首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During batch fermentation of sucrose to butyric acid byClostridium butyricum the effect of growth factor supplementation was determined: addition of yeast extract (5 g/L) stimulated most. Using biotin as the sole growth factor, average productivity was definitely lower. Beet molasses as a combined source of carbon and growth factor were effective only at a high concentration (150 g/L). The optimal butyric acid production (45 g/L, yield 45%) was achieved with sucrose concentration of 100 g/L in a medium supplemented with yeast extract (5 g/L). It represents an average productivity of 0.90 gL−1 h−1 and relative butyric acid concentration of 91%.  相似文献   

2.
The production of chitosan from the mycelia ofAbsidia coerulea was studied to improve cell growth and chitosan productivity. Culture conditions were optimized in batch cultivation (pH 4.5 agitator speed of 250 rpm, and aeration rate of, 2 vvm) and the maximum chitosan concentration achieved was 2.3 g/L under optimized conditions. Continuous culture was carried out successfully by the formation of new growth spots under optimized conditions, with a chitosan productivity of 0.052 gL−1 h−1, which is the highest value to date, and was obtained at a dilution rate of 0.05 h−1. Cell chitosan concentrations reached about 14% in the steady state, which is similar to that achieved in batch culture. This study shows that for the continuous culture ofAbsidia coerulea it is vital to control the medium composition.  相似文献   

3.
We report the conversion of glycerol to pyruvate by E. coli ALS929 containing knockouts in the genes encoding for phosphoenolpyruvate synthase, lactate dehydrogenase, pyruvate formate lyase, the pyruvate dehydrogenase complex, and pyruvate oxidase. As a result of these knockouts, ALS929 has a growth requirement of acetate for the generation of acetyl CoA. In steady-state chemostat experiments using excess glycerol and limited by acetate, lower growth rates favored the formation of pyruvate from glycerol (0.60 g/g at 0.10 h−1 versus 0.44 g/g at 0.25 h−1), while higher growth rates resulted in the maximum specific glycerol consumption rate (0.85 g/g h at 0.25 h−1 versus 0.59 g/g h at 0.10 h−1). The presence of glucose significantly improved pyruvate productivity and yield from glycerol (0.72 g/g at 0.10 h−1). In fed-batch studies using exponential acetate/glucose-limited feeding at a constant growth rate of 0.10 h−1, the final pyruvate concentration achieved was about 40 g/L in 36 h. A derivative of ALS929 which additionally knocked out methylglyoxal synthase did not further increase pyruvate productivity or yield, indicating that pyruvate formation was not limited by accumulation of methylglyoxal.  相似文献   

4.
Lactic acid is a green chemical that can be used as a raw material for biodegradable polymer. To produce lactic acid through microbial fermentation, we previously screened a novel lactic acid bacterium. In this work, we optimized lactic acid fermentation using a newly isolated and homofermentative lactic acid bacterium. The optimum medium components were found to be glucose, yeast extract, (NH4)2HPO4, and MnSO4. The optimum pH and temperature for a batch culture ofLactobacillus sp. RKY2 was found to be 6.0 and 36°C, respectively. Under the optimized culture conditions, the maximum lactic acid concentration (153.9 g/L) was obtained from 200 g/L of glucose and 15 g/L of yeast extract, and maximum lactic acid productivity (6.21 gL−1h−1) was obtained from 100 g/L of glucose and 20 g/L of yeast extract. In all cases, the lactic acid yields were found to be above 0.91 g/g. This article provides the optimized conditions for a batch culture ofLactobacillus sp. RKY2, which resulted in highest productivity of lactic acid.  相似文献   

5.
The continuous production of citric acid from dairy wastewater was investigated using calcium-alginate immobilizedAspergillus niger ATCC 9142. The citric acid productivity and yield were strongly affected by the culture conditions. The optimal pH, temperature, and dilution rate were 3.0, 30°C, and 0.025 h−1, respectively. Under optimal culture conditions, the maximum productivity, concentration, and yield of citric acid produced by the calcium-alginate immobilizedAspergillus niger were 160 mg L−1 h−1, 4.5 g/L, and 70.3% respectively. The culture was continuously perfored for 20 days without any apparent loss in citric acid productivity. Conversely, under the same conditions with a batch shake-flask culture, the maximum productivity, citric acid concentration, and yield were only 63.3 mg L−1 h−1, 4.7 g/L and 51.4%, respectively. Therefore, the results suggest that the bioreactor used in this study could be potentially used for continuous citric acid production from dairy wastewater by applying calcium-alginate immobilizedAspergillus niger.  相似文献   

6.
The nutrition conditions needed to redirect the carbon flux in Torulopsis glabrata, a pyruvate hyper-production yeast, from pyruvate to α-ketoglutaric acid (KG) were investigated in a stirred fermentor. A minor amount of KG (1.3 gl−1) was produced when NaOH was used to control the pH, while 12 g KG l−1 was produced when CaCO3 was used instead. When thiamine and biotin were included in the medium, 13 g KG l−1 and 68 g pyruvate l−1 were produced after 48 h when glucose was nearly consumed (approximately 5 gl−1). With fermentation continuing for a further 16 h, the concentration of pyruvate decreased to 31 gl−1, and KG increased to 30 gl−1. KG thus accumulated at the expense of pyruvate consumption. Received 2 June 2005; Revisions requested 30 June 2005 and 1 September 2005; Revisions received 1 September 2005 and 28 October 2005; Accepted 28 October 2005  相似文献   

7.
The effects of dilution rate and substrate feed concentration on continuous glycerol fermentation by Clostridium butyricum VPI 3266, a natural 1,3-propanediol producer, were evaluated in this work. A high and constant 1,3-propanediol yield (around 0.65 mol/mol), close to the theoretical value, was obtained irrespective of substrate feed concentration or dilution rate. Improvement of 1,3-propanediol volumetric productivity was achieved by increasing the dilution rate, at a fixed feed substrate concentration of 30, 60 or 70 g l−1. Higher 1,3-propanediol final concentrations and volumetric productivities were also obtained when glycerol feed concentration was increased from 30 to 60 g l−1, at D=0.05–0.3 h−1, and from 60–70 g l−1, at D=0.05 and 0.1 h−1·30 g l−1 of 1,3-propanediol and the highest reported value of productivity, 10.3 g l−1 h−1, was achieved at D=0.30 h−1 and 60 g l−1 of feed glycerol. A switch to an acetate/butyrate ratio higher than one was observed for 60 g l−1 of feed glycerol and a dilution rate higher than 0.10 h−1; moreover, at D=0.30 h−1 3-hydroxypropionaldehyde accumulation was observed for the first time in the fermentation broth of C. butyricum.  相似文献   

8.
Lovastatin, a hypocholesterolemic agent, is a secondary metabolite produced by filamentous microorganism Aspergillus terreus in submerged batch cultivation. Lovastatin production by pellets and immobilized siran cells was investigated in an airlift reactor. The process was carried out by submerged cultivation in continuous mode with the objective of increasing productivity using pellet and siran supported growth of A terreus. The continuous mode of fermentation improves the rate of lovastatin production. The effect of dilution rate and aeration rate were studied in continuous culture. The optimum dilution rate for pellet was 0.02 h−1 and for siran carrier was 0.025 h−1. Lovastatin productivity using immobilized siran carrier (0.0255 g/L/h) was found to be greater than pellets (0.022 g/L/h). The productivity by both modes of fermentation was found higher than that of batch process which suggests that continuous cultivation is a promising strategy for lovastatin production.  相似文献   

9.
Summary The utilization of the tricarboxylic acid cycle intermediates and related compounds was studied in strains ofRhizobium meliloti having different symbiotic effectiveness. In general, the very effective (VE) strains used these compounds as sole carbon source better than the ineffective (I) strains. However, a significant different was observed between VE and I strains in their ability to use acetate or oxaloacetate for growth. In fact, at a concentration of 2 mM, 80% of the VE strains used acetate or oxaloacetate white 50% of the I strains used acetate and none was able to grow on oxaloacetate. No correlation was found between the symbiotic effectiveness of the strains and their ATP content, when grown on mannitol. The highest ATP content (9.21 nM×g protein–1) was found in the I strain S20 and the lowest (0.69 nM×g protein–1 was found in the effective strain S8. Numerical analysis of the patterns of utilization of the TCA cycle intermediates and related compounds indicated that the 49 strains tested formed 11 distinct groups at 86% similarity, according to Jaccard's coefficient. Several strains showed unique patterns of utilization and can be clearly identified under laboratory conditions.Contribution no.225 Station de Recherches, Agriculture Canada.  相似文献   

10.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

11.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from wheat straw hydrolysate (WSH) in batch cultures using Clostridium beijerinckii P260. In control fermentation 48.9 g L−1 glucose (initial sugar 62.0 g L−1) was used to produce 20.1 g L−1 ABE with a productivity and yield of 0.28 g L−1 h−1 and 0.41, respectively. In a similar experiment where WSH (60.2 g L−1 total sugars obtained from hydrolysis of 86 g L−1 wheat straw) was used, the culture produced 25.0 g L−1 ABE with a productivity and yield of 0.60 g L−1 h−1 and 0.42, respectively. These results are superior to the control experiment and productivity was improved by 214%. When WSH was supplemented with 35 g L−1 glucose, a reactor productivity was improved to 0.63 g L−1 h−1 with a yield of 0.42. In this case, ABE concentration in the broth was 28.2 g L−1. When WSH was supplemented with 60 g L−1 glucose, the resultant medium containing 128.3 g L−1 sugars was successfully fermented (due to product removal) to produce 47.6 g L−1 ABE, and the culture utilized all the sugars (glucose, xylose, arabinose, galactose, and mannose). These results demonstrate that C. beijerinckii P260 has excellent capacity to convert biomass derived sugars to solvents and can produce over 28 g L−1 (in one case 41.7 g L−1 from glucose) ABE from WSH. Medium containing 250 g L−1 glucose resulted in no growth and no ABE production. Mixtures containing WSH + 140 g L−1 glucose (total sugar approximately 200 g L−1) showed poor growth and poor ABE production. Mention of trade names or commercial products in this article is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

12.
To achieve direct and efficient lactic acid production from starch, a genetically modified Lactococcus lactis IL 1403 secreting α-amylase, which was obtained from Streptococcus bovis 148, was constructed. Using this strain, the fermentation of soluble starch was achieved, although its rate was far from efficient (0.09 g l−1 h−1 lactate). High-performance liquid chromatography revealed that maltose accumulated during fermentation, and this was thought to lead to inefficient fermentation. To accelerate maltose consumption, starch fermentation was examined using L. lactis cells adapted to maltose instead of glucose. This led to a decrease in the amount of maltose accumulation in the culture, and, as a result, a more rapid fermentation was accomplished (1.31 g l−1 h−1 lactate). Maximum volumetric lactate productivity was further increased (1.57 g l−1 h−1 lactate) using cells adapted to starch, and a high yield of lactate (0.89 g of lactate per gram of consumed sugar) of high optical purity (99.2% of l-lactate) was achieved. In this study, we propose a new approach to lactate production by α-amylase-secreting L. lactis that allows efficient fermentation from starch using cells adapted to maltose or starch before fermentation.  相似文献   

13.
We improved the hydrogen yield from glucose using a genetically modified Escherichia coli. E. coli strain SR15 (ΔldhA, ΔfrdBC), in which glucose metabolism was directed to pyruvate formate lyase (PFL), was constructed. The hydrogen yield of wild-type strain of 1.08 mol/mol glucose, was enhanced to 1.82 mol/mol glucose in strain SR15. This figure is greater than 90 % of the theoretical hydrogen yield of facultative anaerobes (2.0 mol/mol glucose). Moreover, the specific hydrogen production rate of strain SR15 (13.4 mmol h−1 g−1 dry cell) was 1.4-fold higher than that of wild-type strain. In addition, the volumetric hydrogen production rate increased using the process where cells behaved as an effective catalyst. At 94.3 g dry cell/l, a productivity of 793 mmol h−1 l−1 (20.2 l h−1 l−1 at 37 °C) was achieved using SR15. The reported productivity substantially surpasses that of conventional biological hydrogen production processes and can be a trigger for practical applications.  相似文献   

14.
Industrial waste corn cob residue (from xylose manufacturing) without pretreatment was hydrolyzed by cellulase and cellobiase. The cellulosic hydrolysate contained 52.4 g l−1 of glucose and was used as carbon source for lactic acid fermentation by cells of Lactobacillus delbrueckii ZU-S2 immobilized in calcium alginate gel beads. The final concentration of lactic acid and the yield of lactic acid from glucose were 48.7 g l−1 and 95.2%, respectively, which were comparative to the results of pure glucose fermentation. The immobilized cells were quite stable and reusable, and the average yield of lactic acid from glucose in the hydrolysate was 95.0% in 12 repeated batches of fermentation. The suitable dilution rate of continuous fermentation process was 0.13 h−1, and the yield of lactic acid from glucose and the productivity were 92.4% and 5.746 g l−1 h−1, respectively. The production of lactic acid by simultaneous saccharification and fermentation (SSF) process was carried out in a coupling bioreactor, the final concentration of lactic acid was 55.6 g l−1, the conversion efficiency of lactic acid from cellulose was 91.3% and the productivity was 0.927 g l−1 h−1. By using fed-batch technique in the SSF process, the final concentration of lactic acid and the productivity increased to 107.6 g l−1 and 1.345 g l−1 h−1, respectively, while the dosage of cellulase per gram substrate decreased greatly. This research work should advance the bioconversion of renewable cellulosic resources and reduce environmental pollution.  相似文献   

15.
A recombinant oxidation/reduction cycle for the conversion of D-fructose to D-mannitol was established in resting cells of Corynebacterium glutamicum. Whole cells were used as biocatalysts, supplied with 250 mM sodium formate and 500 mM D-fructose at pH 6.5. The mannitol dehydrogenase gene (mdh) from Leuconostoc pseudomesenteroides was overexpressed in strain C. glutamicum ATCC 13032. To ensure sufficient cofactor [nicotinamide adenine dinucleotide (reduced form, NADH)] supply, the fdh gene encoding formate dehydrogenase from Mycobacterium vaccae N10 was coexpressed. The recombinant C. glutamicum cells produced D-mannitol at a constant production rate of 0.22 g (g cdw)−1 h−1. Expression of the glucose/fructose facilitator gene glf from Zymomonas mobilis in C. glutamicum led to a 5.5-fold increased productivity of 1.25 g (g cdw)−1 h−1, yielding 87 g l−1 D-mannitol from 93.7 g l−1 D-fructose. Determination of intracellular NAD(H) concentration during biotransformation showed a constant NAD(H) pool size and a NADH/NAD+ ratio of approximately 1. In repetitive fed-batch biotransformation, 285 g l−1 D-mannitol over a time period of 96 h with an average productivity of 1.0 g (g cdw)−1 h−1 was formed. These results show that C. glutamicum is a favorable biocatalyst for long-term biotransformation with resting cells. Dedicated to Prof. Hermann Sahm on the occasion of his 65th birthday.  相似文献   

16.
Consumption of hexoses/pentoses and production of lactic acid by Lactobacillus bifermentans were investigated in optimized culture medium and hemicellulosic hydrolyzates. The hydrolyzate used had the following composition (expressed in gL−1): xylose 50 ± 5 gL−1; glucose 18 ± 3 gL−1; arabinose 29 ± 5 gL−1. The immobilization experiments were conducted with microbial cells entrapped in calcium alginate beads. The results indicate that maximum concentrations of lactic acid were produced after 54 h of fermentation. All glucose and arabinose in wheat bran hydrolyzate were consumed during fermentation. Only xylose was not completely consumed. The substrate consumption rate was 3.2 gh−1, 1.9 gh−1, 1.6 gh−1 respectively for glucose, arabinose, and xylose. The optimized culture condition gave a lactic acid concentration and metabolic yield of 62.77 gL−1 and 0.83 gg−1. These parameters improved to 41.3 gL−1 and 0.47 gg−1 respectively, when cell free was used.  相似文献   

17.
The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h−1 in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h−1 and 0.0380 hour−1, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour−1, and the overall productivity was calculated to be 2.55 g/L/h.  相似文献   

18.
Pseudomonas putida KT2440 grew on glucose at a specific rate of 0.48 h−1 but accumulated almost no poly-3-hydroxyalkanoates (PHA). Subsequent nitrogen limitation on nonanoic acid resulted in the accumulation of only 27% medium-chain-length PHA (MCL-PHA). In contrast, exponential nonanoic acid-limited growth (μ = 0.15 h−1) produced 70 g l−1 biomass containing 75% PHA. At a higher exponential feed rate (μ = 0.25 h−1), the overall productivity was increased but less biomass (56 g l−1) was produced due to higher oxygen demand, and the biomass contained less PHA (67%). It was concluded that carbon-limited exponential feeding of nonanoic acid or related substrates to cultures of P. putida KT2440 is a simple and highly effective method of producing MCL-PHA. Nitrogen limitation is unnecessary.  相似文献   

19.
Candida cylindracea NRRL Y-17506 was grown to produce extracellular lipase from oleic acid as a carbon source. Through flask cultures, it was found that the optimum initial oleic acid concentration for cell growth was 20 g l−1. However, high initial concentrations of oleic acid up to 50 g l−1 were not inhibitory. The highest extracellular lipase activity obtained in flask culture was 3.0 U ml−1 after 48 h with 5 g l−1 of initial oleic acid concentration. Fed-batch cultures (intermittent and stepwise feeding) were carried out to improve cell concentration and lipase activity. For the intermittent feeding fed-batch culture, the final cell concentration was 52 g l−1 and the extracellular lipase activity was 6.3 U ml−1 at 138.5 h. Stepwise feeding fed-batch cultures were carried out to simulate an exponential feeding and to investigate the effects of specific growth rate (0.02, 0.04 and 0.08 h−1) on cell growth and lipase production. The highest final cell concentration obtained was 90 g l−1 when the set point of specific growth rate (μset) was 0.02 h−1. High specific growth rate (0.04 and 0.08 h−1) decreased extracellular lipase production in the later part of fed-batch cultures due to build-up of the oleic acid oversupplied. The highest extracellular lipase activity was 23.7 U ml−1 when μset was 0.02 h−1, while the highest lipase productivity was 0.31 U ml−1 h−1 at μset of 0.08 h−1.  相似文献   

20.
Batch cultivation of Ralstonia eutropha NRRL B14690 attained 21 g biomass l−1 and 9.4 g poly(β-hydroxybutyrate) l−1 (0.45 g PHB g−1 dry wt−1) in 60 h. Repeated batch operation (empty-and-fill protocol) to remove 20% (v/v) of the culture broth and to supplement an equal volume of fresh media resulted in 49 g biomass l−1 and 25 g PHB l−1 (0.51 g PHB g−1 dry wt−1) with an overall productivity of 0.42 g PHB l−1 h−1 in 67 h. In the two cycles of repeated batch fermentation there was a 3-fold increase in productivity as compared to batch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号