首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of hepatic glucokinase in the neonatal rat   总被引:18,自引:17,他引:1       下载免费PDF全文
1. Glucokinase and hexokinase activities have been determined in the livers of newborn rats and attempts made to influence in vivo the development of the glucokinase. 2. Glucokinase first appears in rat liver about 16 days after birth and adult activities are reached 10–12 days later. Evidence is presented which indicates that this represents synthesis of new protein. Hexokinase activities remain constant throughout the period of glucokinase development. 3. Both exogenous glucose and insulin are necessary for the natural development of glucokinase, for this is retarded in starved and alloxan-diabetic neonatal rats. 4. The absence of glucokinase during the first 2 weeks of extrauterine life in the rat is not due to lack of insulin. 5. Attempts to advance the time at which glucokinase first appears by infusions of glucose, insulin and chlorpropamide alone and in various combinations have resulted in marginal effects only. 6. When rats are starved for 3 days during the period of glucokinase development and then re-fed, glucokinase is more rapidly synthesized, indicating that the potential ability to synthesize glucokinase continues to develop throughout the period of starvation. 7. Some possible reasons for the comparatively late development of glucokinase are discussed.  相似文献   

2.
Hexokinase, glucokinase, phosphofructokinase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity was studied in the liver and musculus quadriceps femoris of 110-day foetuses 1, 2, 3, 30 and 60-day piglets and in adult pigs. The activity of all enzymes in the tissues of newborn piglets is considerably higher than in the tissues of foetuses. The activity of hexokinase in both tissues of piglets increases in the first days after birth and lowers by the one month age. The phosphofructokinase activity in the skeletal muscles and the glucokinase one in the pig liver increase during the postnatal development. The activity of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in both tissues of pigs increases after birth and then decreases. Glucose metabolism in the pig liver at all stages of odontogenesis proceeds more intensively by the pentose phosphate pathway, and in the skeletal muscles--by glycolytic one.  相似文献   

3.
To gain better insight into the insulin secretory activity of fetal beta cells in response to glucose, the expression of glucose transporter 2 (GLUT-2), glucokinase and mitochondrial glycerol phosphate dehydrogenase (mGDH) were studied. Expression of GLUT-2 mRNA and protein in pancreatic islets and liver was significantly lower in fetal and suckling rats than in adult rats. The glucokinase content of fetal islets was significantly higher than of suckling and adult rats, and in liver the enzyme appeared for the first time on about day 20 of extrauterine life. The highest content of hexokinase I was found in fetal islets, after which it decreased progressively to the adult values. Glucokinase mRNA was abundantly expressed in the islets of all the experimental groups, whereas in liver it was only present in adults and 20-day-old suckling rats. In fetal islets, GLUT-2 and glucokinase protein and their mRNA increased as a function of increasing glucose concentration, whereas reduced mitochondrial citrate synthase, succinate dehydrogenase and cytochrome c oxidase activities and mGDH expression were observed. These findings, together with those reported by others, may help to explain the decreased insulin secretory activity of fetal beta cells in response to glucose.  相似文献   

4.
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known ;overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30-40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine-zinc-insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine-zinc-insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding.  相似文献   

5.
The activities of bile salt sulfotransferase, the enzyme responsible for the sulfation of bile salts, were determined in fetal and adult livers of humans and guinea pigs. Fetal enzyme activities in guinea pigs were approximately one-tenth of the adult and increased gradually as the gestation progressed. The bile salt sulfotransferase activities were found in human fetal livers but only 14% of the adult fatty liver activity. The result indicates human or guinea pig fetuses are capable of sulfating lithocholate derived from the mother.  相似文献   

6.
Summary Histochemical and immunohistochemical procedures have been used to examine the localization of three of the four hexokinase isoenzymes present in the liver of fed female Wistar rats. Distinctive distribution patterns were found for hexokinase type I and glucokinase but hexokinase type II was not detectable. Hexokinase type I was identified in sinusoidal cells and in bile duct epithelia, nerves and arteries in the portal triad. Glucokinase, the major isoenzyme, was confined to parenchymal cells where it was present in much higher amounts in perivenous compared with periportal hepatocytes. Staining within these two zones was not homogeneous and each had a mosaic appearance caused by the presence of a few hepatocytes containing little or no glucokinase amongst the majority of darkly stained cells in perivenous areas and a few darkly stained cells amongst the majority of unstained cells in periportal areas. Hence, hepatocytesin situ are a strikingly heterogeneous population of cells. Their metabolic status cannot be controlled simply by the differential supply of oxygen, substrates and hormones to different regions of the liver acini as proposed in the metabolic zonation model. Phenotypic differences may exist between cells within a given metabolic zone which influence their ability to respond to different environmental conditions.  相似文献   

7.
The differential tissue-specific regulation of glucokinase activity in liver and pancreatic islet cells was investigated in the insulinoma-bearing rat. A transplantable insulinoma caused hyperinsulinemia and hypoglycemia in the host by 2-3 months after implantation. Suppression of the pancreatic B-cells by the high insulin and/or low glucose manifested itself by a decrease of insulin in islet tissue. Removal of the tumor initiated transient insulin deficiency and hyperglycemia with extremes of these changes at 24 h after tumor resection. These conditions markedly affected glucose phosphorylation in the islet cells: glucokinase activity was reduced 71% in islet samples from insulinoma-bearing rats, and the enzyme fully recovered within 24 h after tumor resection. Hexokinase activity, by contrast, was not affected by these manipulations. To evaluate the relative contributions of hypoglycemia and hyperinsulinemia in islet glucokinase adaptation, glucose was intravenously infused to insulinoma-bearing rats; glycemia in excess of 150 mg/100 ml combined with excessive hyperinsulinemia resulted in a partial recovery of islet glucokinase activity, first apparent after 9 h of glucose infusion and with doubling of the activity after 24 h after glucose loading. In contrast, liver glucokinase was increased nearly 4-fold at the time of extreme hypoglycemia and hyperinsulinemia and rapidly fell to control rates following tumor removal. Intravenous infusion of glucose for 24 h into the tumor-bearing rat (i.e. hyperglycemia combined with excessive plasma insulin) had no influence on liver glucokinase activity. Liver hexokinase was not influenced by any of these experimental manipulations. The data indicate that the activities of pancreatic islet and liver glucokinase are regulated in a differential manner. Insulin is apparently the primary determinant of liver glucokinase and glucose seems to control islet glucokinase. Biochemical mechanisms for differential organ-specific regulation of glucokinase activity seem to have evolved such that this enzyme may play a dual role in glucose homeostasis, namely to serve as insulin-dependent glucose sensor in the B-cells and as insulin-sensitive determinant of hepatic glucose use.  相似文献   

8.
The cell number as well as the hexokinase and glucokinase activity of liver parenchymal and nonparenchymal cells were studied in methapyrilene treated rats. The number of nonparenchymal cells was doubled after treatment with methapyrilene for two weeks while that of hepatocytes remained constant. The hexokinase activity was increased fourfold in the nonparenchymal cell fraction while it was unchanged in the parenchymal cells. The glucokinase activity was decreased in the hepatocytes to one third. Hence, the increased hexokinase activity was due to a proliferation of nonparenchymal cells rather than to a toxic dedifferentiation of hepatocytes.  相似文献   

9.
Summary The differentiation status in cultures of primary rat liver parenchymal cells was determined by measuring the activities of various xenobiotic metabolizing enzymes. Most enzyme activities dropped rather rapidly in monocultures of parenchymal cells. The protein content and the activities of cytosolic epoxide hydrolase, glutathione S-transferase, andα-naphthol UDP-glucuronosyl transferase were, however, well stabilized in 7-day-old co-cultures of parenchymal cells with two different lines of rat liver nonparenchymal epithelial cells (NEC1 and NEC2). Phenol sulfotransferase and microsomal epoxide hydrolase activity were reduced in this coculture system after 7 days to about 30 and 20% of the initial activity. Generally, higher enzyme activities were measured in co-cultures with one specific epithelial cell line (NEC2) as compared to those with the other line (NEC1). C3H 10T1/2 mouse embryo fibroblasts supported the parenchymal cells even better than the two epithelial lines, because the activity of microsomal epoxide hydrolase was also stabilized. Glutathione transferase activity was increased over time in this co-culture system. Our results show that the differentiation status of liver parenchymal cells was much better stabilized in co-cultures than in monocultures but that, depending on the type of cells used for co-culture, great quantitative differences existed. The entire pattern of xenobiotic metabolizing enzyme activities could not be stabilized at the kind of levels found in freshly isolated parenchymal cells.  相似文献   

10.
The effect of dietary and hormonal variations on the specific activities of hexokinase isoenzymes, N-acetylglucosamine kinase and pyruvate kinase isoenzymes in parenchymal and non-parenchymal liver cells was studied. Hexokinase D was markedly decreased in hepatocytes from animals fasted or fed on the carbohydrate-free diet as well as from diabetic rats, attaining a constant low level of about 17% of normal values. Pyruvate kinase L was also diminished in hepatocytes under the same experimental conditions. In contrast, the three high-affinity hexokinase isoenzymes A, B and C remained without variation in total amount or in their relative proportions in hepatocytes and non-parenchymal liver cells isolated from animals under the various conditions studied. N-Acetylglucosamine kinase activities also did not change either in parenchymal or in non-parenchymal liver cells under all conditions. The results are discussed in relation to the significance of N-acetylglucosamine kinase and the various hexokinase isoenzymes for the phosphorylation of glucose after dietary and hormonal manipulations.  相似文献   

11.
Liver plasma membranes were isolated from regenerating rat livers between 20 h and 10 days after partial hepatectomy in order to study the effect of partial hepatectomy on some membrane enzyme activities. Mg2+-ATPase (EC 3.6.1.4) activity, but not (Na+ + K+)-ATPase activity, decreased slightly at 2 days, whereas leucyl beta-naphthylamidase (EC3.4.1.1) and 5'-nucleotidase (EC3.1.3.5) activities increased considerably at 1-2 and 3-5 days, respectively. These changes were not parallel to a sharp increase in mitotic activity of liver cells which occurred at 36 h.  相似文献   

12.
Parenchymal and non-parenchymal cells were isolated from adult rat liver that had been fully regenerated after a 70% partial hepatectomy. The characteristics of the parenchymal cell preparations from regenerated rat liver indicated that they were a homogeneous population and comparable with parenchymal cells isolated from intact liver. The parenchymal cells from regenerated adult rat liver contain glucokinase, hexokinase, pyruvate kinase type I and aldolase B. The non-parenchymal cells contain hexokinase, pyruvate kinase type III and aldolase B. When cells were isolated at different times of the day from rats on controlled feeding schedules, variation of tyrosine aminotransferase activity and liver glycogen content were observed in the parenchymal cells in keeping with the reported diurnal oscillations found in whole liver extracts. When parenchymal cells were isolated from rats 48 and 72h after partial hepatectomy, different isoenzyme patterns were observed. These cells appeared to synthesize pyruvate kinase type III, a function that was assigned previously to non-parenchymal cells or to foetal rat liver hepatocytes.  相似文献   

13.
The activities of five glycolipid-glycosyltransferases, GL2, GM3, GM2, GM1, and GD1a synthase, were determined in a cell-free system with homogenate protein of total rat liver, isolated hepatocytes, Kupffer cells, and sinusoidal endothelial cells. In rat liver parenchymal and nonparenchymal cells ganglioside synthases were distributed differently. Compared to hepatocytes, Kupffer cells expressed a nearly sevenfold greater activity of GM3 synthase, but only 14% of GM2, 19% of GM1, and 67% of GD1a synthase activity. Sinusoidal endothelial cells expressed a pattern of enzyme activities quite similar to that of Kupffer cells with the exception of higher GM2 synthase activity. Activity of GL2 synthase was distributed unifromly in parenchymal and nonparenchymal cells of rat liver, but differed by sex. It was 1 to 2 orders of magnitude below that of all the other ganglioside synthases investigated. The results indicate GL2 synthase regulates the total hepatic ganglioside content, and hepatocytes but not nonparenchymal liver cells have high enzymatic capacities to form a-series gangliosides more complex than GM3.  相似文献   

14.
A radiochemical assay for glucokinase activity was developed for use in high-speed supernatants of liver. The maximum activities of glucokinase ranged from 0.4 to 3.8 mumol/min per g fresh wt. at 30 degrees C in some avian and mammalian livers, including pigeon, guinea pig and man, in which previous reports indicated zero activities. The reported maximum rates of hepatic glycogen synthesis in livers of rat and man in vivo are similar to the calculated glucokinase activities at 10mM-glucose; therefore glucokinase activity should not limit glycogen synthesis from glucose.  相似文献   

15.
It is now well documented that lecithin-retinol acyltransferase (LRAT) is the physiologically important enzyme activity involved in the esterification of retinol in the liver. However, no information regarding the cellular distribution of this enzyme in the liver is presently available. This study characterizes the distribution of LRAT activity in the different types of rat liver cells. Purified preparations of isolated parenchymal, fat-storing, and Kupffer + endothelial cells were isolated from rat livers and the LRAT activity present in microsomes prepared from each of these cell fractions was determined. The fat-storing cells were found to contain the highest level of LRAT specific activity (383 +/- 54 pmol retinyl ester formed min-1.mg-1 versus 163 +/- 22 pmol retinyl ester formed min-1.mg-1 for whole liver microsomes). The level of LRAT specific activity in parenchymal cell microsomes (158 +/- 53 pmol retinyl ester formed min-1.mg-1) was very similar to LRAT levels in whole liver microsomes. The Kuppfer + endothelial cell microsome fractions were found to contain LRAT, at low levels of activity. These results indicate that the fat-storing cells are very enriched in LRAT but the parenchymal cells also posses significant levels of LRAT activity.  相似文献   

16.
Polyamines are associated with fundamental metabolic and functional steps in cell metabolism. The activity of ornithine decarboxylase, the key enzyme in polyamine metabolism, was followed during the preparation of rat liver parenchymal cells and in the isolated cells during incubation. In experiments in which ornithine decarboxylase was not induced in vivo, enzyme activity dropped to barely measurable values during the preparation. An even more drastic loss of enzyme activity was noted in livers in which ornithine decarboxylase activity was stimulated in vivo 20-40fold by previous injection of bovine growth hormone, or thioacetamide or elevated because of circadian rhythmical changes of the enzyme activity. Within the first 20 min of liver perfusion to disintegrate the tissue, ornithine decarboxylase activity decreased by up to 80%. The presence of bovine growth hormone during cell preparation cannot prevent the loss of enzyme activity. Incubation of the isolated cells for periods of up to 240 min did not restore the enzyme activity. Furthermore, incubation of the cells with bovine growth hormone did not induce ornithine decarboxylase, even though the medium was supplemented with amino acids in physiological concentrations. During normal liver perfusion and in contrast to the situation with isolated cells, there is no loss of enzyme activity but a small rise. Following pretreatment of the animals with bovine growth hormone or thioacetamide the highly stimulated activity of ornithine decarboxylase declined slowly during liver perfusion, but never dropped to values lower than normal for perfusion periods of up to 240 min. Moreover, in the intact perfused organ ornithine decarboxylase remains responsive to bovine growth hormone. The experiments demonstrate that enzymatic tissue dispersion by collagenase in particular or the preparation of isolated cells in general drastically alters the metabolic and functional state of rat liver parenchymal cells.  相似文献   

17.
R C Nordlie 《Life sciences》1979,24(26):2397-2404
Glucose-6-phosphatase is a multifunctional enzyme, displaying potent ability to synthesize as well as hydrolyze Glc-6-P. These multifunctional characteristics have been exploited in studies of the extended distribution of the enzyme, and their physiological significance has been examined. The enzyme is considerably more widely distributed than previously suspected. It has been found in pancreas, adrenals, lung, testes, spleen, and brain as well as in liver, kidney, and mucosa of small intestine. Approximately 15–20% of total hepatic glucose-6-phosphatase-phosphotransferase is present in nuclear membrane, 75–80% is found in endoplasmic reticulum, and small amounts have been detected also in plasma membrane and repeatedly-washed mitochondria. Both hydrolytic and synthetic functions, in constant proportions, have been found in livers of 21 species of birds, amphibia, reptiles, crustacea, fishes, and mammals (including man) studied. With 5 mM phosphoryl donor and 100 mM D-glucose as substrates, carbamyl-P:glucose phosphotransferase activity of glucose-6-phosphatase exceeded that of glucokinase by 5–50 fold. While latencies of activities of isolated microsomal preparations are extensive, those of nuclear membranes are not. Latencies of activities of intact endoplasmic reticulum of permeable hepatocytes are 28% for Glc-6-P phosphohydrolase and 56% for carbamyl-P:glucose phosphotransferase. Studies with isolated perfused livers from fasted rats suggest rather convincingly that such phosphotransferase activities may function as an hepatic glucose-phosphorylating system supplemental to glucokinase and hexokinase. This conclusion is based both on comparisons of rates of glucose uptake with hepatic enzyme levels (glucokinase, hexokinase, phosphotransferase), and on observed inhibitibility of glucose uptake by ornithine and 3-0-methyl-D-glucose. The question of availability of adequate concentrations of suitable phosphoryl donor(s) in cytosol of the liver cell constitutes a principal focus for continuing studies regarding physiological functions of this enzyme.  相似文献   

18.
Several studies have shown that organophosphate pesticides affect carbohydrate metabolism and produce hyperglycemia. It has been reported that exposure to the organophosphate pesticide dichlorvos affects glucose homeostasis and decreases liver glycogen content. Glucokinase (EC 2.7.1.1) is a tissue-specific enzyme expressed in liver and in pancreatic beta cells that plays a crucial role in glycogen synthesis and glucose homeostasis. In the present study we analyzed the effect of one or three days of dichlorvos administration [20 mg/kg body weight] on the activity and mRNA levels of hepatic and pancreatic glucokinase as well as on insulin mRNA abundance in the rat. We found that the pesticide affects pancreatic and hepatic glucokinase activity and expression differently. In the liver the pesticide decreased the enzyme activity; on the contrary glucokinase mRNA levels were increased. In contrast, pancreatic glucokinase activity as well as mRNA levels were not affected by the treatment. Insulin mRNA levels were not modified by dichlorvos administration. Our results suggest that the decreased activity of hepatic glucokinase may account for the adverse effects of dichlorvos on glucose metabolism.  相似文献   

19.
The activity of liver lipase, an enzyme that can be released from the liver by heparin, varies under several hormonal conditions. The site(s) at which regulation of the enzyme activity may occur was investigated in vitro. As a model, rats were used which had been treated with a corticotrophin analogue, to induce hypercortisolism, a condition in which liver lipase activity is lowered. Lipases isolated from heparin-containing perfusates of livers from ACTH or control rats were identical with respect to heat stability and specific activity as determined by immunotitration and binding to isolated non-parenchymal liver cells, indicating that the enzyme structure was not affected by the treatment. The secretion of liver lipase by isolated parenchymal liver cells was studied. During incubation of parenchymal cells derived from ACTH rats, less enzyme activity was found to be secreted when compared with hepatocytes isolated from control rats (ACTH rats, 2.30 +/- 0.2 mU/10(6) cells; control rats, 3.3 +/- 0.3 mU/10(6) cells). Liver lipase partially purified from control rats could be bound specifically to saturation by non-parenchymal cells, isolated from ACTH or control rats. Non-parenchymal cells from ACTH rats bound less lipase activity (29 mU/mg cell protein) than cells from control rats (50 mU/mg cell protein). This reduction in binding capacity seems to be due to a diminished number of binding sites, since the affinity based on Scatchard analysis and half-maximal binding was not different. These results suggest that the lowered liver lipase activity found during hypercortisolism may be due to an impaired synthesis and/or secretion of the enzyme by the parenchymal cells and to a reduced binding capacity of the non-parenchymal cells for liver lipase.  相似文献   

20.
Hepatic steatosis and the accompanying oxidative stress have been associated with a variety of liver diseases. It is not known if fat accumulation per se plays a direct role in the oxidative stress of the organ. This study tested if steatosis induced by a short-term carbohydrate-rich diet results in an increased hepatic sensitivity to oxidative stress. Antioxidant status was determined in a liver perfusion system and in isolated parenchymal, endothelial and Kupffer cells from rats kept on sucrose-rich diet or on regular diet for 48 h. t-Butyl hydroperoxide addition (2 mM) to the perfusion fluid resulted in a release of alanine aminotransferase (ALT) in livers from controls, whereas no ALT release was observed in fatty livers. After t-butyl hydroperoxide addition, oxidized glutathione release was 40% less in fatty than in control livers, whereas reduced glutathione (GSH) release was not different. Sinusoidal oxidant stress was mimicked by the addition of lipopolysaccharide (LPS) from Escherichia coli (10 microg/ml) followed by the addition of opsonized zymosan (8 mg/ml) to the perfusion medium. LPS plus zymosan treatments resulted in the release of ALT in control but not in fatty livers. At the end of perfusion, liver glutathione content was 3-fold elevated, and the tissue content of lipid peroxidation products was approx. 40% less in fatty livers compared to controls. GSH content was doubled and glucose-6-phosphate dehydrogenase (G6PD) expression was elevated by 3- and 10-fold in sinusoidal endothelial and parenchymal cells form fatty livers compared to cells from control animals. Following H(2)O(2) administration in vitro (0.2-1 mM), GSH remained elevated in endothelial and parenchymal cells from fatty livers compared to cells from controls. In contrast, G6PD activity and GSH content were similar in Kupffer cells isolated from fatty or control livers. The study shows that hepatic fat accumulation caused by a short-term sucrose diet is not accompanied by elevated hepatic lipid peroxidation, and an elevated hepatic antioxidant activity can be manifested in the presence of prominent steatosis. The diet-induced increase in G6PD expression and, thus, the efficient maintenance of reduced glutathione in endothelial and parenchymal cells are a supportive mechanism in the observed hepatic resistance against intracellular or sinusoidal oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号