首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7) M native GIP, with an IC(50) value of 2.6 microM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P < 0.05 to P < 0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P < 0.001) and lower the glycemic excursion (1.5-fold decrease; P < 0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes.  相似文献   

3.
4.
5.
Gastric inhibitory polypeptide (GIP) is released from the small intestine upon meal ingestion and increases insulin secretion from pancreatic β cells. Although the GIP receptor is known to be expressed in small intestine, the effects of GIP in small intestine are not fully understood. This study was designed to clarify the effect of GIP on intestinal glucose absorption and intestinal motility. Intestinal glucose absorption in vivo was measured by single-pass perfusion method. Incorporation of [14C]-glucose into everted jejunal rings in vitro was used to evaluate the effect of GIP on sodium-glucose co-transporter (SGLT). Motility of small intestine was measured by intestinal transit after oral administration of a non-absorbed marker. Intraperitoneal administration of GIP inhibited glucose absorption in wild-type mice in a concentration-dependent manner, showing maximum decrease at the dosage of 50 nmol/kg body weight. In glucagon-like-peptide-1 (GLP-1) receptor-deficient mice, GIP inhibited glucose absorption as in wild-type mice. In vitro examination of [14C]-glucose uptake revealed that 100 nM GIP did not change SGLT-dependent glucose uptake in wild-type mice. After intraperitoneal administration of GIP (50 nmol/kg body weight), small intestinal transit was inhibited to 40% in both wild-type and GLP-1 receptor-deficient mice. Furthermore, a somatostatin receptor antagonist, cyclosomatostatin, reduced the inhibitory effect of GIP on both intestinal transit and glucose absorption in wild-type mice. These results demonstrate that exogenous GIP inhibits intestinal glucose absorption by reducing intestinal motility through a somatostatin-mediated pathway rather than through a GLP-1-mediated pathway.  相似文献   

6.
D G Johnson  V Conley 《Life sciences》1980,27(24):2373-2380
Following intravenous infusion of somatostatin in vivo occasionally there is a large rebound overshoot of insulin release. An in vitro model to simulate this phenomenon was made by perfusing rat pancreas with gastric inhibitory polypeptide (GIP) during simultaneous perfusion with somatostatin. Adding GIP (100 ng/ml) to the perfusate for 2 minutes beginning either 3 or 9 minutes before terminating the somatostatin perfusion produced a large overshoot in insulin release. The magnitude of overshoot was greater when medium contained 300 mg/dl glucose that when it contained 150 mg/dl glucose. Perfusion with GIP for 2 minutes beginning 9 minutes before increasing the glucose concentration of the medium from 30 to 300 mg/dl elicited a large increase in both the acute and second-phase release of insulin. These suggest that post-inhibitory overshoot of insulin release after somatostatin may be produces in vitro by the suppressed action of stimulatory hormones such as GIP. Prior infusion with GIP can also potentiate glucose-stimulated insulin increase.  相似文献   

7.
Although the capacity of food components to cause more insulin secretion when given orally than when given intravenously is related significantly to increased plasma concentration of gastric inhibitory polypeptide (GIP), stimulated only by the oral route, questions arise as to what extent other gastrointestinal hormones modify insulin secretion either directly or by influencing the secretion of GIP. The triacontatriapeptide form of cholecystokinin (CCK33), infused in dose gradients intravenously in dogs increases insulin secretion, and comparably to equimolar doses of the carboxy-terminal octapeptide of cholecystokin (CCK8); neither compound changes fasting plasma levels of GIP or glucose. Glucagon was increased only by the largest dose of CCK8 (0.27 ug/kg). Unlike the situation with GIP, it is not necessary to increase the plasma glucose above fasting level to obtain the insulin-releasing action of CCK. When glucose is infused intravenously (2 g in 0.5 min) at the beginning of a 15-minute infusion of CCK8 (10 ng/kg/min), the amount of insulin release is greater than is produced by CCK8 or glucose alone. In the same type of experiment, the infusion of GIP, in equimolar amounts as CCK8, plus glucose causes no more insulin secretion than is stimulated by glucose alone. Secretin has only a small stimulating action on insulin release, and pancreatic polypeptide (PP) has no effect. Neither secretin nor PP affects GIP secretion, whether either is given alone, or together, or with CCK8. Either secretin or CCK8 inhibits oral glucose-stimulated increase in plasma GIP. These inhibitory effects are probably very much related to the hormone-induced decrease in gastric emptying, but changes in somatostatin secretion and other hormones possibly exert contributory actions. In conclusion, GIP in certain dose ranges has been reported to cause major increase in insulin secretion, but we showed that the insulin-releasing action of a small dose of glucose (2 g) infused intravenously was not augmented by GIP (44.5 ng/kg/min), although it was significantly increased by an equimolar dose of CCK8. When plasma glucose was maintained at a fasting level, gradient equimolar dosages of CCK8 and CCK33 had comparable insulin-releasing action; GIP had no effect.  相似文献   

8.
Eight Billroth II resected patients and 8 normal controls were given two oral glucose loads, one ingested within 2 min, and the other ingested slowly over 80 min. In the Billroth II resected group, the integrated plasma GIP release was significantly higher after the fast than after the slow glucose ingestion. In this group the integrated plasma GIP release was also significantly higher than in the control group, but only after the fast glucose ingestion. These findings indicate that the rate of glucose delivery into the intestine may be of importance in the plasma GIP response to oral glucose.  相似文献   

9.
The purpose of this study was to characterize the effects of glucose-dependent insulinotropic peptide (GIP) on small intestinal glucose transport in vitro. Stripped proximal jejunum from fasted mice was mounted in Ussing chambers. The serosal side was bathed in Regular Ringer solution containing 5 mmol/l glucose, and the mucosal side, with solution containing 10 mmol/l 3-O-methyl glucose (3OMG). Intercellular cyclic adenosine monophosphate (cAMP), mucosa-to-serosa fluxes of 3OMG (J(ms)(3OMG)), and short-circuit current (I(SC)) were measured in the presence and absence of GIP. GIP increased cAMP by 2.5-fold in isolated enterocytes, consistent with a direct effect of GIP on these epithelial cells. GIP also increased I(SC) and J(ms)(3OMG) by 68 and 53%, respectively, indicating that the increase in J(ms)(3OMG) was primarily electrogenic, with a small electroneutral component. The stimulatory effect of GIP on J(ms)(3OMG) was concentration dependent. In addition, 1,000 nmol/l and 10 nmol/l GIP increased J(ms)(3OMG) by 70 and 30% over control, respectively, consistent with receptor activation. Phlorizin (20 mumol/l), an inhibitor of Na(+)-glucose cotransporter (SGLT-1), abolished the increase in I(SC) and decreased J(ms)(3OMG) by approximately 65%. These results indicate that stimulation of SGLT-1 activity by GIP partially accounts for the increase in J(ms)(30MG). These studies are the first to demonstrate direct stimulation of intestinal glucose transport by GIP independent of its insulinotropic properties. GIP stimulates cellular accumulation of cAMP and thereby upregulates glucose transport. The GIP-induced increase in glucose transport appears to be mediated, at least in part, by SGLT-1.  相似文献   

10.
The effect of 6 days of total parenteral nutrition (TPN) on the enteroinsular axis was studied in vivo and in vitro in the rat. During the TPN period, blood samples were taken from control and TPN animals to determine the comparative pattern of GIP release. Glucose, insulin and GIP responses to oral glucose (OGTT) were compared in TPN and control rats. The effect of glucose and GIP on insulin release from the isolated perfused pancreas of the same animals was investigated to determine if TPN altered the sensitivity of the beta cell. In conjunction with these studies the number and distribution of GIP-containing cells were compared in control and TPN animals. TPN resulted in no change in basal levels of glucose, insulin and IR-GIP. An exaggerated insulin response to OGTT occurred after TPN whereas the glucose response was reduced. The IR-GIP response to glucose was normal following TPN. The isolated perfused pancreas showed a 30% increase in insulin release in response to GIP after TPN. The insulin response to glucose appeared normal as did the number and distribution of GIP cells. Fluctuations in GIP and insulin levels in control animals were diurnal in nature, whereas IR-GIP levels in TPN animals remained near fasting levels. It was hypothesized that the increase in beta cell sensitivity to GIP may be causally connected to the exposure of the pancreas to chronically low levels of GIP during TPN.  相似文献   

11.
The effect of highly purified gastric inhibitory polypeptide (GIP) on immunoreactive insulin (IRI) secretion in the conscious fasted dog was investigated. Significant increases in IRI release were observed with intravenous administration of three different doses of GIP. These were accompanied by depression in fasting serum-glucose levels. Preliminary studies were undertaken to determine whether this insulinotropic action of GIP could be attributed to a particular segment of the GIP molecule. GIP fragments produced by cleavage with cyanogen bromide and trypsin showed no significant stimulation of IRI release. The possibility that GIP might itself enhance glucose uptake or potentiate insulin-induced glucose uptake was studied with the rat hemidiaphragm preparation. No such effect was observed. In the light of this and other recent work, it is concluded that GIP is a strong candidate for an active principle in the enteroinsular axis.  相似文献   

12.
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted by endocrine K-cells in response to nutrient absorption. This study has utilised numerous well-characterised dipeptidyl peptidase IV-resistant GIP analogues to evaluate the glucagonotropic actions of GIP in Wistar rats and isolated rat islets. Intraperitoneal administration of GIP analogues (25 nmol/kg body weight) in combination with glucose had no effect on circulating glucagon concentrations compared to controls in Wistar rats. However, plasma glucose concentrations were significantly (p<0.05 to p<0.001) lowered by the GIP-receptor agonists, N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL. The GIP antagonist, (Pro3)GIP, caused a significant (p<0.05) reduction in glucagon levels following concurrent administration with saline in Wistar rats. In isolated rat islets native GIP induced a significant (p<0.01) enhancement of glucagon release at basal glucose concentrations, which was completely annulled by (Pro3)GIP. Furthermore, glucagon release in the presence of GLP-1, GIP(Lys37)PAL, N-AcGIP(Lys37)PAL and (Pro3)GIP was significantly (p<0.05 to p<0.001) decreased compared to native GIP in isolated rat islets. These data indicate a modest effect of GIP on glucagon secretion from isolated rat islets, which was not observed in vivo. However, the GIP agonists N-AcGIP, GIP(Lys37)PAL and N-AcGIP(Lys37)PAL had no effect on glucagon release demonstrating an improved therapeutic potential for the treatment of type 2 diabetes.  相似文献   

13.
The effect of massive small bowel resection (MSBR) and jejuno-ileal bypass (JIB) on the enteroinsular axis in rats was compared. Glucose levels after an oral glucose tolerance test were determined in MSBR, JIB and control animals. The response of the beta-cell mass to glucose and gastric inhibitory polypeptide (GIP) was established in the same animals using the isolated perfused pancreas model. Immunocytochemical and morphological studies were performed to monitor the adaptive changes seen in the intestine of these animals. The glucose response to the oral glucose load was blunted in both test groups with the fasting GIP levels in the JIB group being elevated and the MSBR group being reduced. The response of the isolated perfused pancreas to GIP showed a marked (70%) reduction of insulin release in the JIB rats and a slight but non-significant reduction in the MSBR rats. In both groups the insulin response to glucose alone appeared normal. The area of the pancreatic islets and the percentage of the total area consisting of the four islet cell types (B, A, D, PP) were unchanged. In the intestine the GIP cells were markedly reduced in number in the jejunum of the functional intestine of the JIB rats and the jejunum from the MSBR rats. The GIP cells in the jejunum of the bypass loop did not differ from the control jejunum. The results indicate that the high basal GIP levels seen in the JIB rats were the result of GIP secreted from the blind loop. This study also confirmed the decreased sensitivity of the beta-cells to GIP after JIB while indicating that MSBR has little if any effect on the response of the beta-cell to GIP. These data presented further evidence that the high basal GIP levels were causally related to the decreased insulin response in the JIB rats.  相似文献   

14.
The effects of glucose and GIP on glucagon secretion were studied in perifused microdissected murine pancreatic islets. Glucagon levels were determined in effluent samples collected at 1-min intervals by radioimmunoassay using the glucagon-specific antibody, 30 K. There was no significant difference in the total amount (7740 +/- 212 pg vs 8630 +/- 36 pg, n = 10) of glucagon secreted over a 20 min period when the glucose concentration was alternately shifted between 5.5 mM and 11.1 mM, respectively. However, 22.2 mM glucose profoundly suppressed glucagon secretion. The suppressive effect of high glucose on glucagon release was partially, yet significantly, reversed by the presence of GIP, as glucagon secretion increased from a non-detectable level at 22.2 mM glucose alone to 10,175 +/- 145 pg, n = 10 (P less than 0.01). The glucagonotropic effect of GIP was dose-dependent in the range of 2 x 10(-9) - 2 x 10(-7) M, at 11.1 mM glucose. Our data show that GIP is able to substantially reverse the suppressive effect of a high glucose load on glucagon secretion.  相似文献   

15.
The actions of gastric inhibitory polypeptide (GIP) on insulin release from the isolated perfused rat pancreas were compared with those of pure secretin and cholecystokinin (CCK). At dose levels physiologically achievable for GIP (1 ng/mL perfusate), infusions of CCK stimulated significant insulin release both on a weight (1 ng/mL) and a molar (770 pg/mL) basis. Although 50% as potent as GIP on a weight basis and 43% as potent on a molar basis, the insulin response to CCK was multiphasic and sustained for the duration of the infusion. The action of CCK, like that of GIP, was glucose dependent yielding no significant insulin release at a low perfusate glucose concentration (80 mg/dL). Irrespective of perfusate glucose concentration or dose (1 or 5 ng/mL), secretin failed to stimulate significant release of insulin from the perfused pancreas. It was concluded that secretin is ineffective as an incretin and that a physiological role for CCK in an enteroinsular axis awaits accurate measurement of circulating levels of immunoreactive CCK.  相似文献   

16.
The hormone glucose-dependent insulinotropic polypeptide (GIP) is an important regulator of insulin secretion. GIP has been shown to increase adenylyl cyclase activity, elevate intracellular Ca(2+) levels, and stimulate a mitogen-activated protein kinase pathway in the pancreatic beta-cell. In the current study we demonstrate a role for arachidonic acid in GIP-mediated signal transduction. Static incubations revealed that both GIP (100 nm) and ATP (5 microm) significantly increased [(3)H]arachidonic acid ([(3)H]AA) efflux from transfected Chinese hamster ovary K1 cells expressing the GIP receptor (basal, 128 +/- 11 cpm/well; GIP, 212 +/- 32 cpm/well; ATP, 263 +/- 35 cpm/well; n = 4; p < 0.05). In addition, GIP receptors were shown for the first time to be capable of functionally coupling to AA production through Gbetagamma dimers in Chinese hamster ovary K1 cells. In a beta-cell model (betaTC-3), GIP was found to elicit [(3)H]AA release, independent of glucose, in a concentration-dependent manner (EC(50) value of 1.4 +/- 0.62 nm; n = 3). Although GIP did not potentiate insulin release under extracellular Ca(2+)-free conditions, it was still capable of elevating intracellular cAMP and stimulating [(3)H]AA release. Our data suggest that cAMP is the proximal signaling intermediate responsible for GIP-stimulated AA release. Finally, stimulation of GIP-mediated AA production was shown to be mediated via a Ca(2+)-independent phospholipase A(2). Arachidonic acid is therefore a new component of GIP-mediated signal transduction in the beta-cell.  相似文献   

17.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

18.
Glucose-dependent insulinotropic polypeptide (GIP) is a key physiological insulin releasing peptide and potential antidiabetic agent. The present study was undertaken in an attempt to develop small molecular weight GIP agonist and antagonist molecules. The bioactivity of two modified C-terminally truncated fragment GIP peptides, GIP(1-16) and (Pro3)GIP(1-16), was examined in terms of insulin secretion and glucose homeostasis using BRIN-BD11 cells and type 2 diabetic mice. In vitro insulin release studies demonstrated that GIP(1-16) and (Pro3)GIP(1-16) possessed weak GIP-receptor agonist and antagonistic properties, respectively. Intraperitoneal administration of GIP(1-16) in combination with glucose to obese diabetic (ob/ob) mice did not effect the glycaemic excursion and had a marginal effect on insulin release. GIP(1-16) was substantially less effective than the native GIP(1-42). (Pro3)GIP(1-16) administration significantly curtailed (P < 0.05) the insulinotropic and glucose lowering effects of native GIP, but was significantly less effective than (Pro3)GIP. Based on the established concept of a therapeutic benefit of GIP receptor antagonism in obesity-diabetes, ob/ob mice received once daily injection of (Pro3)GIP(1-16) for 14 days. No significant effects were observed on food intake, body weight, HbA1c, glucose tolerance, metabolic response to feeding and either insulin secretion or insulin sensitivity following prolonged (Pro3)GIP(1-16) treatment. These data demonstrate that C-terminal truncation of GIP or (Pro3)GIP yields small molecular weight GIP molecules with significantly reduced biological activity that precludes therapeutic utility.  相似文献   

19.
The present study was designed to determine the effects of intravenously administered galanin or gastrin-releasing peptide (GRP) on glucose- and/or glucose-dependent insulinotropic peptide (GIP)-stimulated insulin release in the anaesthetized rat. Galanin inhibited glucose-stimulated insulin responses in a dose-related manner. Galanin also inhibited insulin release in response to glucose administered with GIP; this effect was due largely to inhibition of the glucose-stimulated component since galanin did not inhibit GIP-stimulated insulin release. Galanin also inhibited insulin responses to ingestion of a mixed meal. GRP inhibited glucose-stimulated insulin responses, and the insulin responses to glucose plus GIP; unlike galanin, GRP inhibited both glucose- and GIP-stimulated insulin release. GRP also inhibited insulin release following ingestion of a mixed meal. The results suggest a possible modulatory role for these neuropeptides in regulation of insulin secretion.  相似文献   

20.
Glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP) have a similar but complementary role in regulating blood glucose level. This study was aimed to develop a functional-complementary dual insulinotropic peptide which releases both GLP-1 and GIP in vivo, and to investigate its therapeutic effect on type 2 diabetes in mice. We firstly constructed a vector pET-22b(+)-rolGG to express a recombinant oral long-acting GLP-1?CGIP fusion peptide (rolGG) in E. coli. The rolGG peptide was then purified and confirmed its capacity of releasing recombinant oral long-acting GLP-1 (rolGLP-1) and recombinant GIP (rGIP) upon trypsin digestion in vitro, which were designed to resist in vivo enzymatic degradation. The therapeutic effect of rolGG was assessed in comparison with rolGLP-1 alone by daily oral-gavage administration up to 10?days in streptozotocin-induced type 2 diabetic mice. Saline and rosiglitazone administrations were served as negative and positive controls, respectively. The results showed that rolGG treatment decreased plasma glucose level by 26.7 and 46.3?% (p?<?0.01), respectively, at 5 and 10?days after the initial oral-gavage. The rolGG treatment also led to a trend of body weight increase, drink level and food intake decrease (p?<?0.05). In comparison, the oral administration of rolGLP-1 alone exhibited similar effects to rolGG with regard to plasma glucose level, drink level and food intake. In conclusion, we expressed and purified a dual insulinotropic peptide rolGG. Oral-gavage administration of rolGG showed a therapeutic effect on reduction of plasma glucose and alleviation of emaciation, polydipsia, and polyphagia symptoms in streptozotocin-induced diabetic mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号