共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Nucleolar protein p40/EBP2 is a proliferation-associated antigen that interacts with Epstein-Barr virus nuclear antigen 1 (EBNA1) to maintain the Epstein-Barr virus (EBV) episomes. The yeast p40/EBP2 functions in the processing of 27S-A into 27S-B ribosomal RNA. The present study reports high evolutionary conservation of the cDNA-derived amino acid sequences of p40/EBP2 from frog, chicken, pig, rat, mouse, bovine, and human. p40/EBP2 is ubiquitously expressed in human tissues. It is highly expressed in myelogenous leukemia K-562 compared to other cell lines tested. The human p40/EBP2 gene is located in chromosome 1 with nine exons and eight introns. The minimal promoter region resides 300 nucleotides upstream of a putative ATG initiation codon preceded by a pyrimidine-rich region. These two regions contain eight Sp1 and four c-Ets-1 putative binding sites. Analysis of the p40/EBP2 gene and its promoter region will facilitate studies on the regulation of its expression in EBV-infected and noninfected cells. 相似文献
4.
5.
6.
7.
The carboxy-terminal acidic domain of Rift Valley Fever virus NSs protein is essential for the formation of filamentous structures but not for the nuclear localization of the protein
下载免费PDF全文

The ambisense S segment of Rift Valley fever (RVF) virus (a phlebovirus in the Bunyaviridae family) codes for two proteins: the viral complementary-sense RNA for the N nucleoprotein and the genomic-sense RNA for the nonstructural protein NSs. Except for the fact that the NSs protein is phosphorylated and forms filamentous structures in the nuclei of infected cells (R. Swanepoel and N. K. Blackburn, J. Gen. Virol. 34:557-561, 1977), its role is poorly understood, especially since the replication cycle of all these viruses takes place in the cytoplasm. To investigate the mechanisms involved in filament formation, we expressed NSs in mammalian cells via a recombinant Semliki Forest virus and demonstrated that the protein alone was able to form structures similar to those observed in RVF virus-infected cells, indicating that the presence of other RVF virus proteins is not required for filament formation. The yeast two-hybrid system was used to show that the protein interacts with itself and to map the interacting domains. Various deletion and substitution mutants were constructed, and the mutant proteins were analyzed by immunoprecipitation, Western blotting and immunofluorescence. These experiments indicated that the 10 to 17 amino acids of the carboxy-terminal domain were involved in self-association of the protein and that deletion of this acidic carboxy-terminal domain prevents the protein from forming filaments but does not affect its nuclear localization. The role of two phosphorylation sites present in this domain was also investigated, but they were not found to have a major influence on the formation of the nuclear filament. 相似文献
8.
Epstein-Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. 总被引:13,自引:50,他引:13
下载免费PDF全文

Several lines of evidence are compatible with the hypothesis that Epstein-Barr virus (EBV) nuclear antigen 2 (EBNA-2) or leader protein (EBNA-LP) affects expression of the EBV latent infection membrane protein LMP1. We now demonstrate the following. (i) Acute transfection and expression of EBNA-2 under control of simian virus 40 or Moloney murine leukemia virus promoters resulted in increased LMP1 expression in P3HR-1-infected Burkitt's lymphoma cells and the P3HR-1 or Daudi cell line. (ii) Transfection and expression of EBNA-LP alone had no effect on LMP1 expression and did not act synergistically with EBNA-2 to affect LMP1 expression. (iii) LMP1 expression in Daudi and P3HR-1-infected cells was controlled at the mRNA level, and EBNA-2 expression in Daudi cells increased LMP1 mRNA. (iv) No other EBV genes were required for EBNA-2 transactivation of LMP1 since cotransfection of recombinant EBNA-2 expression vectors and genomic LMP1 DNA fragments enhanced LMP1 expression in the EBV-negative B-lymphoma cell lines BJAB, Louckes, and BL30. (v) An EBNA-2-responsive element was found within the -512 to +40 LMP1 DNA since this DNA linked to a chloramphenicol acetyltransferase reporter gene was transactivated by cotransfection with an EBNA-2 expression vector. (vi) The EBV type 2 EBNA-2 transactivated LMP1 as well as the EBV type 1 EBNA-2. (vii) Two deletions within the EBNA-2 gene which rendered EBV transformation incompetent did not transactivate LMP1, whereas a transformation-competent EBNA-2 deletion mutant did transactivate LMP1. LMP1 is a potent effector of B-lymphocyte activation and can act synergistically with EBNA-2 to induce cellular CD23 gene expression. Thus, EBNA-2 transactivation of LMP1 amplifies the biological impact of EBNA-2 and underscores its central role in EBV-induced growth transformation. 相似文献
9.
10.
Human RPA (hSSB) interacts with EBNA1, the latent origin binding protein of Epstein-Barr virus. 总被引:2,自引:1,他引:2
下载免费PDF全文

RPA is the replicative single-strand DNA (ssDNA) binding protein of eukaryotic chromosomes. This report shows that human RPA interacts with EBNA1, the latent origin binding protein of Epstein-Barr virus (EBV). RPA binds to EBNA1 both in solution, and when EBNA1 is bound to the EBV origin. RPA is a heterotrimer, and the main contact with EBNA1 is formed through the 70 kDa subunit of RPA, the subunit which binds to ssDNA. We propose that this interaction between RPA and EBNA1 is an early step in activation of the latent origin of EBV. 相似文献
11.
Epstein-Barr virus nuclear protein 2 mutations define essential domains for transformation and transactivation. 总被引:21,自引:35,他引:21
下载免费PDF全文

Epstein-Barr virus (EBV) nuclear protein 2 (EBNA-2) is essential for B-lymphocyte growth transformation. EBNA-2 transactivates expression of the EBV latent membrane protein (LMP-1) and also transactivates expression of the B-lymphocyte proteins CD21 and CD23. In order to analyze the functional domains of EBNA-2, we constructed 11 linker-insertion and 15 deletion mutations. Each of the mutant EBNA-2 proteins localized to the nucleus, and each was expressed at levels similar to wild-type EBNA-2. Deletion of both EBNA-2 basic domains was required to prevent nuclear localization, indicating that either is sufficient for nuclear translocation. The mutant EBNA-2 genes were assayed for lymphocyte transformation after recombination with the EBNA-2-deleted P3HR-1 EBV genome and for LMP-1 transactivation following transfection into P3HR-1-infected B-lymphoma cells. Cell lines transformed by recombinant EBV carrying EBNA-2 mutations were assayed for growth properties and LMP-1, CD21, and CD23 expression. The mutational analysis indicates that at least four separate EBNA-2 domains are essential for lymphocyte transformation. Two other domains are necessary for the full transforming phenotype. Two deletion and eight linker-insertion mutations did not reduce transforming activity. Mutations which diminish or abolish lymphocyte transformation also diminish or abolish LMP-1 transactivation, respectively. Cells transformed by recombinant EBV carrying EBNA-2 genes with diminished or normal transforming activity all expressed high levels of LMP-1, CD23, and CD21. These findings suggest that transactivation of these viral and cellular genes by EBNA-2 plays a critical role in lymphocyte transformation by EBV. Furthermore, these results indicate that the transformation and transactivation functions of EBNA-2 may not be separable. 相似文献
12.
13.
Epstein-Barr virus latent membrane protein (LMP1) is not sufficient to maintain proliferation of B cells but both it and activated CD40 can prolong their survival. 总被引:9,自引:2,他引:9
下载免费PDF全文

U Zimber-Strobl B Kempkes G Marschall R Zeidler C Van Kooten J Banchereau G W Bornkamm W Hammerschmidt 《The EMBO journal》1996,15(24):7070-7078
14.
The Epstein-Barr virus nuclear antigen leader protein associates with hsp72/hsc73. 总被引:1,自引:4,他引:1
下载免费PDF全文

Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) is important for primary B-lymphocyte growth transformation. We now demonstrate that the W repeat-encoded domain of EBNA-LP significantly associates with proteins of the heat shock protein 70 family (hsp72/hsc73). hsp72/hsc73 may mediate the previously observed interaction between EBNA-LP and the retinoblastoma protein or p53. 相似文献
15.
Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. 总被引:10,自引:24,他引:10
下载免费PDF全文

S D Abbot M Rowe K Cadwallader A Ricksten J Gordon F Wang L Rymo A B Rickinson 《Journal of virology》1990,64(5):2126-2134
Infection of Epstein-Barr virus-negative human B-lymphoma cell lines with the fully transforming B95.8 Epstein-Barr virus strain was associated with complete virus latent gene expression and a change in the cell surface and growth phenotype toward that of in vitro-transformed lymphoblastoid cell lines. In contrast, the cells infected with the P3HR1 Epstein-Barr virus strain, a deletion mutant that cannot encode Epstein-Barr nuclear antigen 2 (EBNA2) or a full-length EBNA-LP, expressed EBNAs1, 3a, 3b, and 3c but were negative for the latent membrane protein (LMP) and showed no change in cellular phenotype. This suggests that EBNA2 and/or EBNA-LP may be required for subsequent expression of LMP in Epstein-Barr virus-infected B cells. Recombinant vectors capable of expressing the B95.8 EBNA2A protein were introduced by electroporation into two P3HR1-converted B-lymphoma cell lines, BL30/P3 and BL41/P3. In both cases, stable expression of EBNA2A was accompanied by activation of LMP expression from the resident P3HR1 genome; control transfectants that did not express the EBNA2A protein never showed induction of LMP. In further experiments, a recombinant vector capable of expressing the full-length B95.8 EBNA-LP was introduced into the same target lines. Strong EBNA-LP expression was consistently observed in the transfected clones but was never accompanied by induction of LMP. The EBNA2A gene transfectants expressing EBNA2A and LMP showed a dramatic change in cell surface and growth phenotype toward a pattern like that of lymphoblastoid cell lines; some but not all of these changes could be reproduced in the absence of EBNA2A by transfection of P3HR1-converted cell lines with a recombinant vector expressing LMP. These studies suggest that EBNA2 plays an important dual role in the process of B-cell activation to the lymphoblastoid phenotype; the protein can have a direct effect upon cellular gene expression and is also involved in activating the expression of a second virus-encoded effector protein, LMP. 相似文献
16.
Structure-function analysis of TAF130: identification and characterization of a high-affinity TATA-binding protein interaction domain in the N terminus of yeast TAF(II)130. 总被引:1,自引:2,他引:1
下载免费PDF全文

We report structure-function analyses of TAF130, the single-copy essential yeast gene encoding the 130,000-Mr yeast TATA-binding protein (TBP)-associated factor TAF(II)130 (yTAF(II)130). A systematic family of TAF130 mutants was generated, and these mutant TAF130 alleles were introduced into yeast in both single and multiple copies to test for their ability to complement a taf130delta null allele and support cell growth. All mutant proteins were stably expressed in vivo. The complementation tests indicated that a large portion (amino acids 208 to 303 as well as amino acids 367 to 1037) of yTAF(II)130 is required to support cell growth. Direct protein blotting and coimmunoprecipitation analyses showed that two N-terminal deletions which remove portions of yTAF(II)130 amino acids 2 to 115 dramatically decrease the ability of these mutant yTAF(II)130 proteins to bind TBP. Cells bearing either of these two TAF130 mutant alleles also exhibit a slow-growth phenotype. Consistent with these observations, overexpression of TBP can correct this growth deficiency as well as increase the amount of TBP interacting with yTAF(II)130 in vivo. Our results provide the first combined genetic and biochemical evidence that yTAF(II)130 binds to yeast TBP in vivo through yTAF(II)130 N-terminal sequences and that this binding is physiologically significant. By using fluorescence anisotropy spectroscopic binding measurements, the affinity of the interaction of TBP for the N-terminal TBP-binding domain of yTAF(II)130 was measured, and the Kd was found to be about 1 nM. Moreover, we found that the N-terminal domain of yTAF(II)130 actively dissociated TBP from TATA box-containing DNA. 相似文献
17.
18.
19.
20.
The influenza C virus CM2 protein and a chimeric influenza A virus M2 protein (MCM) containing the CM2 transmembrane domain were assessed for their ability to functionally replace the M2 protein. While all three proteins could alter cytosolic pH to various degrees when expressed from cDNA, only M2 and MCM could at least partially restore infectious virus production to M2-deficient influenza A viruses. The data suggest that while the CM2 ion channel activity is similar to that of M2, sequences in the extracellular and/or cytoplasmic domains play important roles in infectious virus production. 相似文献