首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Discrimination as a consequence of genetic testing.   总被引:19,自引:13,他引:6       下载免费PDF全文
Genetic discrimination refers to discrimination directed against an individual or family based solely on an apparent or perceived genetic variation from the "normal" human genotype. We describe here the results of a case history study designed to assess whether or not genetic discrimination exists. Using the above definition of genetic discrimination and applying stringent criteria for case selection, we find that genetic discrimination exists and is manifested in many social institutions, especially in the health and life insurance industries. Stigmatization, and denial of services or entitlements to individuals who have a genetic diagnosis but who are asymptomatic or who will never become significantly impaired, is noted. Follow-up comprehensive studies on the significance and varieties of genetic discrimination are needed. In order to avoid creating a new social underclass based on genetic discrimination (the "asymptomatic ill"), existing and future genetic testing or screening programs need review by medical, scientific, legal, and social policy experts, as well as the public, and may require modification.  相似文献   

2.
The application of the selection index in the case of an additive two-trait model in which the genetic effect on each trait is determined by a finite number of loci is examined. Simulation results indicate that the direction of change in the frequency of favourable alleles is not necessarily in the positive direction at all loci when index selection is used as the basis for truncation selection. When the genetic correlation was positive (or favourable with respect to the economic weights), there was little difference (<5%) in genetic gain over 20 generations and no difference in the direction of change in allele frequencies or genetic correlation whether or not updated values for the genetic (co)variances were used in constructing the selection index. However, when the genetic correlation was negative or unfavourable, the effect of using genetic parameters which were not updated had unexpected effects on the allele frequencies and genetic correlation and reduced the genetic gain by a greater amount (< 12%).  相似文献   

3.
Change of Genetic Architecture in Response to Sex   总被引:1,自引:0,他引:1       下载免费PDF全文
H. W. Deng  M. Lynch 《Genetics》1996,143(1):203-212
A traditional view is that sexual reproduction increases the potential for phenotypic evolution by expanding the range of genetic variation upon which natural selection can act. However, when nonadditive genetic effects and genetic disequilibria underlie a genetic system, genetic slippage (a change in the mean genotypic value contrary to that promoted by selection) in response to sex may occur. Additionally, depending on whether natural selection is predominantly stabilizing or disruptive, recombination may either enhance or reduce the level of expressed genetic variance. Thus, the role of sexual reproduction in the dynamics of phenotypic evolution depends heavily upon the nature of natural selection and the genetic system of the study population. In the present study, on a permanent lake Daphnia pulicaria population, sexual reproduction resulted in significant genetic slippage and a significant increase in expressed genetic variance for several traits. These observations provide evidence for substantial genetic disequilibria and nonadditive genetic effects underlying the genetic system of the study population. From these results, the fitness function of the previous clonal selection phase is inferred to be directional and/or stabilizing. The data are also used to infer the effects of natural selection on the mean and the genetic variance of the population.  相似文献   

4.
Intentional or accidental introduction of species to new locations is predicted to result in loss of genetic variation and increase the likelihood of inbreeding, thus reducing population viability and evolutionary potential. However, multiple introductions and large founder numbers can prevent loss of genetic diversity and may therefore facilitate establishment success and range expansion. Based on a meta‐analysis of 119 introductions of 85 species of plants and animals, we here show a quantitative effect of founding history on genetic diversity in introduced populations. Both introduction of large number of individuals and multiple introduction events significantly contribute to maintaining or even increasing genetic diversity in introduced populations. The most consistent loss of genetic diversity is seen in insects and mammals, whereas introduced plant populations tend to have higher genetic variation than native populations. However, loss or gain of genetic diversity does not explain variation in the extent to which plant or animal populations become invasive outside of their native range. These results provide strong support for predictions from population genetics theory with respect to patterns of genetic diversity in introduced populations, but suggest that invasiveness is not limited by genetic bottlenecks.  相似文献   

5.
Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants'' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients'' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results.  相似文献   

6.
With the increasing possibilities of genetic testing in clinical practice, genetic counseling becomes more and more important. Such counseling involves an attempt to answer questions and solve problems in connection with a possible genetic disorder. Reasons for genetic counseling are, among others, a possible genetic disorder in a child, a parent or a relative, advanced parental age, consanguinity, multiple pregnancy loss, stillbirths, infertility, and possible mutagenic or teratogenic exposure. Prenatal diagnosis, predictive and heterozygosity testing may have implications which differ from those of conventional diagnoses in medicine. The decision for testing should be made informed after genetic counseling. An overview of the aims, practical aspects and possible reasons for genetic counseling is provided.  相似文献   

7.
Roads exert various effects of conservation concern. They cause road mortality of wildlife, change the behaviour of animals and lead to habitat fragmentation. Roads also have genetic effects, as they restrict animal movement and increase the functional isolation of populations. We first formulate theoretical expectations on the genetic effects of roads with respect to a decrease in genetic diversity and an increase in genetic differentiation or distance of populations or individuals. We then review the empirical evidence on the genetic effects of roads based on the available literature. We found that roads often, but not always, decrease the genetic diversity of affected populations due to reduced population size and genetic drift. Whether the reduction in genetic diversity influences the long-term fitness of affected populations is, however, not yet clear. Roads, especially fenced highways, also act as barriers to movement, migration and gene flow. Roads therefore often decrease functional connectivity and increase the genetic differentiation of populations or the genetic distance among individuals. Nevertheless, roads and highways rarely act as complete barriers as shown by genetic studies assessing contemporary migration across roads (by using assignment tests). Some studies also showed that road verges act as dispersal corridors for native and exotic plants and animals. Genetic methods are well suited to retrospectively trace such migration pathways. Most roads and highways have only recently been built. Although only few generations might thus have passed since road construction, our literature survey showed that many studies found negative effects of roads on genetic diversity and genetic differentiation in animal species, especially for larger mammals and amphibians. Roads may thus rapidly cause genetic effects. This result stresses the importance of defragmentation measures such as over- and underpasses or wildlife bridges across roads.  相似文献   

8.
Genetic counsellors are uniquely trained to provide support, explanations and guidance to individuals or families who have been diagnosed with a genetic disorder. As our knowledge of the genetic basis of disease increases, so does our ability to diagnose it and so does the demand for appropriately trained genetic counsellors. Despite this growing demand, only a handful of countries provides formal courses in genetic counselling, whereas other countries leave genetic counselling in the hands of medical practitioners or medical geneticists.  相似文献   

9.
This paper deals with the following questions. Are there property rights in the human body or its parts? What legal control is, or should be, available in respect of genetic material? Can, or should, patents be granted for genes or for products incorporating human genetic material? How extensive are patent rights over genetic material? Should ethical matters be a critical part of the patent granting process?  相似文献   

10.
The influence of spatio-temporal factors on genetic variation of infectious hematopoietic necrosis virus (IHNV) is an active area of research. Using host-isolate pairs collected from 1966 to 2004 for 237 IHNV isolates from California and southern Oregon, we examined genetic variation of the mid-G gene of IHNV that could be quantified across times and geographic locations. Information hypothesized to influence genetic variation was environmental and/or fish host demographic factors, viz. location (inland or coastal), year of isolation, habitat (river, lake, or hatchery), the agent factors of subgroup (LI or LII) and serotype (1, 2, or 3), and the host factors of fish age (juvenile or adult), sex (male or female), and season of spawning run (spring, fall, late fall, winter). Inverse distance weighting (IDW) was performed to create isopleth maps of the genetic distances of each subgroup. IDW maps showed that more genetic divergence was predicted for isolates found inland (for both subgroups: LI and LII) than for coastal watershed isolates. A mixed-effect beta regression with a logit link function was used to seek associations between genetic distances and hypothesized explanatory factors. The model that best described genetic distance contained the factors of location, year of isolation, and the interaction between location and year. Our model suggests that genetic distance was greater for isolates collected from 1966 to 2004 at inland locations than for isolates found in coastal watersheds during the same years. The agreement between the IDW and beta regression analyses quantitatively supports our conclusion that, during this time period, more genetic variation existed within subgroup LII in inland watersheds than within coastal LI isolates.  相似文献   

11.
J F Garcia 《Theriogenology》2001,56(9):1393-1399
In the past years, research in embryo technologies is moving to the establishment of preimplantation genetic typing or also denominated preimplantation genetic diagnosis (PGD). The objectives of these tests are the prevention of genetic diseases transmission and the prediction of phenotypic characteristics, as well as sex determination, genetic disorders and productive and reproductive profiles, prior to the embryo transfer or freezing, during early stages of development. This paper points out the state-of-the-art of PGD, mainly in cattle and discuss the perspectives of multiloci genetic analysis of embryos.  相似文献   

12.
注意植物迁地保护中的遗传风险   总被引:6,自引:0,他引:6  
康明  叶其刚  黄宏文 《遗传》2005,27(1):160-166
稀有濒危植物迁地保护的长期目标之一就是要保护物种的遗传多样性和进化潜力。介绍了稀有濒危植物在植物园迁地保护过程中存在的一系列遗传风险。由于引种或取样的不足,容易导致被保存的物种缺乏足够的遗传代表性;盲目的引种、不合理的定植以及材料的来源不清则会导致稀有濒危植物的遗传混杂、近交衰退或杂交衰退;人为选择和生长环境的改变也容易造成濒危物种对迁地保护的遗传适应。在实际的迁地保护工作中,这些遗传风险往往被忽视。植物迁地保护中遗传风险将严重影响稀有濒危物种的回归和恢复。植物园应当重视濒危植物的遗传管理,以降低或避免迁地保护中的遗传风险。Abstract: Conserving genetic diversity of rare and endangered species and their evolutionary potential is one of the long-term goals of ex-situ conservation. Some potential genetic risks in ex-situ conservation in botanical gardens are presented. The preserved species may lack genetic representativity because of poor sampling. Inappropriate plantations, inadequate records and unclear kinships jeopardize endangered species to genetic confusion, inbreeding depression or outbreeding depression. Artificial selection and habitat conversion also potentially result endangered plants in adapting to ex-situ conservation, which had been usually overlooked. All the genetic risks can decrease the success of reintroduction and recovery. Therefore, appropriate genetic management should be carried out in botanical gardens to decrease or avoid genetic risks in ex-situ conservation.  相似文献   

13.
6 polycyclic aromatic hydrocarbon or similar amine carcinogens were tested as inducers of genetic tandem duplications in a rough strain of Salmonella typhimurium. When metabolically activated by rat-liver microsomes, all 6 were active in inducing genetic tandem duplications, yielding from over 3 times to almost 14 times as many tandem duplicants per viable bacterium as did concurrent uninduced control cultures. These results extend the number and chemical diversity of carcinogens shown to induce genetic duplications in bacterial tester systems. We suggest that polycyclic hydrocarbon carcinogens may act in carcinogenesis by inducing genetic duplications or other genetic rearrangements. Duplication induction may be a useful genetic endpoint for screening potential carcinogens.  相似文献   

14.

We review the published literature oninbreeding and its consequences in salmonidfishes. Inbreeding reduces genetic variationwithin populations by decreasingheterozygosity, either through an increasedchance of sharing parental genes or a loss ofalleles from random genetic drift. Increasedinbreeding is often associated with a reductionin mean phenotypic value of one or more traitswith respect to fitness (inbreedingdepression). We identify several sources ofinbreeding in salmonids. Although inbreedingoccurs naturally, much of the evidence forinbreeding stems from direct or indirectresults of human activity. The potentialconsequences of inbreeding highlight theimportance of maintaining genetic diversity insalmonid populations. Our weak understandingof genetic interactions between cultured andwild salmonids has allowed widespread practicesthat can reduce genetic variability in naturalpopulations. Although studies have detectedinbreeding depression in salmonids, its geneticbasis has rarely been addressed in wild,anadromous salmon. The genetic basis ofinbreeding depression is complex, andevaluating its effects over the entire lifecycle remains challenging. The experimentalevidence nevertheless reinforces the importanceof maintaining genetic variation withinpopulations as a primary goal of conservationand management.

  相似文献   

15.
Identifying population structure is one of the most common and important objectives of spatial analyses using population genetic data. Population structure is detected either by rejecting the null hypothesis of a homogenous distribution of genetic variation, or by estimating low migration rates. Issues arise with most current population genetic inference methods when the genetic divergence is low among putative populations. Low levels of genetic divergence may be as a result of either high ongoing migration or historic high migration but no current, ongoing migration. We direct attention to recent developments in the use of the tempo-spatial distribution of closely related individuals to detect population structure or estimate current migration rates. These 'kinship-based' approaches complement more traditional population-based genetic inference methods by providing a means to detect population structure and estimate current migration rates when genetic divergence is low. However, for kinship-based methods to become widely adopted, formal estimation procedures applicable to a range of species life histories are needed.  相似文献   

16.
Since 1991, 28 states have enacted laws that prohibit insurers' use of genetic information in pricing, issuing, or structuring health insurance. This article evaluates whether these laws reduce the extent of genetic discrimination by health insurers. From the data collected at multiple sites, we find that there are almost no well-documented cases of health insurers either asking for or using presymptomatic genetic test results in their underwriting decisions, either (a) before or after these laws have been enacted or (b) in states with or without these laws. By using both in-person interviews with insurers and a direct market test, we found that a person with a serious genetic condition who is presymptomatic faces little or no difficulty in obtaining health insurance. Furthermore, there are few indications that the degree of difficulty varies according to whether a state regulates the use of genetic information. Nevertheless, these laws have made it less likely that insurers will use genetic information in the future. Although insurers and agents are only vaguely aware of these laws, the laws have shaped industry norms and attitudes about the legitimacy of using this information.  相似文献   

17.
Salmonid inbreeding: a review   总被引:3,自引:0,他引:3  
We review the published literature oninbreeding and its consequences in salmonidfishes. Inbreeding reduces genetic variationwithin populations by decreasingheterozygosity, either through an increasedchance of sharing parental genes or a loss ofalleles from random genetic drift. Increasedinbreeding is often associated with a reductionin mean phenotypic value of one or more traitswith respect to fitness (inbreedingdepression). We identify several sources ofinbreeding in salmonids. Although inbreedingoccurs naturally, much of the evidence forinbreeding stems from direct or indirectresults of human activity. The potentialconsequences of inbreeding highlight theimportance of maintaining genetic diversity insalmonid populations. Our weak understandingof genetic interactions between cultured andwild salmonids has allowed widespread practicesthat can reduce genetic variability in naturalpopulations. Although studies have detectedinbreeding depression in salmonids, its geneticbasis has rarely been addressed in wild,anadromous salmon. The genetic basis ofinbreeding depression is complex, andevaluating its effects over the entire lifecycle remains challenging. The experimentalevidence nevertheless reinforces the importanceof maintaining genetic variation withinpopulations as a primary goal of conservationand management.  相似文献   

18.
Tests for the induction of genetic damage in mammalian germ cells provide the data needed for human genetic risk assessment and are used as standards for judging the ability of shorter-term tests to predict genetic hazard. In this review, 15 mammalian germ-cell tests and their variants are described. These tests are of two general types: (a) those designed to detect certain classes of genetic damage (gene mutations, chromosome breakage and/or rearrangement, and chromosome mis-segregation), regardless of whether or not the endpoint scored has any significance to human health, and (b) those designed to detect phenotypes that have human health implications, while the nature of the genetic damage is not usually known. Exposure to a mutagenic agent presents no genetic hazard if the chemical or its metabolites fail to reach the reproductive cells. Tests for gonadal exposure are, therefore, important, as preliminaries or components of studies on germ-cell mutagenicity. Seven of these tests and their variants are briefly described in the second part of the paper.  相似文献   

19.
20.
spag e d i version 1.0 is a software primarily designed to characterize the spatial genetic structure of mapped individuals or populations using genotype data of codominant markers. It computes various statistics describing genetic relatedness or differentiation between individuals or populations by pairwise comparisons and tests their significance by appropriate numerical resampling. spag e d i is useful for: (i) detecting isolation by distance within or among populations and estimating gene dispersal parameters; (ii) assessing genetic relatedness between individuals and its actual variance, a parameter of interest for marker based inferences of quantitative inheritance; (iii) assessing genetic differentiation among populations, including the case of haploids or autopolyploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号