首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood‐spinal cord barrier (BSCB) disruption is a major process for the secondary injury of spinal cord injury (SCI) and is considered to be a therapeutic target for SCI. Previously, we demonstrated that metformin could improve functional recovery after SCI; however, the effect of metformin on BSCB is still unknown. In this study, we found that metformin could prevent the loss of tight junction (TJ) proteins at day 3 after SCI in vivo, but in vitro there was no significant difference of these proteins between control and metformin treatment in endothelial cells. This indicated that metformin‐induced BSCB protection might not be mediated by up‐regulating TJ proteins directly, but by inhibiting TJ proteins degradation. Thus, we investigated the role of metformin on MMP‐9 and neutrophils infiltration. Neutrophils infiltration is the major source of the enhanced MMP‐9 in SCI. Our results showed that metformin decreased MMP‐9 production and blocked neutrophils infiltration at day 1 after injury, which might be related to ICAM‐1 down‐regulation. Also, our in vitro study showed that metformin inhibited TNF‐α‐induced MMP‐9 up‐regulation in neutrophils, which might be mediated via an AMPK‐dependent pathway. Together, it illustrated that metformin prevented the breakdown of BSCB by inhibiting neutrophils infiltration and MMP‐9 production, but not by up‐regulating TJ proteins expression. Our study may help to better understand the working mechanism of metformin on SCI.  相似文献   

2.
The neuropeptide substance P (SP) is a well-known mediator of neurogenic inflammation following a variety of CNS disorders. Indeed, inhibition of SP through antagonism of its receptor, the tachykinin NK1 receptor, has been shown to be beneficial following both traumatic brain injury and stroke. Such studies demonstrated that administration of an NK1 receptor antagonist reduced blood-brain-barrier permeability, edema development and improved functional outcome. Furthermore, our recent studies have demonstrated a potential role for SP in mediating neurogenic inflammation following traumatic spinal cord injury (SCI). Accordingly, the present study investigates whether inhibition of SP may similarly play a neuroprotective role following traumatic SCI. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. At 30 minutes post-injury an NK1 receptor antagonist was administered intravenously. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, spinal water content (edema), intrathecal pressure (ITP), and histological and functional outcome from 5 hours to 2 weeks post-SCI. Administration of an NK1 receptor antagonist was not effective in reducing BSCB permeability, edema, ITP, or functional deficits following SCI. We conclude that SP mediated neurogenic inflammation does not seem to play a major role in BSCB disruption, edema development and consequential tissue damage seen in acute traumatic SCI. Rather it is likely that the severe primary insult and subsequent hemorrhage may be the key contributing factors to ongoing SCI injury.  相似文献   

3.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

4.
After spinal cord injury (SCI), disruption of blood–spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF‐induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF‐induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K‐Akt‐Rac1 signalling pathway.  相似文献   

5.
Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.  相似文献   

6.
Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB), which leads to infiltration of blood cells, inflammatory responses and neuronal cell death, with subsequent development of spinal cord secondary damage. Recent reports pointed to an important role of retinoic acid (RA), the active metabolite of the vitamin A, in the induction of the blood–brain barrier (BBB) during human and mouse development, however, it is unknown whether RA plays a role in maintaining BSCB integrity under the pathological conditions such as SCI. In this study, we investigated the BSCB protective role of RA both in vivo and in vitro and demonstrated that autophagy are involved in the BSCB protective effect of RA. Our data show that RA attenuated BSCB permeability and also attenuated the loss of tight junction molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in brain microvascular endothelial cells. In addition, RA administration improved functional recovery of the rat model of trauma. We also found that RA could significantly increase the expression of LC3-II and decrease the expression of p62 both in vivo and in vitro. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB and exacerbated the loss of tight junctions. Together, our studies indicate that RA improved functional recovery in part by the prevention of BSCB disruption via the activation of autophagic flux after SCI.  相似文献   

7.
8.
Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. This study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Bladders from SCI (T8/9 transection) and sham-operated rats 5 weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. In conclusion, IC populations in bladder wall were decreased 5 weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.  相似文献   

9.
Blood–spinal cord barrier (BSCB) disruption following spinal cord injury (SCI) significantly compromises functional neuronal recovery. Autophagy is a potential therapeutic target when seeking to protect the BSCB. We explored the effects of lithium chloride (LiCl) on BSCB permeability and autophagy-induced SCI both in a rat model of SCI and in endothelial cells subjected to oxygen–glucose deprivation. We evaluated BSCB status using the Evans Blue dye extravasation test and measurement of tight junction (TJ) protein levels; we also assessed functional locomotor recovery. We detected autophagy-associated proteins in vivo and in vitro using both Western blotting and immunofluorescence staining. We found that, in a rat model of SCI, LiCl attenuated the elevation in BSCB permeability, improved locomotor recovery, and inhibited the degradation of TJ proteins including occludin and claudin-5. LiCl significantly induced the extent of autophagic flux after SCI by increasing LC3-II and ATG-5 levels, and abolishing p62 accumulation. In addition, a combination of LiCl and the autophagy inhibitor chloroquine not only partially eliminated the BSCB-protective effect of LiCl, but also exacerbated TJ protein degradation both in vivo and in vitro. Together, these findings suggest that LiCl treatment alleviates BSCB disruption and promotes locomotor recovery after SCI, partly by stimulating autophagic flux.  相似文献   

10.
Spinal cord injury (SCI), depending on the severity of injury, leads to neurological dysfunction and paralysis. Methylprednisolone, the only currently available therapy renders limited protection in SCI. Therefore, other therapeutic agents must be tested to maximize neuroprotection and functional recovery. Previous data from our laboratory indicate that estrogen (17β-estradiol) at a high dose may attenuate multiple damaging pathways involved in SCI and improve locomotor outcome. Since use of high dose estrogen may have detrimental side effects and therefore may never be used in the clinic, the current study investigated the efficacy of this steroid hormone at very low doses in SCI. In particular, we tested the impact of dosing (1–10 μg/kg), mode of delivery (intravenous vs. osmotic pump), and delay in estrogen application (15 min–4 h post-SCI) on microgliosis and neuronal death in acute SCI in rats. Treatment with 17β-estradiol (1–10 μg/kg) significantly reduced microglial activation and also attenuated apoptosis of neurons compared to untreated SCI animals. The attenuation of cell death and inflammation by estrogen was observed regardless of mode and time of delivery following injury. These findings suggest estrogen as a potential agent for the treatment of individuals with SCI.  相似文献   

11.
We investigated the involvement of tPA after SCI in rats and effect of treatment with human umbilical cord blood derived stem cells. tPA expression and activity were determined in vivo after SCI in rats and in vitro in rat embryonic spinal neurons in response to injury with staurosporine, hydrogen peroxide and glutamate. The activity and/or expression of tPA increased after SCI and reached peak levels on day 21 post-SCI. Notably, the tPA mRNA activity was upregulated by 310-fold compared to controls on day 21 post-SCI. As expected, MBP expression is minimal at the time of peak tPA activity and vice versa. Implantation of hUCB after SCI resulted in the downregulation of elevated tPA activity/expression in vivo in rats as well as in vitro in spinal neurons. Our results demonstrated the involvement of tPA in the secondary pathogenesis after SCI as well as the therapeutic potential of hUCB.  相似文献   

12.
Rong W  Wang J  Liu X  Jiang L  Wei F  Hu X  Han X  Liu Z 《Neurochemical research》2012,37(8):1615-1623
The aim of this study was to determine the therapeutic efficacy of starting naringin treatment 1 day after spinal cord injury (SCI) in rat and to investigate the underlying mechanism. SCI was induced using the modified weight-drop method in Sprague-Dawley rats. The SCI animals were randomly divided into three groups: vehicle-treated group; 20 mg/kg naringin-treated group; 40 mg/kg naringin-treated group, and additionally with sham group (laminectomy only). Locomotors functional recovery was assessed during the 6 weeks post operation period by performing open-field locomotors tests and inclined-plane tests. At the end of the study, the segments of spinal cord encompassing the injury site were removed for histopathological analysis. Immunohistochemistry was performed to observe the expression of the brain-derived neurotrophic factor (BDNF). The expression of vascular endothelial growth factor (VEGF), B-cell CLL/lymphoma-2 (Bcl-2), BCL-2-associated X protein (Bax) and caspase-3 were detected by Western blot analysis. The apoptotic neural cells were assessed using the TUNEL method. The results showed that the naringin-treated animals had significantly better locomotor function recovery, less myelin loss, and higher expression of BDNF and VEGF. In addition, naringin treatment significantly increased in Bcl-2:Bax ratio, reduced the enzyme activity of caspase-3 and decreased the number of apoptotic cells after SCI. These findings suggest that naringin treatment starting 1 day after SCI can significantly improve locomotor recovery, and this neuroprotective effect may be related to the upregulation of BDNF and VEGF and the inhibition of neural apoptosis. Therefore, naringin may be useful as a promising therapeutic agent for SCI.  相似文献   

13.
Inflammation has been known to play an important role in the pathogenesis after spinal cord injury (SCI). Microglia are activated after injury and produce a variety of proinflammatory factors such as tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and reactive oxygen species leading to apoptosis of neurons and oligodendrocytes. In this study, we examined the neuroprotective effects of total ethanol extract of Scutellaria baicalensis (EESB) , after SCI. Using primary microglial cultures, EESB treatment significantly inhibited lipopolysaccharide-induced expression of such inflammatory mediators as tumor necrosis factor-α, IL-1β, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase. Furthermore, reactive oxygen species and nitric oxide production were significantly attenuated by EESB treatment. For in vivo study, rats that had received a moderate spinal cord contusion injury at T9 received EESB orally at a dose of 100 mg/kg. EESB inhibited expression of proinflammatory factors and protein carbonylation and nitration after SCI. EESB also inhibited microglial activation at 4 h after injury. Furthermore, EESB significantly inhibited apoptotic cell death of neurons and oligodendrocytes and improved functional recovery after SCI. Lesion cavity and myelin loss were also reduced following EESB treatment. Thus, our data suggest that EESB significantly improve functional recovery by inhibiting inflammation and oxidative stress after injury.  相似文献   

14.
AimsThe present study aimed to investigate the correlation between quercetin (Que) and the p38 mitogen-activated protein kinase (p38MAPK)/inducible nitric oxide synthase (iNOS) signaling pathway and to explore its regulating effect on secondary oxidative stress following acute spinal cord injury (SCI), so as to elucidate the protective effects and mechanism associated with Que treatment during acute SCI.Main methodsSprague–Dawley rats were randomly divided into sham-surgery, SCI, Que, methylprednisolone (MP), and specific p38MAPK inhibitor SB203580 treatment groups. Acute SCI models were established in rats by a modified Allen's method. Real-time PCR analysis, western blot assay and immunohistochemistry for molecular changes in the p38MAPK/iNOS signaling pathway, determination of malondialdehyde (MDA) content and superoxide dismutase (SOD) activity, reflecting the levels of secondary oxidative stress, and functional or behavioral data, reflecting changes induced by Que and control treatments post-SCI were performed.Key findingsQue significantly increased Basso, Beattie and Bresnahan scores and inclined plane test scores in SCI rats similar to the positive control drug, MP. Que significantly inhibited increases in phosphorylated-p38MAPK (p-p38MAPK) and iNOS expression and reduced the rate of iNOS-positive cells in rats with SCI, similar to the effects of SB203580. In addition, both Que and SB203580 reduced MDA content and enhanced SOD activity in SCI rats, with Que effects being stronger.SignificanceThese experimental findings indicate that in SCI rats, Que has protective effects on the spinal cord by the potential mechanism of inhibiting the activation of p38MAPK/iNOS signaling pathway and thus regulating secondary oxidative stress.  相似文献   

15.
Chemokines, a subclass of cytokine superfamily have both pro-inflammatory and migratory role and serve as chemoattractant of immune cells during the inflammatory responses ensuing spinal cord injury (SCI). The chemokines, especially CXCL-1, CXCL-9, CXCL-10 and CXCL-12 contribute significant part in the inflammatory secondary damage of SCI. Inhibiting chemokine’s activity and thereby the secondary damage cascades has been suggested as a chemokine-targeted therapeutic approach to SCI. To optimize the inhibition of secondary injury through targeted chemokine therapy, accurate knowledge about the temporal profile of these cytokines following SCI is required. Hence, the present study was planned to determine the serum levels of CXCL-1, CXCL-9, CXCL-10 and CXCL-12 at 3–6 h, 7 and 28 days and 3 m after SCI in male and female SCI patients (n = 78) and compare with age- and sex-matched patients with non-spinal cord injuries (NSCI, n = 70) and healthy volunteers (n = 100). ANOVA with Tukey post hoc analysis was used to determine the differences between the groups. The data from the present study show that the serum level of CXCL-1, CXCL-9 and CXCL-10 peaked on day 7 post-SCI and then declined to the control level. In contrast, significantly elevated level of CXCL-12 persisted for 28 days post SCI. In addition, post-SCI expression of CXCL-12 was found to be sex-dependent. Male SCI patients expressed significantly higher CXCL-12 when compared to control and SCI female. We did not observe any change in chemokines level of NSCI. Further, the age of the patients did not influence chemokines expression after SCI. These observations along with SCI-induced CSF-chemokine level should contribute to the identification of selective and temporal chemokine targeted therapy after SCI.  相似文献   

16.
Objective:Characterise the spatiotemporal trabecular and cortical bone responses to complete spinal cord injury (SCI) in young rats.Methods:8-week-old male Wistar rats received T9-transection SCI and were euthanised 2-, 6-, 10- or 16-weeks post-surgery. Outcome measures were assessed using micro-computed tomography, mechanical testing, serum markers and Fourier-transform infrared spectroscopy.Results:The trabecular and cortical bone responses to SCI are site-specific. Metaphyseal trabecular BV/TV was 59% lower, characterised by fewer and thinner trabeculae at 2-weeks post-SCI, while epiphyseal BV/TV was 23% lower with maintained connectivity. At later-time points, metaphyseal BV/TV remained unchanged, while epiphyseal BV/TV increased. The total area of metaphyseal and mid-diaphyseal cortical bone were lower from 2-weeks and between 6- and 10-weeks post-SCI, respectively. This suggested that SCI-induced bone changes observed in the rat model were not solely attributable to bone loss, but also to suppressed bone growth. No tissue mineral density differences were observed at any time-point, suggesting that decreased whole-bone mechanical properties were primarily the result of changes to the spatial distribution of bone.Conclusion:Young SCI rat trabecular bone changes resemble those observed clinically in adult and paediatric SCI, while cortical bone changes resemble paediatric SCI only.  相似文献   

17.
18.
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30–300 µg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-κB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   

19.
Sharma HS  Sjöquist PO 《Amino acids》2002,23(1-3):261-272
Summary.  The involvement of the excitatory amino acid glutamate and the inhibitory amino acid gamma-amino butyric acid (GABA) in the pathophysiology of spinal cord injury is not known in details. This investigation is focused on the role of glutamate and GABA in a rat model of spinal cord trauma using immunohistochemistry. Spinal cord injury produced by a longitudinal incision of the right dorsal horn of the T10–11 segments resulted in profound edema and cell damage in the adjacent T9 segment at 5 h. Pretreatment with H-290/51 (50 mg/kg, p.o.), a potent antioxidant compound, effectively reduced the blood-spinal cord barrier (BSCB) permeability, edema formation and cell injury following trauma. At this time, untreated traumatised rats exhibited a marked increase in glutamate immunoreactivity along with a distinct decrease in GABA immunostaining in the T9 segment. These changes in glutamate and GABA immunoreactivity in traumatised rats were considerably attenuated by pretreatment with H-290/51. These results suggest that (i) oxidative stress contributes to alterations in glutamate and GABA in spinal cord injury, (ii) glutamate and GABA are important factors in the breakdown of the BSCB, edema formation and cell changes, and (iii) the antioxidant compound H-290/51 has a potential therapeutic value in the treatment of spinal cord injuries. Received July 3, 2001 Accepted August 6, 2001 Published online July 31, 2002  相似文献   

20.
Walker CL  Walker MJ  Liu NK  Risberg EC  Gao X  Chen J  Xu XM 《PloS one》2012,7(1):e30012
Secondary damage following primary spinal cord injury extends pathology beyond the site of initial trauma, and effective management is imperative for maximizing anatomical and functional recovery. Bisperoxovanadium compounds have proven neuroprotective effects in several central nervous system injury/disease models, however, no mechanism has been linked to such neuroprotection from bisperoxovanadium treatment following spinal trauma. The goal of this study was to assess acute bisperoxovanadium treatment effects on neuroprotection and functional recovery following cervical unilateral contusive spinal cord injury, and investigate a potential mechanism of the compound's action. Two experimental groups of rats were established to 1) assess twice-daily 7 day treatment of the compound, potassium bisperoxo (picolinato) vanadium, on long-term recovery of skilled forelimb activity using a novel food manipulation test, and neuroprotection 6 weeks following injury and 2) elucidate an acute mechanistic link for the action of the drug post-injury. Immunofluorescence and Western blotting were performed to assess cellular signaling 1 day following SCI, and histochemistry and forelimb functional analysis were utilized to assess neuroprotection and recovery 6 weeks after injury. Bisperoxovanadium promoted significant neuroprotection through reduced motorneuron death, increased tissue sparing, and minimized cavity formation in rats. Enhanced forelimb functional ability during a treat-eating assessment was also observed. Additionally, bisperoxovanadium significantly enhanced downstream Akt and mammalian target of rapamycin signaling and reduced autophagic activity, suggesting inhibition of the phosphatase and tensin homologue deleted on chromosome ten as a potential mechanism of bisperoxovanadium action following traumatic spinal cord injury. Overall, this study demonstrates the efficacy of a clinically applicable pharmacological therapy for rapid initiation of neuroprotection post-spinal cord injury, and sheds light on the signaling involved in its action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号