首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wistar pregnant rats were sacrificed at the end of pregnancy and the status of metabotropic glutamate receptors/phospholipase C (mGluR/PLC) pathway was studied in brain from pregnant and non-pregnant female rats. Pregnancy causes a significant increase in metabotropic glutamate receptors number, determined by radioligand binding assay, without significant changes on receptor affinity. Similar increase in mGluR(1) type was obtained by immunoblotting assay using specific anti-mGluR(1) antibody. However, no significant differences were observed in mGluR(5) type, suggesting that the increase detected by radioligand assays could be due to mGluR(1) up-regulation. On the other hand, a significant increase in the alpha subunit of G(q) protein was also detected in pregnant rats by immunoblotting assays. Real-time PCR experiments revealed a significant increase in gene expression of metabotropic glutamate receptors and G(q) proteins. Neither protein level nor gene expression of phospholipase C beta(1) isoform was altered in pregnant rats. However, an increase in basal and agonist-stimulated phospholipase C activity was observed in membranes from pregnant rats. These results suggest that gestational period causes the up-regulation of both metabotropic glutamate receptors and coupled G(q)-protein and, in turn, an increase in phospholipase C activity.  相似文献   

2.
The effects of several metabotropic receptor (mGluR) ligands on baseline hippocampal glutamate and GABA overflow in conscious rats and the modulation of limbic seizure activity by these ligands were investigated. Intrahippocampal mGluR group I agonist perfusion via a microdialysis probe [1 mm (R,S)-3,5-dihydroxyphenylglycine] induced seizures and concomitant augmentations in amino acid dialysate levels. The mGlu1a receptor antagonist LY367385 (1 mm) decreased baseline glutamate but not GABA concentrations, suggesting that mGlu1a receptors, which regulate hippocampal glutamate levels, are tonically activated by endogenous glutamate. This decrease in glutamate may contribute to the reported LY367385-mediated anticonvulsant effect. The mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (50 mg/kg) also clearly abolished pilocarpine-induced seizures. Agonist-mediated actions at mGlu2/3 receptors by LY379268 (100 microm, 10 mg/kg intraperitoneally) decreased basal hippocampal GABA but not glutamate levels. This may partly explain the increased excitation following systemic LY379268 administration and the lack of complete anticonvulsant protection within our epilepsy model with the mGlu2/3 receptor agonist. Group II selective mGluR receptor blockade with LY341495 (1-10 microm) did not alter the rats' behaviour or hippocampal amino acid levels. These data provide a neurochemical basis for the full anticonvulsant effects of mGlu1a and mGlu5 antagonists and the partial effects observed with mGlu2/3 agonists in vivo.  相似文献   

3.
Summary. Caffeine is the most widely consumed substance in the world which antagonizes adenosine effects. Adenosine acting through A1 receptors inhibits glutamate release which binds to metabotropic glutamate receptors (mGluRs). Recently, we have shown that maternal caffeine intake during gestation causes down-regulation of A1 and metabotropic glutamate receptors in the brain of both rat mothers and fetuses. In the present work we provide evidence that caffeine also affects receptors in hearts, causing a decrease in mGluRs from both maternal and fetal hearts. A decrease in Gq/11 and PLC β1 proteins level was also observed in both tissues. However, phospholipase C activity was only affected in fetal heart, being significantly decreased. These results suggest an in vivo cross-talk mechanism between adenosine and glutamate receptors in peripheral tissues. Therefore, special attention should be paid to caffeine ingestion during gestation.  相似文献   

4.
Chronic R-N(6)-phenylisopropiladenosine (R-PIA) subcutaneous injection for 6 days significantly increased total glutamate receptor number (180% of control) in rat brain synaptic plasma membranes (SPM), without affecting receptor affinity. A higher increase in metabotropic glutamate (mGlu) receptor number (258% of control) was also detected, indicating that mGlu is the main type of glutamate receptor affected by this treatment. On the other hand, the observed increase in basal and calcium- and Gpp(NH)p-stimulated phospholipase C (PLC) activity after treatment was associated with a significant increase in PLC beta(1) isoform, detected in SPM by immunoblotting assays. Moreover, an increase in PLC activity stimulation with trans-ACPD, in the absence and in the presence of Gpp(NH)p, was detected after R-PIA treatment. These results show that mGlu receptors and its effector system, PLC activity, are up-regulated by chronic exposure to an adenosine A(1) receptor agonist and suggest the existence of a cross-talk mechanism between both signal transduction pathways in rat brain.  相似文献   

5.
Metabotropic glutamate receptors (mGluR) are present in cells of the nervous system, where they are activated by one of the main neurotransmitters, glutamate. They are also expressed in cells outside the nervous system. We identified and characterized two receptors belonging to group I mGluR, mGlu1R and mGlu5R, in human cell lines of lymphoid origin and in resting and activated lymphocytes from human peripheral blood. Both are highly expressed in the human Jurkat T cell line, whereas mGlu5R is expressed only in the human B cell line SKW6.4. In blood lymphocytes, mGlu5R is expressed constitutively, whereas mGlu1R is expressed only upon activation via the T cell receptor-CD3 complex. Group I receptors in the central nervous system are coupled to phospholipase C, whereas in blood lymphocytes, activation of mGlu5R does not trigger this signaling pathway, but instead activates adenylate cyclase. On the other hand, mGlu5R does not mediate ERK1/2 activation, whereas mGlu1R, which is coupled neither to phospholipase C nor to calcium channels and whose activation does not increase cAMP, activates the mitogen-activated protein kinase cascade. The differential expression of mGluR in resting and activated lymphocytes and the different signaling pathways that are triggered when mGlu1Rs or mGlu5Rs are activated point to a key role of glutamate in the regulation of T cell physiological function. The study of the signaling pathways (cAMP production and ERK1/2 phosphorylation) and the proliferative response obtained in the presence of glutamate analogs suggests that mGlu1R and mGlu5R have distinct functions. mGlu5R mediates the reported inhibition of cell proliferation evoked by glutamate, which is reverted by the activation of inducible mGlu1R. This is a novel non-inhibitory action mechanism for glutamate in lymphocyte activation. mGlu1R and mGlu5R thus mediate opposite glutamate effects in human lymphocytes.  相似文献   

6.
Activation of glutamate receptors is known to alter the biophysical state of the cytoskeleton of neurons in the developing brain. In this study, we examined the ability of G protein-coupled metabotropic glutamate receptors (mGluRs) to inhibit the formation of processes induced by the expression of the microtubule-associated protein MAP2c. The infection of insect MG-1 cells with a recombinant baculovirus (BV) encoding MAP2c induced the formation of fine filamentous processes. The binding of MAPs to tubulin promotes tubulin polymerization and the formation of microtubules. Co-infection with BVs for the phosphoinositide (PI)-linked mGluR1a or mGluR1b receptor subtypes inhibited the formation of processes induced by MAP2c, whereas co-infection with BVs encoding the mGluR4a or mGluR4b subtypes that couple to adenylyl cyclase did not inhibit the formation of processes. The biochemical pathways responsible for producing the inhibitory effect of mGluR1 were investigated. Inhibitors of protein kinase C, calcium/calmodulin-dependent kinase, and protein tyrosine kinases did not block the inhibitory effect of mGluR1a. The calcium chelator BAPTA and the calcium depletor thapsigargin also did not affect the ability of mGluR1a to inhibit process formation. In contrast, inhibitors of phospholipase C reversed the effect of mGluR1 on process formation, suggesting that one or more metabolites in the PI pathway were responsible for the inhibitory effect. These findings indicate that PIs generated by activation of mGluRs inhibit the binding of MAPs to tubulin and reduce tubulin polymerization and microtubule stability.  相似文献   

7.
8.
We investigated the expression of metabotropic glutamate receptor (mGluR) isoforms in CG-4 rodent oligodendroglial progenitor cells (OPC) and rat brain oligodendrocytes. Our RT-PCR analysis detected mRNAs for mGluR3 and mGluR5 isoforms in OPCs. Although neurons express both mGluR5a and mGluR5b splice variants, only mGluR5a was identified in OPCs. Antibodies to mGluR2/3 and mGluR5 detected the corresponding receptor proteins in immunoblots of OPC membrane fractions. Furthermore, immunocytochemical analysis identified mGluR5 in oligodendrocyte marker O4-positive OPCs. The expression of mGluR5 was also demonstrated in oligodendrocyte marker (O4 and O1) positive cells in white matter of postnatal 4- and 7-day-old rat brain sections using immunofluorescent double labelling and confocal microscopy. The mGluR5 receptor function was assessed in CG-4 OPCs with fura-2 microfluorometry. Application of the mGluR1/5 specific agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced calcium oscillations, which were inhibited by the selective mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). The DHPG induced calcium oscillations required Ca2+ release from intracellular stores. In OPCs the group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) decreased forskolin-stimulated cAMP synthesis, indicating the presence of functional mGluR3. The newly identified mGluR3 and mGluR5a may be involved in the differentiation of oligodendrocytes, myelination and the development of white matter damage.  相似文献   

9.
Recent evidence suggest that many G protein-coupled receptors (GPCR) and signalling molecules localize in microdomains of the plasma membrane. In this study, flotation gradient analysis in the absence of detergents demonstrated the presence of the metabotropic glutamate receptor type 1alpha (mGlu1alpha) in low-density caveolin-enriched membrane fractions (CEMF) in permanently transfected BHK cells. BHK-1alpha cells exhibit a similar pattern of staining for caveolin-1 and caveolin-2, and these two proteins show a high degree of co-localization with mGlu1alpha receptor as demonstrated by immunogold and confocal laser microscopy. The presence of mGlu1alpha in CEMF was also demonstrated by co-immunoprecipitation of mGlu1alpha receptor using antibodies against caveolin proteins. Activation of the mGlu1alpha receptor by agonist increased extracellular signal-regulated kinases phosphorylation in CEMF and not in high-density membrane fractions (HDMF), suggesting that mGlu1alpha receptor-mediated signal transduction could occur in caveolae-like domains. Overall, these results clearly show a molecular and functional association of mGlu1alpha receptor with caveolins.  相似文献   

10.
We have studied the activation of phospholipase D (PLD) by glutamate in rat cultured astrocytes by measuring the PLD-catalyzed formation of [32P]phosphatidylbutanol in [32P]Pi-prelabeled cells, stimulated in the presence of butanol. Glutamate elicited the activation of PLD in cortical astrocytes but not in cortical neurons, whereas similar glutamate activation of phosphoinositide phospholipase C was found in both astrocytes and neurons. The extent of PLD stimulation by glutamate was similar in astrocytes from brain cortex and hippocampus, but no effect was found in cerebellar astrocytes. In cortical astrocytes, the glutamate response was insensitive to antagonists of ionotropic glutamate receptors and was reproduced by agonists of metabotropic glutamate receptors (mGluRs) with a rank order of agonist potency similar to that reported for group I mGluR-mediated phosphoinositide phospholipase activation [quisqualate > (S)-3,5-dihydroxyphenylglycine > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid]. The response to (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid was inhibited by the mGluR antagonist (S)-alpha-methyl-4-carboxyphenylglycine and, less potently, by 1-aminoindan-1,5-dicarboxylic acid and 4-carboxyphenylglycine, two antagonists of group I mGluRs that display higher potency on mGluR1 than on mGluR5. The mGluR5-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine also activated PLD in astrocytes. These findings indicate the involvement of group I mGluRs, most likely mGluR5, in the glutamate activation of PLD in cultured rat cortical astrocytes.  相似文献   

11.
I Aramori  S Nakanishi 《Neuron》1992,8(4):757-765
The signal transduction and pharmacological properties of a metabotropic glutamate receptor, mGluR1, were studied in CHO cells permanently expressing the cloned receptor. mGluR1 stimulated phosphatidylinositol (PI) hydrolysis in the potency rank order of quisqualate greater than L-glutamate greater than or equal to ibotenate greater than L-homocysteine sulfinate greater than or equal to trans-ACPD. This receptor also evoked the stimulation of cAMP formation and arachidonic acid release with comparable agonist potencies. DL-AP3 and L-AP4, the effective antagonists reported for glutamate-stimulated PI hydrolysis in brain slices, showed no appreciable effects on mGluR1, suggesting the existence of an additional subtype of this receptor family. Pertussis toxin and phorbol ester produced distinct effects on the three transduction cascades, implying that mGluR1 independently links to the multiple transduction pathways probably through different G proteins.  相似文献   

12.
To begin to understand the modulatory role of glutamate in the inner retina, we examined the mechanisms underlying metabotropic glutamate receptor 5 (mGluR5)-dependent Ca(2+) elevations in cultured GABAergic amacrine cells. A partial sequence of chicken retinal mGluR5 encompassing intracellular loops 2 and 3 suggests that it can couple to both G(q) and G(s). Selective activation of mGluR5 stimulated Ca(2+) elevations that varied in waveform from cell to cell. Experiments using high external K(+) revealed that the mGluR5-dependent Ca(2+) elevations are distinctive in amplitude and time course from those engendered by depolarization. Experiments with a Ca(2+) -free external solution demonstrated that the variability in the time course of mGluR5-dependent Ca(2+) elevations is largely due to the influx of extracellular Ca(2+). The sensitivity of the initial phase of the Ca(2+) elevation to thapsigargin indicates that this phase of the response is due to the release of Ca(2+) from the endoplasmic reticulum. Pharmacological evidence indicates that mGluR5-mediated Ca(2+) elevations are dependent upon the activation of phospholipase C. We rule out a role for L-type Ca(2+) channels and cAMP-gated channels as pathways for Ca(2+) entry, but provide evidence of transient receptor potential (TRP) channel-like immunoreactivity, suggesting that Ca(2+) influx may occur through TRP channels. These results indicate that GABAergic amacrine cells express an avian version of mGluR5 that is linked to phospholipase C-dependent Ca(2+) release and Ca(2+) influx, possibly through TRP channels.  相似文献   

13.
We report on the expression of ionotropic glutamate receptor subunits in primary neuronal cultures from rat cortex, hippocampus and cerebellum and of metabotropic glutamate (mGlu) receptor subtypes in these neuronal cultures as well as in cortical astroglial cultures. We found that the NMDA receptor (NR) subunits NR1, NR2A and NR2B were expressed in all three cultures. Each of the three cultures showed also expression of the four AMPA receptor subunits. Although RT-PCR detected mRNA of all kainate (KA) subunits in the three cultures, western blot showed only expression of Glu6 and KA2 receptor subunits. The expression analysis of mGlu receptors indicated the presence of all mGlu receptor subtype mRNAs in the three neuronal cultures, except for mGlu2 receptor mRNA, which was not detected in the cortical and cerebellar culture. mGlu1a/alpha, -2/3 and -5 receptor proteins were present in all three cultures, whereas mGlu4a and mGlu8a receptor proteins were not detected. Astroglial cultures were grown in either serum-containing or chemically defined medium. Only mGlu5 receptor protein was found in astroglial cultures grown in serum-containing medium. When astrocytes were cultured in chemically defined medium, mGlu3, -5 and -8 receptor mRNAs were detected, but at the protein level, still only mGlu5 receptor was found.  相似文献   

14.
The regulation of pre-synaptic glutamate release is important in the maintenance and fidelity of excitatory transmission in the nervous system. In this study, we report a novel interaction between a ligand-gated ion channel and a G-protein coupled receptor which regulates glutamate release from parallel fiber axon terminals. Immunocytochemical analysis revealed that GABA(A) receptors and the high affinity group III metabotropic glutamate receptor subtype 4 (mGlu4) are co-localized on glutamatergic parallel fiber axon terminals in the cerebellum. GABA(A) and mGlu4 receptors were also found to co-immunoprecipitate from cerebellar membranes. Independently, these two receptors have opposing roles on glutamate release: pre-synaptic GABA(A) receptors promote, while mGlu4 receptors inhibit, glutamate release. However, coincident activation of GABA(A) receptors with muscimol and mGlu4 with the agonist (2S)-S-2-amino-4-phosphonobutanoic acid , increased glutamate release from [(3) H]glutamate-loaded cerebellar synaptosomes above that observed with muscimol alone. Further support for an interaction between GABA(A) and mGlu4 receptors was obtained in the mGlu4 knockout mouse which displayed reduced binding of the GABA(A) ligand [(35) S]tert-butylbicyclophosphorothionate, and decreased expression of the α1, α6, β2 GABA(A) receptor subunits in the cerebellum. Taken together, our data suggest a new role for mGlu4 whereby simultaneous activation with GABA(A) receptors acts to amplify glutamate release at parallel fiber-Purkinje cell synapses.  相似文献   

15.
Metabotropic glutamate receptor 1 (mGluR1) expresses at the cell surface as disulfide-linked dimers and can be reduced to monomers with sulfhydryl reagents. To identify the dimerization domain, we transiently expressed in HEK-293 cells a truncated version of mGluR1 (RhodC-R1) devoid of the extracellular domain (ECD). RhodC-R1 was a monomer in the absence or presence of the reducing agents, suggesting that dimerization occurs via the ECD. To identify cysteine residues involved in dimerization within the ECD, cysteine to serine point mutations were made at three cysteines within the amino-terminal half of the ECD. A mutation at positions Cys-67, Cys-109, and Cys-140 all resulted in significant amounts of monomers in the absence of reducing agents. The monomeric C67S and C109S mutants were not properly glycosylated, failed to reach the cell surface, and showed no glutamate response, indicating that these mutant receptors were improperly folded and/or processed and thus retained intracellularly. In contrast, the monomeric C140S mutant was properly glycosylated, processed, and expressed at the cell surface. Phosphoinositide hydrolysis assay showed that the glutamate response of the C140S mutant receptor was similar to the wild type receptor. Substitution of a cysteine for Ser-129, Lys-134, Asp-143, and Thr-146 on the C140S mutant background restored receptor dimerization. Taken together, the results suggest that Cys-140 contributes to intermolecular disulfide-linked dimerization of mGluR1.  相似文献   

16.
Expression of group III metabotropic glutamate receptors (mGluR) was established by RT-PCR and immunocytochemistry on a cultured clonal human neural stem/progenitor cell (hNSPC) line derived from fetal ventral mesencephalon (VM). Selective activation of these receptors by the group III mGluR agonist l-(+)-2-amino-4-phosphonobutyric acid (l-AP4) prevented increases in cAMP levels following forskolin stimulation, suggesting these receptors are coupled to their canonical G-protein coupled signal transduction pathway. Tonic exposure of undifferentiated cultures to l-AP4 resulted in a decrease in cellular metabolism and proliferation in the absence of toxicity, as measured by MTT and LDH assays, in a dose-dependent manner. This was confirmed by a reduction in BrdU incorporation into nuclear DNA, suggestive of an anti-proliferative effect of l-AP4. This effect was rescued by co-addition of the broad-spectrum group III mGluR competitive antagonist (RS)-a-cyclopropyl-4-phosphonophenylglycine (CPPG), demonstrating a receptor-mediated mechanism, but not mimicked by application of the cell permeable cAMP analogue dibutyrl cAMP (db-cAMP). The potency of these effects of l-AP4 indicates that this is an mGlu7 subtype-mediated effect. Tonic exposure of undifferentiated cultures to the mGlu7 selective allosteric agonist N,N′-bis(diphenylmethyl)-1,2-ethanediamine dihydrochloride (AMN082), but not the mGlu4 selective allosteric agonist (±)-cis-2-(3,5-dicholorphenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041), or the mGlu8 selective agonist (S)-3,4-dicarboxyphenylglycine ((S)-3,4-DCPG) resulted in an identical anti-proliferative effect to l-AP4, confirming the involvement of the mGlu7 subtype. In differentiating cultures, tonic exposure to l-AP4 or AMN082 resulted in a significant shift towards an astrocyte cell fate. The mGlu7 receptor therefore provides a new opportunity to influence the proliferation and differentiation of ventral mesencephalon-derived hNSPC.  相似文献   

17.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   

18.
We recently showed that prolonged activation of metabotropic glutamate receptor 7 (mGlu7) potentiates glutamate release. This signalling involves phospholipase C activation via a pertussis toxin insensitive G protein and the subsequent hydrolysis of phosphatidylinositol (4,5)-bisphosphate. Release potentiation is independent of protein kinase C activation but it is dependent on the downstream release machinery, as reflected by the concomitant translocation of active zone Munc13-1 protein from the soluble to particulate fractions. Here we show that phorbol ester and mGlu7 receptor-dependent facilitation of neurotransmitter release is not additive, suggesting they share a common signalling mechanism. However, release potentiation is restricted to release sites that express N-type Ca(2+) channels, because phorbol ester and mGlu7 receptor-mediated release potentiation are absent in nerve terminals from mice lacking N-type Ca(2+) channels. In addition, phorbol esters but not mGlu7 receptors potentiate release at nerve terminals with P/Q-type Ca(2+) channels, although only under restricted conditions of Ca(2+) influx. The differential effect of phorbol esters at nerve terminals with either N- or P/Q-type Ca(2+) channels seems to be unrelated to the type Munc13 isoform expressed, and it is more likely dependent on other properties of the release machinery.  相似文献   

19.
We investigated whether the activation of astroglial group II and III metabotropic glutamate receptors (mGluRs) could exert neuroprotective effects and whether the neuroprotection was related to glutamate uptake. Our results showed that the activation of astroglial group II or III mGluRs exerted neuroprotection against 1-methyl-4-phenylpyridinium (MPP+) astroglial conditioned medium-induced neurotoxicity in midbrain neuron cultures. Furthermore, MPP+ decreased glutamate uptake of primary astrocytes and C6 glioma cells, which was recovered by activating group II or III mGluRs. Specific group II or III mGluRs antagonists completely abolished the neuroprotective effects and the enhancement of glutamate uptake of their respective agonists. Our results showed that the primary cultured rat astrocytes and C6 glioma cells expressed receptor proteins for group II mGluR2/3, group III mGluR4, mGluR6 and mGluR7. C6 glioma cells expressed mRNA for group II mGluR3, group III mGluR4, mGluR6, mGluR7 and mGluR8. In conclusion, we confirmed that the activation of astroglial mGluRs exerted neuroprotection, and demonstrated that the mechanism underlying this protective role was at least partially related to the enhancement of glutamate uptake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号