共查询到20条相似文献,搜索用时 0 毫秒
1.
Class II major histocompatibility complex (MHC) beta genes were isolated from 12 species of rockfish (genus Sebastes ). Multiple sequences were found in each of the species. The majority of sequences displayed the characteristics of functional MHC genes, with a small group of sequences that were possibly pseudogenes. 相似文献
2.
The variation of the exon 2 of the major histo-compatibility complex (MHC) class II gene DRB locus in three feline species
were examined on clouded leopard (Neofelis nebulosa), leopard (Panthera pardus) and Amur tiger (Panthera tigris altaica). A pair of degenerated primers was used to amplify DRB locus covering almost the whole exon 2. Exon 2 encodes the β1 domain which is the most variable fragments of the MHC class II molecule. Single-strand conformational polymorphism (SSCP)
analysis was applied to detect different MHC class II DRB haplotypes. Fifteen recombinant plasmids for each individual were
screened out, isolated, purified and sequenced finally. Totally eight distinct haplotypes of exon 2 were obtained in four
individuals. Within 237 bp nucleotide sequences from four samples, 30 variable positions were found, and 21 putative peptide-binding
positions were disclosed in 79 amino acid residues. The ratio of nonsynonymous substitutions (d
N
) was much higher than that of synonymous substitutions (d
S
), which indicated that balancing selection probably maintain the variation of exon 2. MEGA neighbor joining (NJ) and PAUP
maximum parsimony (MP) methods were used to reconstruct phylogenetic trees among species, respectively. Results displayed
a more close relationship between leopard and tiger; however, clouded leopard has a comparatively distant relationship form
the other two.
__________
Translated from Zoological Research, 2006, 27(2): 181-C188 [译自:动物学研究] 相似文献
3.
Howard C. Passmore Joan A. Kobori Edmund J. Zimmerer Dominic G. Spinella Leroy Hood 《Biochemical genetics》1987,25(7-8):513-526
The molecular analysis of crossing-over within the mouse major histocompatibility complex provides a useful approach for the study of the structural characteristics of meiotic recombination. In this study five intra-I-region recombinants, each derived fromI
k/I
b heterozygotes, were characterized for restriction-fragment length polymorphisms (RFLPs) characteristic of theI region of the two parental strains. Southern blot analysis of intra-I recombinant strains A.TBR2, A.TBR3, A.TBR5, A.TBR13, and A.TBR17 using sixI-region DNA probes revealed that the point of crossing-over in all five recombinants occurred within a 6.2-kbKpnI-EcoRI segment located within theE
gene. The segments of DNA containing the crossover point from each of the recombinant chromosomes were cloned by screening partial genomic libraries constructed in gt7 bacteriophage. Construction of partial restriction maps of the cloned segments from the parental and recombinant chromosomes permitted the boundaries of the area containing the crossover site to be narrowed to a 4.0-kb segment located almost entirely within an intron of theE
gene. The recognition that the points of crossing-over in all five recombinants studied are clustered in a relatively small area of theI region provides further evidence for a hot spot of recombination associated with theE
ß gene.This work was supported by Grants AI14424 and AI20317 from the National Institutes of Health. J. Kobori was supported by a postdoctoral fellowship from the Arthritis Foundation. E. Zimmerer was supported by a postdoctoral fellowship from the Charles and Johanna Busch Fund of the Bureau of Biological Research. D. Spinella was supported by a predoctoral fellowship from the Charles and Johanna Busch Fund. 相似文献
4.
American bison (Bison bison) and domestic cattle (Bos taurus and Bos indicus) evolved from a common ancestor 1–1.4 million years ago. Nevertheless, they show dramatic differences in their susceptibility
to infectious diseases, including malignant catarrhal fever (MCF). Although bison are highly susceptible to ovine herpesvirus-2
(OvHV-2) associated MCF, about 20% of healthy domesticated and wild bison are positive for OvHV-2 antibody. We are interested
in testing the hypothesis that, within the bison population, the polymorphism of major histocompatibility complex (MHC) class
II genes influences resistance to MCF. However, since little was known about the MHC class II genes of bison, it was necessary
to first characterize class II haplotypes present in Bi. bison (Bibi). Thus, the MHC class II haplotypes carried by 14 bison were characterized by the PCR-based cloning and sequencing of their
DRB3, DQA, and DQB alleles. Twelve MHC class II haplotypes were identified in the 14 bison. These haplotypes comprised six previously reported
and six new Bibi-DRB3 alleles, along with 11 Bibi-DQA and 10 Bibi-DQB alleles. For each bison class II allele, it was possible to identify closely related cattle sequences. The closest bison
and bovine DQA, DQB, and DRB3 alleles, on average, differed by only 1.3, 3.5, and 5.8 amino acids, respectively. Furthermore, bison MHC haplotypes with
both nonduplicated and duplicated DQ genes were identified; these haplotypes appear to have originated from the same ancestral haplotypes as orthologous cattle
haplotypes.
This study was supported by USDA-Agricultural Research Service grant CWU-5348-32000-018-00D. While working on this project,
Dr. Bharat Bhushan was supported by a fellowship from the World-Bank-sponsored National Agricultural Technology Project of
the Indian Council of Agricultural Research, Indian Ministry of Agriculture, New Delhi, India 相似文献
5.
The polymorphic exon 2-exon 3 region of bovine major histocompatibility complex (MHC) class I genes was amplified by polymerase chain reaction (PCR) from genomic DNA samples with characterized class I polymorphism. The primers for amplification were designed in conserved regions at the borders of exons 2 and 3, based on all available cDNA sequences. The primers should, therefore, amplify most expressed class I genes, but may also amplify non-expressed class I genes. The PCR amplified class I gene fragments of 700 bp were characterized on the basis of restriction fragment length polymorphism (RFLP). The PCR-RFLP analysis of class I genes showed that the bands in each digestion could be classified as non-polymorphic, as shared between several bovine lymphocyte antigen (BoLA)-A types, or as specific to a single BoLA-A type. The same primers were then used for amplification of class I gene fragments from eight Sahiwal animals, a breed which originated in the Indian subcontinent. These studies showed that BoLA class I PCR-RFLP could be used to study class I polymorphism in family groups. 相似文献
6.
Molecular characterization of major histocompatibility complex (B) haplotypes in broiler chickens 总被引:2,自引:0,他引:2
In Leghorn (laying) chickens, susceptibility to a number of infectious diseases is strongly associated with the major histocompatibility ( B ) complex. Nucleotide sequence data have been published for six class I ( B-F ) alleles and for class II ( B-Lβ ) alleles or isotypes from 17 Leghorn haplotypes. It is not known if classical B-L or B-F alleles in broilers are identical, at the sequence level, to any Leghorn alleles. This report describes molecular and immunogenetic characterization of two haplotypes from commercial broiler breeder chickens that were originally identified by serology as a single haplotype, but were differentiated serologically in the present work. The two haplotypes, designated B A4 and B A4variant , shared identical B-G restriction fragment length polymorphism patterns, but differed in one B-Lβ fragment that cosegregated with the serological B haplotype. Furthermore, the nucleotide sequences of the highly variable exons of an expressed B-LβII family gene and B-F gene from the two haplotypes were markedly different from each other. Both the B-LβII family and B-F gene sequences from the B A4 haplotype were identical to the sequences obtained from the reference B 21 haplotype in Leghorns; however, in the B A4 haplotype the B-Lβ 21 and B-F 21 alleles were in linkage with B-G alleles that were not G 21 . The nucleotide sequences from B A4variant were unique among the reported chicken B-LβII family and B-F alleles. 相似文献
7.
P. Millot 《Animal genetics》1978,9(2):115-121
Among 11 lymphocyte factors defined in sheep, 9 are the products of multiple alleles at 2 closely linked loci: OLA-A and OLA-B. A tenth factor is the product of a gene at a third locus: OL-X probably on the same chromosome, but in this case very distant from OLA. The last factor is the product of a gene at a fourth locus: OL-Z, independent of OLA-A and B. 相似文献
8.
Parasite mediated selection may result in arms races between host defence and parasite virulence. In particular, simultaneous infections from multiple parasite species should cause diversification (i.e. balancing selection) in resistance genes both at the population and the individual level. Here, we tested these ideas in highly polymorphic major histocompatibility complex (MHC) genes from three-spined sticklebacks (Gasterosteus aculeatus L.). In eight natural populations, parasite diversity (15 different species), and MHC class IIB diversity varied strongly between habitat types (lakes vs. rivers vs. estuaries) with lowest values in rivers. Partial correlation analysis revealed an influence of parasite diversity on MHC class IIB variation whereas general genetic diversity assessed at seven microsatellite loci was not significantly correlated with parasite diversity. Within individual fish, intermediate, rather than maximal allele numbers were associated with minimal parasite load, supporting theoretical models of self-reactive T-cell elimination. The optimal individual diversity matched those values female fish try to achieve in their offspring by mate choice. We thus present correlative evidence supporting the 'allele counting' strategy for optimizing the immunocompetence in stickleback offspring. 相似文献
9.
The major histocompatibility complex (MHC) contains genes integral to immune response in vertebrates. MHC genes have been shown to be under selection in a number of vertebrate taxa, making them intriguing for population genetic studies. We have conducted a survey of genetic variation in an MHC class II gene for steelhead trout from 24 sites in coastal California and compared this variation to that observed at 16 presumably neutral microsatellite loci. A high amount of allelic variation was observed at the MHC when compared to previously published studies on other Pacific salmonids. Elevated nonsynonymous substitutions, relative to synonymous substitutions, were detected at the MHC gene, indicating the signature of historical balancing selection. The MHC data were tested for correlations to and deviations from the patterns found with the microsatellite data. Estimates of allelic richness for the MHC gene and for the microsatellites were positively correlated, as were estimates of population differentiation (F(ST)). An analysis for F(ST) outliers indicates that the MHC locus has an elevated F(ST) relative to the neutral expectation, although a significant result was found for only one particular geographical subgroup. Relatively uniform allele frequency distributions were detected in four populations, although this finding may be partially due to recent population bottlenecks. These results indicate that, at the scale studied here, drift and migration play a major role in the observed geographical variability of MHC genes in steelhead, and that contemporary selection is relatively weak and difficult to detect. 相似文献
10.
11.
《遗传学报》2022,49(12):1151-1161
The major histocompatibility complex (MHC) is closely associated with numerous diseases, but its high degree of polymorphism complicates the discovery of disease-associated variants. In principle, recombination and de novo mutations are two critical factors responsible for MHC polymorphisms. However, direct evidence for this hypothesis is lacking. Here, we report the generation of fine-scale MHC recombination and de novo mutation maps of ~5 Mb by deep sequencing (> 100×) of the MHC genome for 17 MHC recombination and 30 non-recombination Han Chinese families (a total of 190 individuals). Recombination hotspots and Han-specific breakpoints are located in close proximity at haplotype block boundaries. The average MHC de novo mutation rate is higher than the genome-wide de novo mutation rate, particularly in MHC recombinant individuals. Notably, mutation and recombination generated polymorphisms are located within and outside linkage disequilibrium regions of the MHC, respectively, and evolution of the MHC locus was mainly controlled by positive selection. These findings provide insights on the evolutionary causes of the MHC diversity and may facilitate the identification of disease-associated genetic variants. 相似文献
12.
Genotypic variability at the major histocompatibility complex (B and Rfp-Y) in Camperos broiler chickens 总被引:2,自引:0,他引:2
Evidence for the importance of major histocompatibility complex (MHC) genotype in immunological fitness of chickens continues to accumulate. The MHC B haplotypes contribute resistance to Marek's and other diseases of economic importance. The Rfp-Y, a second cluster of MHC genes in the chicken, may also contribute to disease resistance. Nevertheless, the MHC B and Rfp-Y haplotypes segregating in broiler chickens are poorly documented. The Camperos, free-range broiler chickens developed in Argentina, provide an opportunity to evaluate MHC diversity in a genetically diverse broiler stock. Camperos are derived by cross-breeding parental stocks maintained essentially without selection since their founding. We analysed 51 DNA samples from the Camperos and their parental lines for MHC B and Rfp-Y variability by restriction fragment pattern (rfp) and SSCP typing methods for B-G, B-F (class Ia), B-Lbeta (class II) and Y-F (class Ib) diversity. We found evidence for 38 B-G genotypes. The Camperos B-G patterns were not shared with White Leghorn controls, nor were any of a limited number of Camperos B-G gene sequences identical to published B-G sequences. The SSCP assays provided evidence for the presence of at least 28 B-F and 29 B-Lbeta genotypes. When considered together B-F, B-L, and B-G patterns provide evidence for 40 Camperos B genotypes. We found even greater Rfp-Y diversity. The Rfp-Y class I-specific probe, 163/164f, revealed 44 different rfps among the 51 samples. We conclude that substantial MHC B and Rfp-Y diversity exists within broiler chickens that might be drawn upon in selecting for desirable immunological traits. 相似文献
13.
We isolated major histocompatibility complex class II B (MHCIIB) genes in the Barn owl (Tyto alba). A PCR-based approach combined with primer walking on genomic and complementary DNA as well as Southern blot analyses revealed the presence of two MHCIIB genes, both being expressed in spleen, liver, and blood. Characteristic structural features of MHCIIB genes as well as their expression and high non-synonymous substitution rates in the region involved in antigen binding suggest that both genes are functional. MHC organization in the Barn owl is simple compared to passerine species that show multiple duplications, and resembles the minimal essential MHC of chicken. 相似文献
14.
A second locus and new alleles in the major histocompatibility complex class II (ELA-DQB) region in the horse 总被引:1,自引:0,他引:1
More than two nucleotide sequences of the second exon of the ELA-DQB region retrieved from a single animal and two different sequences isolated from horses homozygous in the major histocompatibility complex (MHC) region by descent indicated the existence of at least two ELA-DQB loci at the genomic level. New alleles detected by polymerase chain reaction single strand conformation polymorphism (SSCP) and defined by nucleotide sequencing of the second exon of the DQB gene(s) were described. Based on the level of nucleotide sharing, at least two groups of alleles were shown to exist. The newly defined alleles belonged preferentially to one of the groups. However, their specific locus assignment was not possible from the data collected. At least one of these alleles was shown to be transcribed. No frame-shift mutations were identified among the new alleles, although one pseudoallele containing a stop codon was identified at the genomic DNA level. 相似文献
15.
The full length of major histocompatibility complex (MHC) class IIB cDNA was cloned from a Chinese population of Paralichthys olivaceus by homology cloning and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The MHC IIB genomic sequence
is 1,864 bp long and consists of 34-bp 5′UTR, 741-bp open reading frame, 407-bp 3′UTR, 96-bp intron1, 392-bp intron2, 85-bp
intron3, and 109-bp intron4. Phylogenetic analysis showed that the putative MHC class IIB amino acid of the Chinese P. olivaceus shared 28.3% to 85.4% identity with that of the reported MHC class IIB in other species. A significant association between
MHC IIB polymorphism and disease resistance/susceptibility was found in Chinese P. olivaceus. Thirteen different MHC IIB alleles were identified among 411 clones from 84 individuals. Among the 280 (268) nucleotides,
32 (11.4%) nucleotide positions were variable. Most alleles such as alleles a, b, c, d, e, f, j, k, i, m were commonly found in both resistant and susceptible stock. Via χ2 test, allele d was significantly more prevalent in individuals from susceptible stock than from resistant stock, and their percentages were
23.80% and 7.14%, respectively. In addition, allele g occurred in 9 and allele h in 4 of 42 resistant individuals that were not present in the susceptible stock; their percentages were 21.4% and 9.52%,
respectively. Although allele l was found only in 8 individuals from the susceptible stock, its percentage is 19.05%. 相似文献
16.
Y. C. Jung M. F. Rothschild M. P. Flanagan E. Pollak C. M. Warner 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,77(2):271-274
Summary Restriction fragment length polymorphism analyses of SLA class I genes were performed on 55 Duroc and 24 Hampshire boars from the 1986–87 national performance tests of each breed. Few boars were inbred. Southern blotting and hybridization procedures were performed on genomic DNA isolated from white blood cells by using Pvu II, Bam HI, and Eco RI endonucleases and a swine MHC class I probe. Genetic variability within and between the two breeds was estimated in terms of nucleotide diversity, by using a mathematical analysis based on the different RFLP patterns. The nucleotide diversity calculated within each breed was less than that between the two breeds. The results from the nucleotide diversity analysis suggested that genetic variability was greater in the Duroc breed than in the Hampshire breed. A relatively high level of genetic variability was shown in the class I major histocompatibility complex genes in the pig. 相似文献
17.
The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes. 相似文献
18.
The major histocompatibility complex (MHC) is an essential part of the vertebrate immune response. MHC genes may be classified as classical, non-classical or non-functional pseudogenes. We have investigated the diversity of class I MHC genes in the brushtail possum, a marsupial native to Australia and an introduced pest in New Zealand. The MHC of marsupials is poorly characterised compared to eutherian mammal species. Comparisons between marsupials and eutherians may enhance understanding of the evolution and functions of this important genetic region. We found a high level of diversity in possum class I MHC genes. Twenty novel sequences were identified using polymerase chain reaction (PCR) primers designed from existing marsupial class I MHC genes. Eleven of these sequences shared a high level of homology with the only previously identified possum MHC class I gene TrvuUB and appear to be alleles at a single locus. Another seven sequences are also similar to TrvuUB but have frame-shift mutations or stop codons early in their sequence, suggesting they are non-functional alleles of a pseudogene locus. The remaining sequences are highly divergent from other possum sequences and clusters with American marsupials in phylogenetic analysis, indicating they may have changed little since the separation of Australian and American marsupials. 相似文献
19.
Summary Patterns of nucleotide substitutions in human major histocompatibility complex (MHC) class I genes were estimated by using phylogenetic trees of DNA sequences. The pattern is defined as a set of 12 parameters, each of which represents the relative frequency of substitutions from a particular nucleotide to another. The pattern at the antigen recognition sites (ARS) in functional MHC genes was remarkably different from that at the remaining coding region (non-ARS). In particular, the proportion of transitions among all the nucleotide substitutions (P
s) was extremely low at the third codon positions of ARS. In the HLA-A genes, P
s at the third codon positions was only 6% in ARS, whereas it was 69% in non-ARS. In HLA-B, the corresponding values were 30% in ARS and 80% in non-ARS, respectively. On the other hand, P
s in a class I pseudogene (HLA-H) was 57%, which was in good agreement with P
s in other pseudogenes. Because pseudogenes are selectively neutral, the pattern in pseudogenes is regarded as the pattern of spontaneous substitution mutations. In general, the pattern in functional genes that are subject to selective forces deviates from the pattern in pseudogenes. At the third codon positions in coding regions, transitions scarcely cause amino acid replacements, whereas about half of transversions do cause replacements. Accordingly, P
s at the third codon positions decreases if amino acid replacements are accelerated by natural selection but increases if amino acids are conserved by functional constraint. Our observations imply that the ARS region is subject to natural selection favoring amino acid replacements, whereas the non-ARS region is subject to functional constraint.
Offprint requests to: T. Gojobori 相似文献
20.
Pathogen-driven balancing selection maintains high genetic diversity in many vertebrates, particularly in the major histocompatibility complex (MHC) immune system gene family, which is often associated with disease susceptibility. In large natural populations where subpopulations face different pathogen pressures, the MHC should show greater genetic differentiation within a species than neutral markers. We examined genetic diversity at the MHC-DQB locus and nine putatively neutral microsatellite markers in grey seals (Halichoerus grypus) from eight United Kingdom (UK) colonies, the Faeroe Islands and Sable Island, Canada. Five DQB alleles were identified in grey seals, which varied in prevalence across the grey seal range. Among the seal colonies, significant differences in DQB allele and haplotype frequencies and in average DQB heterozygosity were observed. Additionally, the DQB gene exhibited greater differentiation among colonies compared with neutral markers, yet a weaker pattern of isolation by distance (IBD). After correcting for the underlying IBD pattern, subpopulations breeding in similar habitats were more similar to one another in DQB allele frequencies than populations breeding in different habitats, but the same did not hold true for microsatellites, suggesting that habitat-specific pathogen pressure influences MHC evolution. Overall, the data are consistent with selection at MHC-DQB loci in grey seals with both varying selective pressures and geographic population structure appearing to influence the DQB genetic composition of breeding colonies. 相似文献