首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Comparisons were made of the effects of salt on the exponential growth rates of two unicellular algae,Dunaliella tertiolecta (marine) andDunaliella viridis (halophilic).
  2. The algae contained glycerol in amounts which varied directly with the salt concentration of the growth media. The highest measured glycerol content ofD. tertiolecta was approximately equivalent to 1.4 molal and occurred in algae grown in 1.36 M sodium chloride. The highest glycerol content measured inD. viridis was approximately equivalent to 4.4 molal and occurred in algae grown in 4.25 M sodium chloride. Lower concentrations of free glucose, which varied inversely with extracellular salt concentration, were also detected.
  3. It is inferred that Na+ is effectively excluded from the two algae. There was some evidence of a moderate uptake of K+.
  4. Comparisons were made of erude preparations of the glucose-6-phosphate dehydrogenase and an NADP-specific glycerol dehydrogenase from each species and of the effects of salt and glycerol on the activities of these enzymes. It is concluded that the different salt tolerances of the two algae cannot be explained by generalized differences between their enzyme proteins.
  5. Although intracellular glycerol must necessarily contribute to the osmotic status of the algae, its primary function in influencing their salt relations is considered to be that of a compatible solute, whereby glycerol maintains enzyme activity under conditions of high extracellular salt concentration and hence low (thermodynamic) water activity.
  相似文献   

2.
酵母细胞对高渗环境的适应与胞内甘油累积   总被引:10,自引:0,他引:10  
甘油是包括酿酒酵母在内的许多种酵母细胞中的主要相容性溶质。为适应在高渗环境下的生存,酵母细胞将在胞内累积甘油。胞内甘油累积的增加可由甘油合成的增强,甘油利用的减弱,细胞膜通透性下降导致的胞内甘油流失的减少以及从环境中吸取更多的甘油而产生。本文综述了酵母细胞对环境渗透压变化的信号传导,高渗诱导的基因表达,环境渗透压升高时酵母细胞内甘油的累积以及甘油合成的限速步骤。  相似文献   

3.
The yeast Saccharomyces cerevisiae responds to osmotic stress, i.e., an increase in osmolarity of the growth medium, by enhanced production and intracellular accumulation of glycerol as a compatible solute. We have cloned a gene encoding the key enzyme of glycerol synthesis, the NADH-dependent cytosolic glycerol-3-phosphate dehydrogenase, and we named it GPD1. gpd1 delta mutants produced very little glycerol, and they were sensitive to osmotic stress. Thus, glycerol production is indeed essential for the growth of yeast cells during reduced water availability. hog1 delta mutants lacking a protein kinase involved in osmostress-induced signal transduction (the high-osmolarity glycerol response [HOG] pathway) failed to increase glycerol-3-phosphate dehydrogenase activity and mRNA levels when osmotic stress was imposed. Thus, expression of GPD1 is regulated through the HOG pathway. However, there may be Hog1-independent mechanisms mediating osmostress-induced glycerol accumulation, since a hog1 delta strain could still enhance its glycerol content, although less than the wild type. hog1 delta mutants are more sensitive to osmotic stress than isogenic gpd1 delta strains, and gpd1 delta hog1 delta double mutants are even more sensitive than either single mutant. Thus, the HOG pathway most probably has additional targets in the mechanism of adaptation to hypertonic medium.  相似文献   

4.
Mechanisms of response to salinity in halotolerant microalgae   总被引:3,自引:0,他引:3  
Summary A limited number of organic solutes are used by microalgae to adjust their internal osmotic pressure in response to changing external salinities. Glycerol and proline are used by the most extremely halotolerant algae. Only glycerol allows growth at salinities approaching saturation. In addition to organic osmoregulatory solutes, inorganic ions also play an important role in osmoregulation. The ability of microalgae to maintain intracellular ions at levels compatible with metabolic functions may set upper limits for their salt tolerance. Requirements for NaCl in the external medium for nutrient transport may define the lower salinity limits for growth observed for some euryhaline algae.Osmotic upshocks generally cause severe temporary inhibition of photosynthesis in euryhaline microalgae. Extensive osmotic downshocks have little effect on photosynthesis in microalgae with strong cell walls, while wall-less species appear to be more sensitive. Rapid glycerol synthesis takes place in response to increased external salinity inChlamydomonas pulsatilla both in light and dark. Starch supplies carbon for glycerol synthesis in the dark and also during the initial periods of inhibition of photosynthesis in the light. Turnover of osmoregulatory solutes such as glycerol and isofloridoside may be an important aspect of the osmoregulatory mechanism.At salinities beyond the growth limit for the green flagellateChlamydomonas pulsatilla, resting spores are formed that enable this alga to survive extreme salinities.  相似文献   

5.
Mannosylglycerate (MG) is an intracellular organic solute found in some red algae, and several thermophilic bacteria and hyperthermophilic archaea. Glucosylglycerate (GG) was identified at the reducing end of a polysaccharide from mycobacteria and in a free form in a very few mesophilic bacteria and halophilic archaea. MG has a genuine role in the osmoadaptation and possibly in thermal protection of many hyper/thermophilic bacteria and archaea, but its role in red algae, where it was identified long before hyperthermophiles were even known to exist, remains to be clarified. The GG-containing polysaccharide was initially detected in Mycobacterium phlei and found to regulate fatty acid synthesis. More recently, GG has been found to be a major compatible solute under salt stress and nitrogen starvation in a few microorganisms. This review summarizes the occurrence and physiology of MG accumulation, as well as the distribution of GG, as a free solute or associated with larger macromolecules. We also focus on the recently identified pathways for the synthesis of both molecules, which were elucidated by studying hyper/thermophilic MG-accumulating organisms. The blooming era of genomics has now allowed the detection of these genes in fungi and mosses, opening a research avenue that spans the three domains of life, into the role of these two sugar derivatives.  相似文献   

6.
This review describes the metabolic alterations and adaptations of yeast cells in response to osmotic stress. The basic theme of the cellular response is known to be exclusion of the extracellular stress agent salt and intracellular accumulation of the compatible solute glycerol. Molecular details of these basic processes are currently rather well known. However, analysis of expression changes during adaptation to salt has revealed a number of metabolic surprises. These include the induced expression of genes involved in glycerol dissimilation as well as trehalose turnover. The physiological rationale for these responses to osmotic stress is discussed. A model is presented in which it is hypothesised that the two pathways function as glycolytic safety valves during adaptation to stress.  相似文献   

7.
Growth of the biocontrol fungus Epicoccum nigrum was more sensitive to ionic solute water stress (NaCl) than non-ionic (glycerol) on potato dextrose-based media at –0.5, –3.0 and –5.5 MPa water potentials. Subsequent physiological manipulation of growth of E. nigrum in glycerol-modified media to –3.0 MPa water potential resulted in a significant increase in the accumulation of compatible solutes in both mycelial liquid cultures and spores, but no enhanced accumulation of the desiccation protectant trehalose, when compared to unmodified media (–0.5MPa). The main solute accumulated was glycerol, followed by arabitol. In temporal studies over 20 days maximum accumulation of glycerol occurred in 5-d old cultures with water stressed cultures having 250× greater amounts than those from unmodified medium. The arabitol content was also higher in mycelium and spores produced under water stress. The difference was maximum after 15 days growth. Glucose content decreased over time in mycelial colonies but increased in spores. The germination of conidia from the two treatments was similar, regardless of compatible solute content, even at –9.25 MPa water potential stress. However, germ tube extension was significantly increased at this water potential level. The production of E. nigrum spores at –3.0 MPa water potential resulted in improved survival when stored fresh at 4 and 25 °C. However, freeze-drying severely affected the viability of spores produced on both media (–0.5 or 3.0 MPa). Accumulation of compatible solutes may assist the fungus in better ecological competence and establishment in the phyllosphere, where water availability is often limited.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Water stress is one of the major stresses experienced by cellular systems and can take a number of distinct forms. In response to turgor-related osmotic stress, cells produce compatible solutes that are macromolecule protectants and also counteract the outflow of water from stressed cells. In this report we show that the germination of conidia of Aspergillus nidulans, a sensitive indicator of water stress, in the presence of ethanol is correlated with the intracellular concentration of the compatible solutes glycerol and erythritol, which protect against both osmotic and nonturgor forms of water stress.  相似文献   

9.
A method is described for measuring the cell volume of the unicellular green alga Chlorococcum submarinum, which depends on measurements of bromide concentration before and after disruption of the cells by ammonium hydroxide. Simultaneous equations are derived, which along with direct determination of cell water weight, allow the calculation of the intracellular volume in three different ways. The volumes calculated are in agreement indicating the validity of the method. The cell volumes and internal concentrations of glycerol, proline, potassium and sodium were determined for algae adapted to three salinities, 0.1, 0.5 and 1.0 M NaCl. The results showed that glycerol was the major internal solute and that the total measured solutes balanced the external osmotic pressure at all three salinities.Abbreviations DMSO dimethyl sulphoxide - Hepes N-[2-hydroxyethyl]piperazine-N-2-ethane sulfonic acid - TCA trichloroacetic acid - Tris tris[hydroxymethyl]aminoethane  相似文献   

10.
Sucrose phosphorylase catalyzes the O-glucosylation of a wide range of acceptor substrates. Acceptors presenting a suitable 1,2-diol moiety are glucosylated exclusively at the secondary hydroxyl. Production of the naturally occurring compatible solute, 2-O-α-d-glucopyranosyl-sn-glycerol, from sucrose and glycerol is a notable industrial realization of the regio- and stereoselective biotransformation promoted by sucrose phosphorylase. The acceptor substrate specificity of sucrose phosphorylase was analyzed on the basis of recent high-resolution crystal structures of the enzyme. Interactions at the acceptor binding site, observed in the crystal (d-fructosyl) and suggested by results of docking experiments (glycerol), are used to rationalize experimentally determined efficiencies and regioselectivities of enzymatic glucosyl transfer.  相似文献   

11.
Abstract The effect of osmotic stress, given as decreased water activity (aw), on growth and the accumulation of potassium and the compatible solute betaine by Pseudomonas putida S12 was investigated. Reduced aw was imposed by addition of sodium chloride, sucrose, glycerol or polyethylene glycol to the growth medium. Accumulation of potassium and betaine was established when sodium chloride and sucrose were used to cause osmotic stress. No accumulation of these solutes was found in the presence of glycerol. Addition of polyethylene glycol to the medium strongly decreased the growth rate in comparison with the other osmolytes tested at the corresponding aw. Although polyethylene glycol did decrease the aw, neither potassium nor betaine was accumulated by the cells.  相似文献   

12.
杜氏盐藻是迄今发现的世界上最耐盐的单细胞真核生物,能在0.05 mol/L至饱和NaCl浓度下正常生长,因此其耐盐机制倍受人们关注。研究发现,杜氏盐藻盐耐受性与甘油代谢密切相关。为此,我们综述其耐盐机制、甘油代谢调控、甘油代谢与盐耐受性关联性、甘油代谢重要酶的分子生物学研究等进展,希望对深入研究植物耐盐机制、培育耐盐作物新品种及开发甘油等高附加值次生代谢产物等研究提供有益帮助。  相似文献   

13.
Natural-abundance 13C n.m.r. spin-lattice relaxation-time measurements have been carried out on intact cells of the unicellular blue--green alga Synechococcus sp. and the unicellular green alga Dunaliella salina, with the aim of characterizing the environments of the organic osmoregulatory solutes in these salt-tolerant organisms. In Synechococcus sp., all of the major organic osmoregulatory solute, 2-O-alpha-D-glucopyranosylglycerol, is visible in spectra of intact cells. Its rotational motion in the cell is slower by a factor of approx. 2.4 than in aqueous solution, but the molecule is still freely mobile and therefore able to contribute to the osmotic balance. In D. salina, only about 60% of the osmoregulatory solute glycerol is visible in spectra of intact cells. The rotational mobility of this observable fraction is approximately half that found in aqueous solution, but the data also indicate that there is a significant concentration of some paramagnetic species in D. salina which contributes to the overall spin-lattice relaxation of the glycerol carbon atoms. The non-observable fraction, which must correspond to glycerol molecules that have very broad 13C resonances and that are in slow exchange with bulk glycerol, has not been properly characterized as yet, but may represent glycerol in the chloroplast. The implications of these findings in relation to the physical state of the cytoplasm and the mechanism of osmoregulation in these cells are discussed.  相似文献   

14.
Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.  相似文献   

15.
Previous work using ancestral state reconstruction of habitat salinity preference proposed that the early cyanobacteria likely lived in a freshwater environment. The aim of this study was to test that hypothesis by performing phylogenetic analyses of the genes underlying salinity preferences in the cyanobacteria. Phylogenetic analysis of compatible solute genes shows that sucrose synthesis genes were likely ancestral in the cyanobacteria, and were also likely inherited during the cyanobacterial endosymbiosis and into the photosynthetic algae and land plants. In addition, the genes for the synthesis of compatible solutes that are necessary for survival in marine and hypersaline environments (such as glucosylglycerol, glucosylglycerate, and glycine betaine) were likely acquired independently high up (i.e., more recently) in the cyanobacterial tree. Because sucrose synthesis is strongly associated with growth in a low salinity environment, this independently supports a freshwater origin for the cyanobacteria. It is also consistent with geologic evidence showing that the early oceans were much warmer and saltier than modern oceans—sucrose synthesis alone would have been insufficient for early cyanobacteria to have colonized early Precambrian oceans that had a higher ionic strength. Indeed, the acquisition of an expanded set of new compatible solute genes may have enabled the historical colonization of marine and hypersaline environments by cyanobacteria, midway through their evolutionary history.  相似文献   

16.
The accumulation of compatible solutes, such as glycerol, in the yeast Saccharomyces cerevisiae, is a ubiquitous mechanism in cellular osmoregulation. Here, we demonstrate that yeast cells control glycerol accumulation in part via a regulated, Fps1p-mediated export of glycerol. Fps1p is a member of the MIP family of channel proteins most closely related to the bacterial glycerol facilitators. The protein is localized in the plasma membrane. The physiological role of Fps1p appears to be glycerol export rather than uptake. Fps1 delta mutants are sensitive to hypo-osmotic shock, demonstrating that osmolyte export is required for recovery from a sudden drop in external osmolarity. In wild-type cells, the glycerol transport rate is decreased by hyperosmotic shock and increased by hypo-osmotic shock on a subminute time scale. This regulation seems to be independent of the known yeast osmosensing HOG and PKC signalling pathways. Mutants lacking the unique hydrophilic N-terminal domain of Fps1p, or certain parts thereof, fail to reduce the glycerol transport rate after a hyperosmotic shock. Yeast cells carrying these constructs constitutively release glycerol and show a dominant hyperosmosensitivity, but compensate for glycerol loss after prolonged incubation by glycerol overproduction. Fps1p may be an example of a more widespread class of regulators of osmoadaptation, which control the cellular content and release of compatible solutes.  相似文献   

17.
In a cell culture of Saccharomyces cerevisiae exponentially growing in basal medium, only 0.02% of the cells were osmotolerant, i.e., survived transfer to medium containing 1.4 M NaCl. Short-time conditioning in 0.7 M NaCl medium transformed the whole population into an osmotolerance phenotype. During this conditioning, the rate of formation of glycerol, the main compatible solute in S. cerevisiae, increased threefold and the specific activity of glycerol-3-phosphate dehydrogenase (NAD+) (GPDH) (EC 1.1.1.8) was enhanced sixfold. The apparent flux control coefficient for GPDH in the formation of glycerol was estimated to be 0.6. Glycerol production was also favored by regulated activities of alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase [NAD(P)]+ (EC 1.2.1.5). About 50% of the total glycerol produced during conditioning in 0.7 M NaCl was retained intracellularly, and the increased glycerol accumulation was shown to be not merely a result of enhanced production rate but also of increased retention of glycerol. Washing the cells with solutions of lower salinities resulted in loss of glycerol, with retained levels proportional to the concentration of NaCl in the washing solution. Cycloheximide addition inhibited the development of acquired osmotolerance and conditioned cells washed free of glycerol retained a high degree of osmotolerance, which indicate that protein synthesis was required to establish the osmotolerance state.  相似文献   

18.
S. P. Leibo 《Cryobiology》1976,13(6):587-598
When a cell is frozen and thawed, it is exposed to (i) lowered temperature, (ii) increased solute concentration during freezing, and (iii) decreased solute concentration during thawing. Without actually freezing the cells, an attempt has been made to simulate physical-chemical changes to which bovine erythrocytes are exposed when frozen and thawed in glycerol solutions. Experimentally, the study consisted of suspending erythrocytes in 1, 2, or 3 glycerol at 20 °C for various times and then exposing them to each of several dilution sequences. The dilution sequences were: (i) transfer from the initial glycerol concentration at 20 °C into the same concentration at −5 °C, (ii) transfer into an increased glycerol concentration at 20 °C, (iii) transfer into an increased followed by a decreased glycerol concentration at 20 °C, (iv) transfer into an increased glycerol concentration at −5 °C, and (v) transfer into an increased followed by a decreased glycerol concentration at −5 °C. This last sequence is analogous to the exposure that cells undergo at subzero temperatures to increased solute concentration during freezing and decreased solute concentration during thawing. This dilution sequence yielded a survival pattern very similar to that obtained when bovine erythrocytes are frozen and thawed, and thus does appear to mimic freezing damage. It is concluded that a major factor in freezing damage is the extent to which a cell must shrink or swell to achieve osmotic equilibrium at subzero temperatures in partially frozen or thawed solutions.  相似文献   

19.
Abstract Some salient characteristics of microbial osmoregulation are reviewed, with specific examples drawn from eukaryotes. As well as the need for an osmoregulatory solute to be 'compatible' with cellular processes under all conditions, the importance of the physiological method of regulating the content of the solute as a factor determining xerotolerance is emphasized. The significance of turgor/volume homeostasis is discussed and examples are cited in which, during exponential growth, there is apparently no homeostatic control of the cellular content of the major osmoregulatory solute. Some implications of this for the overall mechanism of osmoregulation are considered.
A recent experiment is described which raises questions about the timing of an osmoregulatory 'signal' in Saccharomyces cerevisiae . Other experiments are summarized which distinguish between osmoregulatory and compatible solutes in yeast. These experiments implicate trehalose as a non-osmoregulatory compatible solute in certain circumstances.  相似文献   

20.
Osmoadaption mechanisms of the biotechnologically important hemiascomycete Ashbya gossypii were investigated, thereby distinguishing between halo- and osmotolerance by exposure to NaCl and mannitol stress. We studied the growth and ultrastructure of differently treated cells and quantified the intracellular contents of compatible solutes and inorganic ions. Mannitol affected growth of A. gossypii at concentrations above 0.8 M, whereas NaCl inhibited growth at 0.2 M. NaCl-treated cells differed from control cells in having smaller vacuoles, which occupied a smaller part of the cell volume. Glycerol was found to be the predominant compatible solute in A. gossypii; accumulation of inorganic ions could not be detected. Measurement of glycerol uptake under isosmotic conditions as well as upon hyperosmotic stress revealed the existence of a highly active glycerol-uptake system, which, however, was down-regulated under hyperosmotic stress. Investigation of glycerol biosynthesis by measuring glycerol-3-phosphate dehydrogenase activity under hyperosmotic conditions indicated that accumulation of glycerol in A. gossypii is almost solely due to biosynthesis. Received: 13 January 1998 / Received revision: 7 April 1998 / Accepted: 13 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号