately. Results There were marked impacts of climate on salmon production that varied among geographical regions and between decade‐scale climate regimes. During the pre‐1977 climate regime, productivity of salmon populations from the Snake River tended to exceed expectations (i.e. residuals were positive) when values of the PDO were negative. In contrast, this pattern was not evident in populations from the upper or middle Columbia Rivers. During the post‐1977 regime when ocean productivity was generally lower, the association of the PDO with salmon productivity changed – productivity tended to fall short of expectations (i.e. residuals were negative) when values of the PDO were negative. Main conclusions Understanding the linkages between salmon populations and climate is critical as managers attempt to preserve threatened salmon populations in the face of both natural or human‐induced climate variation and the litany of human activities affecting salmon. An important step in this understanding is the recognition that the response to ocean/climate change by salmon populations of the same species and river basin is not necessarily homogeneous.  相似文献   

7.
Understanding population change is essential for conservation of imperiled species, such as amphibians. Worldwide amphibian declines have provided an impetus for investigating their population dynamics, which can involve both extrinsic (density‐independent) and intrinsic (density‐dependent) drivers acting differentially across multiple life stages or age classes. In this study, we examined the population dynamics of the endangered Barton Springs Salamander (Eurycea sosorum) using data from a long‐term monitoring program. We were interested in understanding both the potential environmental drivers (density‐independent factors) and demographic factors (interactions among size classes, negative density dependence) to better inform conservation and management activities. We used data from three different monitoring regimes and multivariate autoregressive state‐space models to quantify environmental effects (seasonality, discharge, algae, and sediment cover), intraspecific interactions among three size classes, and intra‐class density dependence. Results from our primary data set revealed similar patterns among sites and size classes and were corroborated by our out‐of‐sample data. Cross‐correlation analysis showed juvenile abundance was most strongly correlated with a 9‐month lag in aquifer discharge, which we suspect is related to inputs of organic carbon into the aquifer. However, sedimentation limited juvenile abundance at the surface, emphasizing the importance of continued sediment management. Recruitment from juveniles to the sub‐adult size class was evident, but negative density‐dependent feedback ultimately regulated each size class. Negative density dependence may be an encouraging sign for the conservation of E. sosorum because populations that can reach carrying capacity are less likely to go extinct compared to unregulated populations far below their carrying capacity. However, periodic population declines coupled with apparent migration into the aquifer complicate assessments of species status. Although both density‐dependent and density‐independent drivers of population change are not always apparent in time series of animal populations, both have important implications for conservation and management of E. sosorum.  相似文献   

8.
Bottlenecks can have lasting effects on genetic population structure that obscure patterns of contemporary gene flow and drift. Sockeye salmon are vulnerable to bottleneck effects because they are a highly structured species with excellent colonizing abilities and often occupy geologically young habitats. We describe genetic divergence among and genetic variation within spawning populations of sockeye salmon throughout the Lake Clark area of Alaska. Fin tissue was collected from sockeye salmon representing 15 spawning populations of Lake Clark, Six-mile Lake, and Lake Iliamna. Allele frequencies differed significantly at 11 microsatellite loci in 96 of 105 pairwise population comparisons. Pairwise estimates of FST ranged from zero to 0.089. Six-mile Lake and Lake Clark populations have historically been grouped together for management purposes and are geographically proximate. However, Six-mile Lake populations are genetically similar to Lake Iliamna populations and are divergent from Lake Clark populations. The reduced allelic diversity and strong divergence of Lake Clark populations relative to Six-mile Lake and Lake Iliamna populations suggest a bottleneck associated with the colonization of Lake Clark by sockeye salmon. Geographic distance and spawning habitat differences apparently do not contribute to isolation and divergence among populations. However, temporal isolation based on spawning time and founder effects associated with ongoing glacial retreat and colonization of new spawning habitats contribute to the genetic population structure of Lake Clark sockeye salmon. Nonequilibrium conditions and the strong influence of genetic drift caution against using estimates of divergence to estimate gene flow among populations of Lake Clark sockeye salmon.  相似文献   

9.
Density‐dependent mortality in Pacific salmon: the ghost of impacts past?   总被引:5,自引:1,他引:4  
Conservation biologists often ignore density dependence because at‐risk populations are typically small relative to historical levels. However, if populations are reduced as a result of impacts that lower carrying capacity, then density‐dependent mortality may exist at low population abundances. Here, we explore this issue in threatened populations of juvenile chinook salmon (Oncorhynchus tshawytscha). We followed the fate of more than 50 000 juvenile chinook in the Snake River Basin, USA to test the hypothesis that their survival was inversely associated with juvenile density. We also tested the hypotheses that non‐indigenous brook trout and habitat quality affect the presence or strength of density dependence. Our results indicate that juvenile chinook suffer density‐dependent mortality and the strength of density dependence was greater in streams in which brook trout were absent. We were unable to detect an effect of habitat quality on the strength of density dependence. Historical impacts of humans have greatly reduced population sizes of salmon, and the density dependence we report may stem from a shortage of nutrients normally derived from decomposing salmon carcasses. Cohorts of juvenile salmon may experience density‐dependent mortality at population sizes far below historical levels and recovery of imperiled populations may be much slower than currently expected.  相似文献   

10.
Management and restoration planning for Pacific salmon is often characterized by efforts at broad multi-basin scales. However, finer-scale genetic and phenotypic variability may be present within individual basins and can be overlooked in such efforts, even though it may be a critical component for long-term viability. Here, we investigate Chinook salmon (Oncorhynchus tshawytscha) within the Siletz River, a small coastal watershed in Oregon, USA. Adult Chinook salmon were genotyped using neutral microsatellite markers, single nucleotide polymorphisms and “adaptive” loci, associated with temporal variation in migratory behavior in many salmon populations, to investigate genetic diversity based upon both spatial and temporal variation in migratory and reproductive behavior. Results from all three marker types identified two genetically distinct populations in the basin, corresponding to early returning fish that spawn above a waterfall, a spring-run population, and later returning fish spawning below the waterfall, a fall-run population. This finding is an important consideration for management of the species, as spring-run populations generally only have been recognized in large watersheds, and highlights the need to evaluate population structure of salmon within smaller watersheds, and thereby increase the probability of successful conservation of salmon species.  相似文献   

11.
Ward DM  Nislow KH  Folt CL 《Oecologia》2008,156(3):515-522
The effect of predators on prey populations depends on how predator-caused mortality changes with prey population density. Predators can enforce density-dependent prey mortality and contribute to population stability, but only if they have a positive numerical or behavioral response to increased prey density. Otherwise, predator saturation can result in inversely density-dependent mortality, destabilizing prey populations and increasing extinction risk. Juvenile salmon and trout provide some of the clearest empirical examples of density-dependent mortality in animal populations. However, although juvenile salmon are very vulnerable to predators, the demographic effects of predators on juvenile salmon are unknown. We tested the interactive effects of predators and population density on the mortality of juvenile Atlantic salmon (Salmo salar) using controlled releases of salmon in natural streams. We introduced newly hatched juvenile salmon at three population density treatments in six study streams, half of which contained slimy sculpin (Cottus cognatus), a common generalist predator (18 release sites in total, repeated over two summers). Sculpin reversed the direction of density dependence for juvenile salmon mortality. Salmon mortality was density dependent in streams with no sculpin, but inversely density dependent in streams where sculpin were abundant. Such predator-mediated inverse density dependence is especially problematic for prey populations suppressed by other factors, thereby presenting a fundamental challenge to persistence of rare populations and restoration of extirpated populations.  相似文献   

12.
Short‐term forecasts based on time series of counts or survey data are widely used in population biology to provide advice concerning the management, harvest and conservation of natural populations. A common approach to produce these forecasts uses time‐series models, of different types, fit to time series of counts. Similar time‐series models are used in many other disciplines, however relative to the data available in these other disciplines, population data are often unusually short and noisy and models that perform well for data from other disciplines may not be appropriate for population data. In order to study the performance of time‐series forecasting models for natural animal population data, we assembled 2379 time series of vertebrate population indices from actual surveys. Our data were comprised of three vastly different types: highly variable (marine fish productivity), strongly cyclic (adult salmon counts), and small variance but long‐memory (bird and mammal counts). We tested the predictive performance of 49 different forecasting models grouped into three broad classes: autoregressive time‐series models, non‐linear regression‐type models and non‐parametric time‐series models. Low‐dimensional parametric autoregressive models gave the most accurate forecasts across a wide range of taxa; the most accurate model was one that simply treated the most recent observation as the forecast. More complex parametric and non‐parametric models performed worse, except when applied to highly cyclic species. Across taxa, certain life history characteristics were correlated with lower forecast error; specifically, we found that better forecasts were correlated with attributes of slow growing species: large maximum age and size for fishes and high trophic level for birds. Synthesis Evaluating the data support for multiple plausible models has been an integral focus of many ecological analyses. However, the most commonly used tools to quantify support have weighted models’ hindcasting and forecasting abilities. For many applications, predicting the past may be of little interest. Concentrating only on the future predictive performance of time series models, we performed a forecasting competition among many different kinds of statistical models, applying each to many different kinds of vertebrate time series of population abundance. Low‐dimensional (simple) models performed well overall, but more complex models did slightly better when applied to time series of cyclic species (e.g. salmon).  相似文献   

13.
The supply of recruits plays an important role in plant and animal population dynamics, and may be governed by environmental and behavioral constraints on animals. Mated females of the mayfly genus Baetis alight on rocks protruding from streams, crawl under water and deposit a single egg mass under a rock. We surveyed oviposition and emergence of a bivoltine population of B. bicaudatus in multiple stream reaches in one high-altitude watershed in western Colorado over 3 years to establish qualitative patterns at a regional scale (entire watershed), and quantitative patterns over six generations at a local scale (one stream reach). We also measured characteristics of preferred oviposition substrates, performed experiments to test hypotheses about cues used by females to select oviposition sites, and measured mortality of egg masses in the field. Our goals were to determine whether: (1) hydrologic variation necessitated dispersal of females to find suitable oviposition sites; (2) the local supply of females could provide the supply of local recruits; and (3) local recruitment determined the local production of adults. The onset of oviposition corresponded with the decline of spring run-off, which differed dramatically among years and among sites within years. However, eggs appeared before any adults had emerged in 8 of 22 site-years, and adults emerged 2-3 weeks before any eggs were oviposited in 3 site-years. Furthermore, the size distribution of egg masses differed from that predicted by the size distribution of females that emerged from seven of nine stream reaches. Protruding rocks and eggs appeared earlier each summer in smaller tributaries than in larger mainstream reaches, suggesting that hydrologic and behavioral constraints on oviposition may force females to disperse away from their natal reach to oviposit, and possibly explain the predominantly upstream flight of Baetis females reported in other studies. Local oviposition rates in one third-order stream-reach increased rapidly as soon as substrates protruded from the water surface, and females preferred large rocks that became available early in the flight season. However, females oviposited on <10% of all available rocks, and <65% of preferred rocks as determined by an empirical model. These data indicated that the timing of appearance of suitable oviposition sites determined the phenology of local recruitment, but that preferred oviposition sites were not saturated. Thus, the magnitude of local recruitment was not limited by the absolute abundance of preferred oviposition sites. Only 22% of egg masses observed in the field suffered mortality during their embryonic development, and per capita Baetis egg mass mortality was significantly lower on rocks with higher densities of egg masses. Thus, we suspect that specialized oviposition behavior may reduce the probability of egg mortality, potentially compensating for the costs of dispersal necessary to locate suitable oviposition sites. Finally, the number of adults that emerged at one stream reach was independent of the number of egg masses oviposited over six generations of Baetis; and local recruitment was not a function of the number of adults of the previous generation that emerged locally. The patterns of oviposition and emergence of Baetis found in this study are consistent with the following hypotheses. Recruitment of eggs in a stream reach is not limited by the local supply of adults, but is a function of the regional supply of dispersing adults, which are constrained by the spatial and temporal distribution of preferred oviposition habitat. Furthermore, subsequent local production of adults is not a function of the supply of recruits, arguing for post-recruitment control of local populations by processes operating in the larval stage (e.g., predation, competition, dispersal, disturbance). Processes affecting larval and adult stages of Baetis act independently and at different scales, thereby decoupling local population dynamics of successive generations.  相似文献   

14.
15.
In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.  相似文献   

16.
Debate on the control of population dynamics in reef fishes has centred on whether patterns in abundance are determined by the supply of planktonic recruits, or by post-recruitment processes. Recruitment limitation implies little or no regulation of the reef-associated population, and is supported by several experimental studies that failed to detect density dependence. Previous manipulations of population density have, however, focused on juveniles, and there have been no tests for density-dependent interactions among adult reef fishes. I tested for population regulation in Coryphopterus glaucofraenum, a small, short-lived goby that is common in the Caribbean. Adult density was manipulated on artificial reefs and adults were also monitored on reefs where they varied in density naturally. Survival of adult gobies showed a strong inverse relationship with their initial density across a realistic range of densities. Individually marked gobies, however, grew at similar rates across all densities, suggesting that density-dependent survival was not associated with depressed growth, and so may result from predation or parasitism rather than from food shortage. Like adult survival, the accumulation of new recruits on reefs was also much lower at high adult densities than at low densities. Suppression of recruitment by adults may occur because adults cause either reduced larval settlement or reduced early post-settlement survival. In summary, this study has documented a previously unrecorded regulatory mechanism for reef fish populations (density-dependent adult mortality) and provided a particularly strong example of a well-established mechanism (density-dependent recruitment). In combination, these two compensatory mechanisms have the potential to strongly regulate the abundance of this species, and rule out the control of abundance by the supply of recruits.  相似文献   

17.
Aim Marginal populations are frequently neglected in static views of vegetation types, particularly when defining conservation reserves. The biogeographical and evolutionary importance of a marginal and endangered population of Pinus canariensis is addressed in this study to ascertain the need for conservation action. Diversity loss between adults and offspring and patterns of seed dispersal and recruitment were examined to provide evidence of recent degradation of marginal P. canariensis pinewoods. The scientific basis for the provision of sound conservation policies was investigated by elucidating the factors responsible for significant population structure. Location An isolated low‐density pinewood community confined to the Arguineguin ravine, in south Gran Canaria, Canary Islands. Methods Two cohorts, of centenary trees (those older than 100 years) and young recruits, respectively, were found in a detailed inventory of the pine population in the Arguienguin ravine. Chloroplast and nuclear microsatellites were compared to assess the levels of genetic diversity between adults and recruits. Spatial genetic structure and parentage analysis based on highly polymorphic nuclear and chloroplast microsatellites were examined to test limitations in seed dispersal. The underlying environmental factors that led to a clustering effect in the population were tested using point pattern methodologies. Results Centenary trees retain high levels of genetic diversity and effective population size, suggesting a wider extension of the pinewood forests in the past. A significant loss of genetic diversity was detected between adults and recruits. Pinus canariensis dispersal distances were among the longest ever reported for anemochorous species, suggesting that environmental factors account for recruit clustering. Cluster models showed that recruits tend to aggregate in dry streambeds, where soil and water accumulation favours establishment. Main conclusions Boundary populations of P. canariensis are subjected to fragmentation and reduction in effective population size as a result of human impact. Marginal populations were denser in the past and currently require specific conservation efforts. A severe reduction in genetic diversity compromises the future of present populations. Streambeds appear to play a major role in recruit establishment, but data suggest the absence of limitations to seed dispersal.  相似文献   

18.
Species’ impacts on primary production can have strong ecological consequences. In freshwater ecosystems, Pacific salmon (Oncorhynchus spp.) may influence stream periphyton through substrate disturbance during spawning and nutrient subsidies from senescent adults. The shape of relationships between the abundance of spawning salmon and stream periphyton, as well as interactions with environmental variables, are incompletely understood and may differ across the geographic range of salmon. We examined these relationships across 24 sockeye salmon (Oncorhynchus nerka) spawning streams in north-central British Columbia, Canada. The influence of salmon abundance and environmental variables (temperature, light, dissolved nutrients, water velocity, watershed size, and invertebrate grazer abundance) on post-spawning periphyton abundance and nitrogen stable isotope signatures, which can indicate the uptake of salmon nitrogen, was evaluated using linear regression models and Akaike Information Criterion. Periphyton nitrogen stable isotope signatures were best described by a positive log-linear relationship with an upstream salmon abundance metric that includes salmon from earlier years. This suggests the presence of a nutrient legacy. In contrast, periphyton abundance was negatively related to the spawning-year salmon density, which likely results from substrate disturbance during spawning, and positively related to dissolved soluble reactive phosphorus prior to spawning, which may indicate phosphorus limitation in the streams. These results suggest that enrichment from salmon nutrients does not always translate into elevated periphyton abundance. This underscores the need to directly assess the outcome of salmon impacts on streams rather than extrapolating from stable isotope evidence for the incorporation of salmon nutrients into food webs.  相似文献   

19.
Einum S  Nislow KH  McKelvey S  Armstrong JD 《Oecologia》2011,167(4):1017-1025
Competitive effects of younger cohorts on older ones are frequently assumed to be negligible in species where older, larger individuals dominate in pairwise behavioural interactions. Here, we provide field estimates of such competition by recruits on an older age class in Atlantic salmon (Salmo salar), a species where observational studies have documented strong body size advantages which should favour older individuals in direct interactions. By creating realistic levels of spatial variation in the density of underyearling (YOY) recruits over a 1-km stretch of a stream, and obtaining accurate measurements of individual growth rates of overyearlings (parr) from capture–mark–recapture data on a fine spatial scale, we demonstrate that high YOY density can substantially decrease parr growth. Models integrating multiple spatial scales indicated that parr were influenced by YOY density within 16 m. The preferred model suggested parr daily mass increase to be reduced by 39% when increasing YOY density from 0.0 to 1.0 m−2, which is well within the range of naturally occurring densities. Reduced juvenile growth rates will in general be expected to reduce juvenile survival (via increased length of exposure to freshwater mortality) and increase generation times (via increased age at seaward migrations). Thus, increased recruitment can significantly affect the performance of older cohorts, with important implications for population dynamics. Our results highlight that, even for the wide range of organisms that rely on defendable resources, the direction of competition among age classes cannot be assumed a priori or be inferred from behavioural observations alone.  相似文献   

20.
Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes ((34)S/(32)S, referred to as δ(34)S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ(34)S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号