首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
Site directed mutagenesis of the rat ovarian luteinizing hormone (LH) receptor cDNA was performed at each of the six potential N-linked glycosylation sites to determine the effect of putative carbohydrate chains on the activity of the membrane receptor. The conversion of Asn173 to Gln resulted in the total loss of hormone binding to the surface of the transfected cell. Mutant receptors synthesized with substitutions at the remaining potential N-linked glycosylation positions of 77, 152, 269, 277 and 291 revealed no significant change in the hormone affinity. However Asn77Gln and Asn152Gln exhibited significant decreases (approximately 80%) in the number of high affinity hormone binding sites. The changes in hormone binding activity upon elimination of the potential glycosylation sites at 77, 152 and 173 indicate the presence of functional carbohydrate chains at these positions in the rat ovarian LH/hCG receptor.  相似文献   

2.
Human calcitonin receptor (hCTR) subtypes contain three or four potential Asn-linked glycosylation sites in their extracellular amino termini. The role of glycosylation in hCTR function has not been identified, but it has been suggested that inhibition of glycosylation does not affect binding or signaling. To determine the role of glycosylation in hCTR biology, we studied the effects of inhibition of glycosylation and of substitution of Asn residues that are potential glycosylation sites. Native and mutated hCTRs were studied after transient expression in monkey kidney COS-1 cells. Tunicamycin, administered as part of a treatment protocol that inhibited glycosylation of all expressed receptors, decreased salmon calcitonin (sCT) binding affinities and signaling potencies at hCTRs with three or four potential glycosylation sites. In hCTR3, which contains three potential glycosylation sites at positions 26, 78, and 83, site-specific substitution of Asn-26 by Ala had no effect on sCT binding affinity or potency, whereas substitution of Asn-78 or Asn-83 lowered sCT affinity and potency. A mutant hCTR3 in which all three Asn residues were substituted with Ala exhibited no high-affinity sCT binding and potencies of several calcitonin analogues that were more than 100-fold lower than that of native hCTR3. Our data show that glycosylation is important for high-affinity binding and potency of calcitonin analogues at hCTRs.  相似文献   

3.
The relaxin receptor, RXFP1, is a member of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family. These receptors are characterized by a large extracellular ectodomain containing leucine-rich repeats which contain the primary ligand binding site. RXFP1 contains six putative Asn-linked glycosylation sites in the ectodomain at positions Asn-14, Asn-105, Asn-242, Asn-250, Asn-303, and Asn-346, which are highly conserved across species. N-Linked glycosylation is the most common post-translational modification of G-protein-coupled receptors, although its role in modulating receptor function differs. We herein investigate the actual N-linked glycosylation status of RXFP1 and the functional ramifications of these post-translational modifications. Site-directed mutagenesis was utilized to generate single- or multiple-glycosylation site mutants of FLAG-tagged human RXFP1 which were then transiently expressed in HEK-293T cells. Glycosylation status was analyzed by immunoprecipitation and Western blot and receptor function analyzed with an anti-FLAG ELISA, (33)P-H2 relaxin competition binding, and cAMP activity measurement. All of the potential N-glycosylation sites of RXFP1 were utilized in HEK-293T cells, and importantly, disruption of glycosylation at individual or combinations of double and triple sites had little effect on relaxin binding. However, combinations of glycosylation sites were required for cell surface expression and cAMP signaling. In particular, N-glycosylation at Asn-303 of RXFP1 was required for optimal intracellular cAMP signaling. Hence, as is the case for other LGR family members, N-glycosylation is essential for the transport of the receptor to the cell surface. Additionally, it is likely that glycosylation is also essential for the conformational changes required for G-protein coupling and subsequent cAMP signaling.  相似文献   

4.
The murine class B, type I scavenger receptor mSR-BI, a high density lipoprotein (HDL) receptor that mediates selective uptake of HDL lipids, contains 11 potential N-linked glycosylation sites and unknown numbers of both endoglycosidase H-sensitive and -resistant oligosaccharides. We have examined the consequences of mutating each of these sites (Asn --> Gln or Thr --> Ala) on post-translational processing of mSR-BI, cell surface expression, and HDL binding and lipid transport activities. All 11 sites were glycosylated; however, disruption of only two (Asn-108 and Asn-173) substantially altered expression and function. There was very little detectable post-translational processing of these two mutants to endoglycosidase H resistance and very low cell surface expression, suggesting that oligosaccharide modification at these sites apparently plays an important role in endoplasmic reticulum folding and/or intracellular transport. Strikingly, although the low levels of the 108 and 173 mutants that were expressed on the cell surface exhibited a marked reduction in their ability to transfer lipids from HDL to cells, they nevertheless bound nearly normal amounts of HDL. Indeed, the affinity of (125)I-HDL binding to the 173 mutant was similar to that of the wild-type receptor. Thus, N-linked glycosylation can influence both the intracellular transport and lipid-transporter activity of SR-BI. The ability to uncouple the HDL binding and lipid transport activities of mSR-BI by in vitro mutagenesis should provide a powerful tool for further analysis of the mechanism of SR-BI-mediated selective lipid uptake.  相似文献   

5.
Deletions, substitutions, or mutations of the rat TSH receptor extracellular domain between residues 20 and 107 (all residue numbers are determined by counting from the methionine start site) have been made by site-directed mutagenesis of receptor cDNA. After transfection in Cos-7 cells, constructs were evaluated for their ability to bind [125I]TSH or respond to TSH and thyroid-stimulating antibodies (TSAbs) from Graves' patients in assays measuring cAMP levels of the transfected cells. Assay results were compared to results from Cos-7 cells transfected with wild-type receptor constructs or vector alone. We identify threonine-40 as a TSAb-specific site whose mutation to asparagine, but not alanine, reduces TSAb activity 10-fold, but only minimally affects TSH-increased cAMP levels. We show that thyroid-stimulating blocking antibodies (TSBAbs), which block TSH or TSAb activity and are found in hypothyroid patients with idiopathic myxedema, continue to inhibit TSH-stimulated cAMP levels when threonine-40 is mutated to asparagine or alanine, suggesting that TSBAbs interact with different TSH receptor epitopes than the TSAb autoantibodies in Graves' patients. This is confirmed by the demonstration that these TSBAbs interact with high affinity TSH-binding sites previously identified at tyrosine-385 or at residues 295-306 of the extracellular domain of the TSH receptor. This is evidenced by a loss in the ability of TSBAbs to inhibit TSAb activity when these residues are mutated or deleted, respectively. Since the TSAb and TSBAb epitopes are in regions of the extracellular domain of the TSH receptor that have no homology in gonadotropin receptors, these data explain at least in part the organ-specific nature of TSH receptor autoantibodies in autoimmune thyroid disease. Data are additionally provided which indicate that residues 30-37 and 42-45, which flank the TSAb epitope at threonine-40, appear to be ligand interaction sites more important for high affinity TSH binding than for the ability of TSH to increase cAMP levels and that cysteine-41 is critical for TSH receptor conformation and expression on the surface of the cell. Thus, despite unchanged maximal values for TSH-increased cAMP levels, substitution of residues 42-45 or deletion of residues 30-37 results in receptors, which, by comparison to wild-type constructs, exhibit significantly worsened Kd values for TSH binding than EC50 values for TSH- or TSAb-increased cAMP activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We observed previously that the carboxyl-terminal region of the third loop of the TSH receptor (amino acid residues 617-625) is important in signal transduction. To analyze this region in more detail, in the present study we used site-directed mutagenesis to substitute, on an individual basis, the seven amino acids previously mutated as a group. These amino acids are either charged residues or potential phosphorylation sites. Six of the mutant TSH receptors with individual amino acid substitutions bound TSH with high affinity and displayed a cAMP response to TSH stimulation similar to the wild-type TSH receptor. The mutant receptor TSH-R-Gly625 (Arg----Gly) did not transduce a signal, but these results are noninformative because of the loss of high affinity TSH binding. The present data indicate that for each of the six informative amino acid substitutions, the individual residues are not critical for signal transduction. A corollary of this conclusion is that in the important carboxyl-terminal region of the third cytoplasmic loop of the TSH receptor multiple amino acid residues function as a unit.  相似文献   

7.
Atrial natriuretic peptide (ANP) is a hormone involved in cardiovascular homeostasis through its natriuretic and vasodilator actions. The ANP receptor that mediates these actions is a glycosylated transmembrane protein coupled to guanylate cyclase. The role of glycosylation in receptor signaling remains unresolved. In this study, we determined, by a combination of HPLC/MS and Edman sequencing, the glycosylation sites in the extracellular domain of ANP receptor (NPR-ECD) from rat expressed in COS-1 cells. HPLC/MS analysis of a tryptic digest of NPR-ECD identified five glycosylated peptide fragments, which were then sequenced by Edman degradation to determine the glycosylation sites. The data revealed Asn-linked glycosylation at five of six potential sites. The type of oligosaccharide structure attached at each site was deduced from the observed masses of the glycosylated peptides as follows: Asn13 (high-mannose), Asn180 (complex), Asn306 (complex), Asn347 (complex), and Asn395 (high-mannose and hybrid types). Glycosylation at Asn180 and Asn347 was partial. The role of glycosyl moieties in ANP binding was examined by enzymatic deglycosylation of NPR-ECD followed by binding assay. NPR-ECD deglycosylated with endoglycosidase F2 and endoglycosidase H retained ANP-binding activity and showed an affinity for ANP similar to that of untreated NPR-ECD. Endoglycosidase treatment of the full-length ANP receptor expressed in COS-1 cells also had no detectable effect on ANP binding. These results suggest that, although glycosylation may be required for folding and transport of the newly synthesized ANP receptor to the cell surface, the oligosaccharide moieties themselves are not involved in hormone binding.  相似文献   

8.
Melanin-concentrating hormone (MCH) is known to act through two G-protein-coupled receptors MCHR1 and MCHR2. MCHR1 has three potential sites (Asn13, Asn16 and Asn23) for N-linked glycosylation in its extracellular amino-terminus which may modulate its reactivity. Site-directed mutagenesis of the rat MCHR1 cDNA at single or multiple combinations of the three potential glycosylation sites was used to examine the role of the putative carbohydrate chains on receptor activity. It was found that all three potential N-linked glycosylation sites in MCHR1 were glycosylated, and that N-linked glycosylation of Asn23 was necessary for full activity. Furthermore, disruption of all three glycosylation sites impaired proper expression at the cell surface and receptor activity. These data outline the importance of the N-linked glycosylation of the MCHR1.  相似文献   

9.
The cardiac m2 muscarinic acetylcholine receptor (mAChR) is a sialoglycosylated transmembrane protein which has three potential sites for N-glycosylation (namely, Asn2, Asn3, and Asn6). To investigate the role of N-linked oligosaccharide(s) in the expression and function of the receptor, we constructed glycosylation-defective mutant receptor genes in which the three asparagine codons were substituted by codons for either aspartate (Asp2,3,6), lysine (Lys2,3,6), or glutamine (Gln2,3,6). The glycosylation-defective and wild-type receptor genes were stably expressed in Chinese hamster ovary cells. Binding experiments with the membrane-permeable radioligand [3H]quinuclidinyl-benzilate and the membrane-impermeable radioligand [3H]N-methylscopolamine revealed that the Asp2,3,6, Gln2,3,6, and wild-type receptors were located exclusively on the cell surface and expressed in similar numbers. The Lys2,3,6 mutant receptor was expressed at a relatively low level and was therefore not included in subsequent experiments. Wheat germ agglutinin-Sepharose chromatography and sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis demonstrated that the wild-type receptor, but not the Asp2,3,6 and Gln2,3,6 mutant receptors were N-glycosylated. The Asp2,3,6 and Gln2,3,6 mutant receptors had the same affinities for mAChR ligands as wild-type receptors. The time courses for degradation of the Asp2,3,6, Gln2,3,6, and wild-type receptors were also similar. In vivo functional analysis of the ability of the glycosylation mutant receptors to inhibit forskolin-stimulated cAMP accumulation revealed that maximal inhibition of adenylate cyclase activity was similar in the mutant and wild-type receptors. The Asp2,3,6 mutant receptor had an unaltered IC50 value for carbachol while the IC50 value of the Gln2,3,6 mutant receptor was 2-fold higher than that of the wild-type receptor. These results indicate that N-glycosylation of the m2 mAChR is not required for cell surface localization or ligand binding and does not confer increased stability against receptor degradation. Furthermore, N-glycosylation of the m2 mAChR is not required for functional coupling of the m2 mAChR to inhibition of adenylate cyclase.  相似文献   

10.
Zhou AT  Assil I  Abou-Samra AB 《Biochemistry》2000,39(21):6514-6520
The receptor for parathyroid hormone (PTH) and PTH-related peptide (PTHrP) is a G-protein-coupled receptor with four potential sites for N-linked glycosylation. The contribution of the oligosaccharide moieties to cell surface expression, ligand binding, and signal transduction was investigated. Site-directed mutagenesis of the rat PTH/PTHrP receptor cDNA was performed at single or combination of the four potential glycosylation sites to determine the effect of the putative carbohydrate chains on the activities of the receptor. The results revealed that all four potential N-glycosylation sites in the PTH/PTHrP receptor are glycosylated. Receptors missing a single or multiple glycosylation consensus but with at least one intact glycosylation site expressed sufficiently and functioned normally. In contrast, the nonglycosylated receptor, in which all four glycosylation sites were mutated, is deficient in these functions. These data indicate important roles for N-linked glycosylation in PTH/PTHrP receptor functions.  相似文献   

11.
Calcitonin receptor-like receptor (CRLR) constitutes either a CGRP receptor when complexed with receptor activity-modifying protein 1 (RAMP1) or an adrenomedullin receptor when complexed with RAMP2 or RAMP3. RAMP proteins modify the glycosylation status of CRLR and determine their receptor specificity; when treated with tunicamycin, a glycosylation inhibitor, CHO-K1 cells constitutively expressing both RAMP2 and CRLR lost the capacity to bind adrenomedullin. Similarly, in HEK293 EBNA cells constitutively expressing RAMP1/CRLR receptor complex CGRP binding was remarkably inhibited. Whichever RAMP protein was co-expressing with CRLR, the ligand binding was sensitive to tunicamycin. There are three putative Asn-linked glycosylation sites in the extracellular, amino terminal domain of CRLR at positions 66, 118 and 123. Analysis of CRLR mutants in which Gln was substituted for selected Asn residues showed that glycosylation of Asn123 is required for both the binding of adrenomedullin and the transduction of its signal. Substituting Asn66 or Asn118 had no effect. FACS analysis of cells expressing FLAG-tagged CRLRs showed that disrupting Asn-linked glycosylation severely affected the transport of the CRLR protein to the cell surface on N66/118/123Q mutant, and slightly reduced the level of the cell surface expression of N123Q mutant compared with wild-type CRLR. But other single mutants (N66Q, N118Q) had no effect for other single mutants. Our data shows that glycosylation of Asn66 and Asn118 is not essential for ligand binding, signal transduction and cell surface expression, and Asn123 is important for ligand binding and signal transduction rather than cell surface expression. It thus appears that glycosylation of Asn123 is required for CRLR to assume the appropriate conformation on the cell surface through its interaction with RAMPs.  相似文献   

12.
In humans, thromboxane (TX) A(2) signals through two TXA(2) receptor (TP) isoforms, termed TPalpha and TPbeta, that diverge exclusively within the carboxyl terminal cytoplasmic domains. The amino terminal extracellular region of the TPs contains two highly conserved Asn (N)-linked glycosylation sites at Asn(4) and Asn(16). While it has been established that impairment of N-glycosylation of TPalpha significantly affects ligand binding/intracellular signalling, previous studies did not ascertain whether N-linked glycosylation was critical for ligand binding per se or whether it was required for the intracellular trafficking and the functional expression of TPalpha on the plasma membrane (PM). In the current study, we investigated the role of N-linked glycosylation in determining the functional expression of TPalpha, by assessment of its ligand binding, G protein coupling and intracellular signalling properties, correlating it with the level of antigenic TPalpha protein expressed on the PM and/or retained intracellularly. From our data, we conclude that N-glycosylation of either Asn(4) or Asn(16) is required and sufficient for expression of functionally active TPalpha on the PM while the fully non-glycosylated TPalpha(N4,N16-Q4,Q16) is almost completely retained within the endoplasmic reticulum (ER) and remains functionally inactive, failing to associate with its coupling G protein Galpha(q) and, in turn, failing to mediate phospholipase (PL) Cbeta activation.  相似文献   

13.
Mentesana PE  Konopka JB 《Biochemistry》2001,40(32):9685-9694
The alpha-factor mating pheromone receptor (encoded by STE2) activates a G protein signaling pathway that stimulates the conjugation of Saccharomyces cerevisiae yeast cells. The alpha-factor receptor is known to undergo several forms of post-translational modification, including phosphorylation, mono-ubiquitination, and N-linked glycosylation. Since phosphorylation and mono-ubiquitination have been shown previously to play key roles in regulating the signaling activity and membrane trafficking of the alpha-factor receptors, the role of N-linked glycosylation was investigated in this study. The Asn residues in the five consensus sites for N-linked glycosylation present in the extracellular regions of the receptor protein were mutated to prevent carbohydrate attachment at these sites. Mutation of two sites near the receptor N-terminus (N25Q and N32Q) diminished the degree of receptor glycosylation, and the corresponding double mutant was not detectably N-glycosylated. The nonglycosylated receptors displayed normal function and subcellular localization, indicating that glycosylation is not important for wild-type receptor activity. However, mutation of the glycosylation sites resulted in improved plasma membrane localization for the Ste2-3 mutant receptors that are normally retained intracellularly at elevated temperatures. These results suggest that N-glycosylation may be involved in the sorting process for misfolded Ste2 proteins, and may similarly affect certain mutant receptors whose altered trafficking is implicated in human diseases.  相似文献   

14.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

15.
The somatostatin receptor subtypes, sst1-sst5, bind their natural ligands, somatostatin-14, somatostatin-28 and cortistatin-17, with high affinity but do not much discriminate between them. Detailed understanding of the interactions between these receptors and their peptide ligands may facilitate the development of selective compounds which are needed to identify the biological functions of individual receptor subtypes. The influence of the amino-terminal domain and of the two putative N-linked glycosylation sites located in this region of rat sst3 was analysed. Biochemical studies in transfected cell lines suggested that the amino-terminus of sst3 is glycosylated at both sites. Mutation of the N-linked glycosylation site, Asn18Thr, had only a small effect on binding properties and inhibition of adenylyl cyclase. The double mutant Asn18Thr/Asn31Thr lacking both glycosylation sites showed a significant reduction in high affinity binding and inhibition of adenylyl cyclase while peptide selectivity was not affected. Truncation of the amino-terminal region by 32 amino acid residues including the two glycosylation sites caused similar but much stronger effects. Immunocytochemical analysis of receptor localisation revealed that the amino-terminal domain but not the carbohydrates appear to be involved in the transport of the receptor polypeptide to the cell surface.  相似文献   

16.
The beta(1)-adrenergic receptor (beta(1)AR) has one predicted site of N-linked glycosylation on its extracellular amino-terminus, but the glycosylation and potential functional importance of this site have not yet been examined. We show here that the beta(1)AR is glycosylated in various cell types and that mutation of the single predicted site of N-linked glycosylation (N15A) results in the formation of receptors that are not N-glycosylated. The beta(1)AR N15A mutant exhibited significantly decreased basal surface expression relative to the wild-type receptor but had no detectable deficits in ligand binding or agonist-promoted internalization. Co-immunoprecipitation experiments using Flag-tagged and HA-tagged receptors demonstrated that the beta(1)AR-N15A mutant receptor exhibits a markedly reduced capacity for dimerization relative to wild-type beta(1)AR. These data reveal that the beta(1)AR is glycosylated on Asn15 and that this glycosylation plays a role in regulating beta(1)AR surface expression and dimerization.  相似文献   

17.
The lipopolysaccharide (LPS) receptor is a multi-protein complex that consists of at least three proteins, CD14, TLR4, and MD-2. Because each of these proteins is glycosylated, we have examined the functional role of N-linked carbohydrates of both MD-2 and TLR4. We demonstrate that MD-2 contains 2 N-glycosylated sites at positions Asn(26) and Asn(114), whereas the amino-terminal ectodomain of human TLR4 contains 9 N-linked glycosylation sites. Site-directed mutagenesis studies showed that cell surface expression of MD-2 did not depend on the presence of either N-linked site, whereas in contrast, TLR4 mutants carrying substitutions in Asn(526) or Asn(575) failed to be transported to the cell surface. Using a UV-activated derivative of Re595 LPS (ASD-Re595 LPS) in cross-linking assays, we demonstrated a critical role of MD-2 and TLR4 carbohydrates in LPS cross-linking to the LPS receptor. The ability of the various glycosylation mutants to support cell activation was also evaluated in transiently transfected HeLa cells. The double mutant of MD-2 failed to support LPS-induced activation of an interleukin-8 (IL-8) promoter-driven luciferase reporter to induce IL-8 secretion or to activate amino-terminal c-Jun kinase (JNK). Similar results were observed with TLR4 mutants lacking three or more N-linked glycosylation sites. Surprisingly, the reduction in activation resulting from expression of the Asn mutants of MD-2 and TLR4 can be partially reversed by co-expression with CD14. This suggests that the functional integrity of the LPS receptor depends both on the surface expression of at least three proteins, CD14, MD-2, and TLR4, and that N-linked sites of both MD-2 and TLR4 are essential in maintaining the functional integrity of this receptor.  相似文献   

18.
Recurrence of highly pathogenic avian influenza (HPAI) virus subtype H7 in poultry continues to be a public health concern. In 2003, an HPAI H7N7 outbreak in The Netherlands infected 89 people in close contact with affected poultry and resulted in one fatal case. In previous studies, the virus isolated from this fatal case, A/Netherlands/219/2003 (NL219) caused a lethal infection in mouse models and had increased replication efficiency and a broader tissue distribution than nonlethal isolates from the same outbreak. A mutation which introduces a potential glycosylation site at Asn123 in the NL219 hemagglutinin was postulated to contribute to the pathogenic properties of this virus. To study this further, we have expressed the NL219 hemagglutinin in a baculovirus expression system and performed a structural analysis of the hemagglutinin in complex with avian and human receptor analogs. Glycan microarray and kinetic analysis were performed to compare the receptor binding profile of the wild-type recombinant NL219 HA to a variant with a threonine-to-alanine mutation at position 125, resulting in loss of the glycosylation site at Asn123. The results suggest that the additional glycosylation sequon increases binding affinity to avian-type α2-3-linked sialosides rather than switching to a human-like receptor specificity and highlight the mechanistic diversity of these pathogens, which calls attention to the need for further studies to fully understand the unique properties of these viruses.  相似文献   

19.
The receptor properties of influenza virus (IF) isolates/SSSR/90/77 are studied. The isolates are peculiar for losing glycosylation sites (GS) at the Asn131 receptor-binding region (GS131) after passaging in mice and at the Asn158 region (GS158) after cultivation in the presence of mouse serum. The loss of each carbohydrate residue increases the influenza virus affinity for carbohydrate chains with the terminal group Neu5Ac alpha 2-6Gal and reduces its affinity for Neu5Ac alpha 2-3Gal receptors. The effect is more pronounced in the GS158-depleted virus. Upon substitution of asparagine by aspartic acid, the electrostatic component of virus binding to the receptor is altered because of the increased negative charge on hemagglutinin. The virus receptor phenotype changes depending on the cultivation conditions. The isolate adapted to mice has higher affinity to mouse lung cell receptors, while the virus propagated in chick embryos in the presence of inhibitors has higher affinity to allantoic membrane cells.  相似文献   

20.
The thyrotropin (TSH) receptor belongs to a family of guanine nucleotide protein-coupled receptors with seven transmembrane-spanning regions joined regulatory together by extracellular and intracellular loops. The cytoplasmic domain comprises three cytoplasmic loops and a cytoplasmic tail that are likely to be important in coupling of the receptor to the guanine nucleotide proteins. To address the question of which portions of the cytoplasmic domain of the TSH receptor are important in this process, we have altered groups of amino acids in the region of the TSH receptor by site-directed mutagenesis. Because of the low affinity of TSH binding to the TSH receptor mutated in the amino terminus of the second cytoplasmic loop and the amino terminus of the cytoplasmic tail, definitive conclusions cannot be made regarding the roles of these regions in signal transduction. However, our data indicate that the first cytoplasmic loop (residues 441-450), the carboxyl-terminal region of the second cytoplasmic loop (residues 528-537), and the carboxyl-terminal (but not the amino-terminal) region of the third cytoplasmic loop (residues 617-625) are important in the ability of the TSH receptor to mediate an increase in intracellular cAMP production. Furthermore, two-thirds of the carboxyl-terminal end of the cytoplasmic tail (residues 709-764; corresponding to the region not conserved between the TSH and lutropin/chorionic gonadotropin receptors) can be removed without functional impairment of the TSH receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号