首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase CK2 (casein kinase 2) is a highly conserved and ubiquitously found eukaryotic serine/threonine kinase that plays a role in various cellular key processes like proliferation, apoptosis and circadian rhythm. One of its prominent biochemical properties is its ability to use GTP as well as ATP as a cosubstrate (dual-cosubstrate specificity). This feature is exceptional among eukaryotic protein kinases, and its biological significance is unknown. We describe here a mutant of the catalytic subunit of protein kinase CK2 (CK2alpha) from Homo sapiens (hsCK2alpha) with a clear and CK2-atypical preference for ATP compared to GTP. This mutant was designed on the basis of several structures of CK2alpha from Zea mays (zmCK2alpha) in complex with various ATP-competitive ligands. A structural overlay revealed the existence of a "purine base binding plane" harbouring the planar moiety of the respective ligand like the purine base of ATP and GTP. This purine base binding plane is sandwiched between the side-chains of Ile66 (Val66 in hsCK2alpha) and Met163, and it adopts a significantly different orientation than in prominent homologues like cAMP-dependent protein kinase (CAPK). By exchanging these two flanking amino acids (Val66Ala, Met163Leu) in hsCK2alpha(1-335), a C-terminally truncated variant of hsCK2alpha, the cosubstrate specificity shifted in the expected direction so that the mutant strongly favours ATP. A structure determination of the mutant in complex with an ATP-analogue confirmed the predicted change of the purine base binding plane orientation. An unexpected but in retrospect plausible consequence of the mutagenesis was, that the helix alpha D region, which is in the direct neighbourhood of the ATP-binding site, has adopted a conformation that is more similar to CAPK and less favourable for binding of GTP. These findings demonstrate that CK2alpha possesses sophisticated structural adaptations in favour of dual-cosubstrate specificity, suggesting that this property could be of biological significance.  相似文献   

2.
X-ray crystallography studies, as well as live-cell fluorescent imaging, have recently challenged the traditional view of protein kinase CK2. Unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumours. Thus the potential intersubunit flexibility suggested by these studies raises the likely prospect that the CK2 holoenzyme complex is subject to disassembly and reassembly. In the present paper, we show evidence for the reversible multimeric organization of the CK2 holoenzyme complex in vitro. We used a combination of site-directed mutagenesis, binding experiments and functional assays to show that, both in vitro and in vivo, only a small set of primary hydrophobic residues of CK2beta which contacts at the centre of the CK2alpha/CK2beta interface dominates affinity. The results indicate that a double mutation in CK2beta of amino acids Tyr188 and Phe190, which are complementary and fill up a hydrophobic pocket of CK2alpha, is the most disruptive to CK2alpha binding both in vitro and in living cells. Further characterization of hotspots in a cluster of hydrophobic amino acids centred around Tyr188-Phe190 led us to the structure-based design of small-peptide inhibitors. One conformationally constrained 11-mer peptide (Pc) represents a unique CK2beta-based small molecule that was particularly efficient (i) to antagonize the interaction between the CK2 subunits, (ii) to inhibit the assembly of the CK2 holoenzyme complex, and (iii) to strongly affect its substrate preference.  相似文献   

3.
Protein kinase CK2 (former name: "casein kinase 2") is a pivotal and ubiquitously expressed member of the eukaryotic protein kinase superfamily. It predominantly exists as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2alpha) and two regulatory subunits (CK2beta). In higher animals two paralog catalytic chains-abbreviated CK2alpha and CK2alpha'--exist which can combine with CK2beta to three isoforms of the holoenzyme: CK2alpha(2)beta(2), CK2alpha(2)(')beta(2), and CK2alphaalpha(')beta(2). While CK2alpha and the "normal" holoenzyme CK2alpha(2)beta(2) have been extensively characterized in vitro and in vivo, little is known about the enzymological properties of CK2alpha' and the "alternative" holoenzyme CK2alpha(2)(')beta(2) and about their specific physiological roles. A major reason for this lack of knowledge is the fact that so far CK2alpha' rather than CK2alpha has caused serious stability and solubility problems during standard heterologous expression procedures. To overcome them, we developed a preparation scheme for CK2alpha(2)(')beta(2) from Homo sapiens in catalytically active form based on two critical steps: first expression of human CK2alpha' as a well soluble fusion protein with the maltose binding protein (MBP) and second proteolytic cleavage of CK2alpha'-MBP in the presence of human CK2beta so that CK2alpha' subunits are incorporated into holoenzyme complexes directly after their release from MBP. This successful strategy which may be adopted in comparably difficult cases of protein/protein complex preparation is presented here together with evidence that the CK2alpha'-based and the CK2alpha-based holoenzymes are similar concerning their catalytic activities but are significantly different with respect to some well-known CK2 properties like autophosphorylation and supra-molecular aggregation.  相似文献   

4.
AMP-activated protein kinase (AMPK) acts as an energy sensor, being activated by metabolic stresses and regulating cellular metabolism. AMPK is a heterotrimer consisting of a catalytic alpha subunit and two regulatory subunits, beta and gamma. It had been reported that the mammalian AMPK alpha subunit contained an autoinhibitory domain (alpha1: residues 313-392) and had little kinase activity. We have found that a conserved short segment of the alpha subunit (alpha1-(313-335)), which includes a predicted alpha-helix, is responsible for alpha subunit autoinhibition. The role of the residues in this segment for autoinhibition was further investigated by systematic site-directed mutation. Several hydrophobic and charged residues, in particular Leu-328, were found to be critical for alpha1 autoinhibition. An autoinhibitory structural model of human AMPK alpha1-(1-335) was constructed and revealed that Val-298 interacts with Leu-328 through hydrophobic bonding at a distance of about 4 A and may stabilize the autoinhibitory conformation. Further mutation analysis showed that V298G mutation significantly activated the kinase activity. Moreover, the phosphorylation level of acetyl-CoA carboxylase, the AMPK downstream substrate, was significantly increased in COS7 cells overexpressing AMPK alpha1-(1-394) with deletion of residues 313-335 (Deltaalpha394) and a V298G or L328Q mutation, and the glucose uptake was also significantly enhanced in HepG2 cells transiently transfected with Deltaalpha394, V298G, or L328Q mutants, which indicated that these AMPK alpha1 mutants are constitutively active in mammalian cells and that interaction between Leu-328 and Val-298 plays an important role in AMPK alpha autoinhibitory function.  相似文献   

5.
Proteinase K Processing of Rabbit Muscle Creatine Kinase   总被引:2,自引:0,他引:2  
Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent of monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328–K380). However, the C-terminal end of the K1 fragment is not A327 as expected, but D325. Thus, the amino acids residues T326 and A327 have been eliminated by the protease.  相似文献   

6.
Four rhoptry proteins (ROP) of Toxoplasma gondii previously identified with mAb have been affinity purified and analyzed by MS; the data obtained allowed the genomic sequences to be assigned to these proteins. As previously suggested for some of them by antibody crossreactivity, these proteins were shown to belong to a family, the prototype of which being ROP2. We describe here the proteins ROP2, 4, 5, and 7. These four proteins correspond to the most abundant products of a gene family that comprises several members which we have identified in genomic and EST libraries. Eight additional sequences were found and we have cloned four of them. All members of the ROP2 family contain a protein-kinase-like domain, but only some of them possess a bona fide kinase catalytic site. Molecular modeling of the kinase domain demonstrates the conservation of residues critical for the stabilization of the protein-kinase fold, especially within a hydrophobic segment described so far as transmembrane and which appears as an helix buried inside the protein. The concomitant synthesis of these ROPs by T. gondii tachyzoites suggests a specific role for each of these proteins, especially in the early interaction with the host cell upon invasion.  相似文献   

7.
Protein kinase CK2 (formerly called: casein kinase 2) is a heterotetrameric enzyme composed of two separate catalytic chains (CK2alpha) and a stable dimer of two non-catalytic subunits (CK2beta). CK2alpha is a highly conserved member of the superfamily of eukaryotic protein kinases. The crystal structure of a C-terminal deletion mutant of human CK2alpha was solved and refined to 2.5A resolution. In the crystal the CK2alpha mutant exists as a monomer in agreement with the organization of the subunits in the CK2 holoenzyme. The refined structure shows the helix alphaC and the activation segment, two main regions of conformational plasticity and regulatory importance in eukaryotic protein kinases, in active conformations stabilized by extensive contacts to the N-terminal segment. This arrangement is in accordance with the constitutive activity of the enzyme. By structural superimposition of human CK2alpha in isolated form and embedded in the human CK2 holoenzyme the loop connecting the strands beta4 and beta5 and the ATP-binding loop were identified as elements of structural variability. This structural comparison suggests that the ATP-binding loop may be the key region by which the non-catalytic CK2beta dimer modulates the activity of CK2alpha. The beta4/beta5 loop was found in a closed conformation in contrast to the open conformation observed for the CK2alpha subunits of the CK2 holoenzyme. CK2alpha monomers with this closed beta4/beta5 loop conformation are unable to bind CK2beta dimers in the common way for sterical reasons, suggesting a mechanism to protect CK2alpha from integration into CK2 holoenzyme complexes. This observation is consistent with the growing evidence that CK2alpha monomers and CK2beta dimers can exist in vivo independently from the CK2 holoenzyme and may possess physiological roles of their own.  相似文献   

8.
Protein kinase CK2 is a tetrameric enzyme composed of two catalytic (alpha and/or alpha') subunits and two regulatory (beta) subunits. Because CK2beta is synthesized in excess of CK2alpha, we hypothesized that formation of CK2beta homodimers precedes the incorporation of the catalytic subunits of CK2 into complexes. To test this hypothesis, we cotransfected cells with two epitope-tagged variants of CK2beta. The results of these cotransfection studies demonstrate that interactions between two CK2beta subunits take place in the absence of CK2alpha. Together with results from previous biosynthetic labeling studies, these results suggest that formation of CK2beta homodimers occurs before incorporation of catalytic subunits of CK2 into CK2 complexes. We also cotransfected Cos-7 cells with a deletion fragment of CK2beta (i.e. Myc-beta1-166) together with full-length hemagglutinin (HA)-tagged CK2beta and/or CK2alpha'. Although complexes between Myc-beta1-166 and HA-beta were readily detected, we obtained no evidence of direct interactions between Myc-beta1-166 and HA-CK2alpha'. These results suggest that residues within the N-terminal 166 amino acids of CK2beta are sufficient for interactions between CK2beta subunits, whereas the C-terminal domain of CK2beta is required for complex formation with the catalytic subunits of CK2. Finally, we observed that expression of full-length HA-beta promotes phosphorylation of Myc-beta1-166 by HA-CK2alpha'.  相似文献   

9.
A Ca(2+)/calmodulin-dependent protein kinase (CaMK) gene was cloned and characterized from Arthrobotrys dactyloides, a nematode-trapping fungus. The resulting 373-amino-acid protein, FCaMK, has significant homology to mammalian CaMKs. FCaMK contains a serine/threonine kinase domain followed by a calmodulin-binding domain. The activation loop in FCaMK (amino acids 184-199) contains a phosphorylation site at threonine-188, which could be the target of a kinase activator. Truncated FCaMK mutants revealed that amino acids 296-324 are essential for calmodulin binding. An oligopeptide designed from residues 297-324 formed a stable peptide-calmodulin complex of 1:1 stoichiometry. Southern blot analysis detected a single copy of the fcamk gene, suggesting that FCaMK plays an important role in Ca(2+)/calmodulin signaling in A. dactyloides.  相似文献   

10.
Minimal CK2 activity required for yeast growth   总被引:3,自引:0,他引:3  
Protein kinase CK2 is essential for the growth of Saccharomyces cerevisiae. Yeast cells that lack the functional genes coding for both the catalytic subunits of protein kinase CK2 can grow only if they are complemented by exogenous cDNAs coding for this subunit. A series of deletion mutants of CK2α from Xenopus laevis was constructed. These mutants that have carboxyl end deletions yield a CK2α product that varies over four orders of magnitude in its capacity to phosphorylate casein in vitro. Complementation of yeast RPG41-1a, a mutant defective in CKA1 and CKA2 genes, with wild-type X. laevis CK2α and with cDNAs coding for truncated CK2α having amino acids 1–328 and 1–327 resulted in cells that grew in gal-minimal media at 30 C as well as the cells harboring the yeast CKA2 gene. However, the growth was significantly diminished when cells were complemented with X. laevis CK2α containing 1–326 amido acids. This mutant has 0.6% of the catalytic activity of the wild-type enzyme. Yeast cells that expressed CK2α 1–324 and 1–323 which have 10-and 100-fold less activity, respectively, were not able to grow. The growth of cells containing the CK2α 1–326 mutant was very sensitive to temperature, and minimal growth was observed at 37 C. This mutant was also more sensitive to UV radiation but was not significantly affected by 0.4 M NaCl.Both authors contributed equally to this work  相似文献   

11.
Features and potentials of ATP-site directed CK2 inhibitors   总被引:3,自引:0,他引:3  
A panel of quite specific, fairly potent and cell-permeable inhibitors of protein kinase CK2 belonging to the classes of condensed polyphenolic compounds, tetrabromobenzimidazole/triazole derivatives and indoloquinazolines have been developed, with K(i) values in the submicromolar range. Nine structures have been solved to date of complexes between the catalytic alpha subunit of CK2 and a number of these compounds, many of which display a remarkable specificity toward CK2 as compared to a panel of >30 kinases tested. The structural basis for such selectivity appears to reside in the shape and size of a hydrophobic pocket adjacent to the ATP binding site where these ATP competitive ligands are entrapped mainly by van der Waals interactions and by an energy contribution derived from the hydrophobic effect. In CK2, this cavity is smaller than in the majority of other protein kinases due to a number of unique bulky apolar residues. Consequently, the replacement of two of these residues (V66 and I174) in human CK2 alpha with alanines gives rise to mutants, which are markedly less susceptible than wild type to these classes of inhibitors. Cell-permeable CK2 inhibitors have been successfully employed, either alone or in combination with CK2 mutants refractory to inhibition, to dissect signalling pathways affected by CK2 and/or to validate the identification of in vivo targets of this pleiotropic kinase. Moreover, the remarkable pro-apoptotic efficacy of these compounds toward cell lines derived from a wide spectrum of tumors, disclose the possibility that in perspective CK2 inhibitors might become leads for the development of anti-cancer drugs.  相似文献   

12.
Two novel crystal structures of Zea mays protein kinase CK2alpha catalytic subunit, one in complex with the specific inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) and another in the apo-form, were solved at 2.2 A resolution. These structures were compared with those of the enzyme in presence of ATP and GTP (the natural cosubstrates) and the inhibitor emodin. Interaction of TBB with the active site of CK2alpha is mainly due to van der Waals contacts, with the ligand fitting almost perfectly the cavity. One nitrogen of the five-membered ring interacts with two charged residues, Glu 81 and Lys 68, in the depth of the cavity, through two water molecules. These are buried in the active site and are also generally found in the structures of CK2alpha enzyme analyzed so far, with the exception of the complex with emodin. In the N-terminal lobe, the position of helix alphaC is particularly well preserved in all the structures examined; the Gly-rich loop is displaced from the intermediate position it has in the apo-form and in the presence of the natural cosubstrates (ATP/GTP) to either an upper (with TBB) or a lower position (with emodin). The selectivity of TBB for CK2 appears to be mainly dictated by the reduced size of the active site which in most other protein kinases is too large for making stable interactions with this inhibitor.  相似文献   

13.
A cDNA (cNPK2) that encodes a protein of 518 amino acids was isolated from a library prepared from poly(A)+ RNAs of tobacco cells in suspension culture. The N-terminal half of the predicted NPK2 protein is similar in amino acid sequence to the catalytic domains of kinases that activate mitogen-activated protein kinases (designated here MAPKKs) from various animals and to those of yeast homologs of MAPKKs. The N-terminal domain of NPK2 was produced as a fusion protein in Escherichia coli, and the purified fusion protein was found to be capable of autophosphorylation of threonine and serine residues. These results indicate that the N-terminal domain of NPK2 has activity of a serine/threonine protein kinase. Southern blot analysis showed that genomic DNAs from various plant species, including Arabidopsis thaliana and sweet potato, hybridized strongly with cNPK2, indicating that these plants also have genes that are closely related to the gene for NPK2. The structural similarity between the catalytic domain of NPK2 and those of MAPKKs and their homologs suggests that tobacco NPK2 corresponds to MAPKKs of other organisms. Given the existence of plant homologs of an MAP kinase and tobacco NPK1, which is structurally and functionally homologous to one of the activator kinases of yeast homologs of MAPKK (MAPKKKs), it seems likely that a signal transduction pathway mediated by a protein kinase cascade that is analogous to the MAP kinase cascades proposed in yeasts and animals, is also conserved in plants.  相似文献   

14.
Protein kinase CK2 (formerly casein kinase II), an enzyme that participates in a wide variety of cellular processes, has traditionally been classified as a stable tetrameric complex consisting of two catalytic CK2alpha or CK2alpha' subunits and two regulatory CK2beta subunits. While consideration of CK2 as a tetrameric complex remains relevant, significant evidence has emerged to challenge the view that its individual subunits exist exclusively within these complexes. This review will summarize biochemical and genetic evidence indicating that the regulatory CK2beta subunit exists and performs functions independently of CK2 tetramers. For example, unbalanced expression of catalytic and regulatory CK2 subunits has been observed in a variety of tissues and tumors. Furthermore, localization studies including live cell imaging have demonstrated that while the catalytic and regulatory subunits of CK2 exhibit extensive co-localization, independent mobility of the individual CK2 subunits can also be observed within cells. Identification of proteins that interact with CK2beta in the absence of catalytic CK2 subunits reinforces the notion that CK2beta has functions distinct from CK2 and begins to offer insights into these CK2-independent functions. In this respect, the discovery that CK2beta can interact with and modulate the activity of a number of other serine/threonine protein kinases including A-Raf, c-Mos and Chk1 is particularly striking. This review will discuss the interactions between CK2beta and these protein kinases with special emphasis on the properties of CK2beta that mediate these interactions and on the implications of these interactions in yielding new prospects for elucidation of the cellular functions of CK2beta.  相似文献   

15.
We tested the hypothesis that the recurrence of hydrophobic amino acids in a polypeptide at positions falling in an axial, hydrophobic strip if the sequence were coiled as an alpha helix, can lead to helical nucleation on a hydrophobic surface. The hydrophobic surface could anchor such residues, whereas the peptide sequence grows in a helical configuration that is stabilized by hydrogen bonds among carbonyl and amido NH groups along the peptidyl backbone of the helix, and by other intercycle interactions among amino acid side chains. Such bound, helical structures might protect peptides from proteases and/or facilitate transport to a MHC-containing compartment and thus be reflected in the selection of T cell-presented segments. Helical structure in a series of HPLC-purified peptides was estimated from circular dichroism measurements in: 1) 0.01 M phosphate buffer, pH 7.0, 2) that buffer with 45% trifluoroethanol (TFE), and 3) that buffer with di-O-hexadecyl phosphatidylcholine vesicles. By decreasing the dielectric constant of the buffer, TFE enhances intrapeptide interactions generally, whereas the lipid vesicles only provide a surface for hydrophobic interactions. The peptides varied in their strip-of-helix hydrophobicity indices (SOHHI; the mean Kyte-Doolittle hydrophobicities of residues in an axial strip of an alpha helix) and in proline content. Structural order for peptides with helical circular dichroism spectra was estimated as percentage helicity from circular dichroism theta 222 nm values and peptide concentration. A prototypic alpha helical peptide with three cycles plus two amino acids and an axial hydrophobic strip of four leucyl residues (SOHHI = 3.8) was disordered in phosphate buffer, 58% helical in that buffer with 48% TFE, and 36% helical in that buffer with vesicles. Percentage helicity in the presence of vesicles of the subset of peptides without proline followed their SOHHI values. Peptides with multiple prolyl residues had circular dichroism spectra with strong signals, but since they did not have altered spectra in the presence of vesicles relative to phosphate buffer alone, the hydrophobic surface of the vesicle did not appear to stabilize those structures.  相似文献   

16.
The Ser/Thr kinase casein kinase 2 (CK2) is a heterotetrameric enzyme composed of two catalytic chains (CK2α, catalytic subunit of CK2) attached to a dimer of two noncatalytic subunits (CK2β, noncatalytic subunit of CK2). CK2α belongs to the superfamily of eukaryotic protein kinases (EPKs). To function as regulatory key components, EPKs normally exist in inactive ground states and are activated only upon specific signals. Typically, this activation is accompanied by large conformational changes in helix αC and in the activation segment, leading to a characteristic arrangement of catalytic key elements. For CK2α, however, no strict physiological control of activity is known. Accordingly, CK2α was found so far exclusively in the characteristic conformation of active EPKs, which is, in this case, additionally stabilized by a unique intramolecular contact between the N-terminal segment on one side, and helix αC and the activation segment on the other side. We report here the structure of a C-terminally truncated variant of human CK2α in which the enzyme adopts a decidedly inactive conformation for the first time. In this CK2α structure, those regulatory key regions still are in their active positions. Yet the glycine-rich ATP-binding loop, which is normally part of the canonical anti-parallel β-sheet, has collapsed into the ATP-binding site so that ATP is excluded from binding; specifically, the side chain of Arg47 occupies the ribose region of the ATP site and Tyr50, the space required by the triphospho moiety. We discuss some factors that may support or disfavor this inactive conformation, among them coordination of small molecules at a remote cavity at the CK2α/CK2β interaction region and binding of a CK2β dimer. The latter stabilizes the glycine-rich loop in the extended active conformation known from the majority of CK2α structures. Thus, the novel inactive conformation for the first time provides a structural basis for the stimulatory impact of CK2β on CK2α.  相似文献   

17.
The polypeptide alpha3, which was synthesized by us to produce an amphipathic helix structure, contains the regular three times repeated sequence (LETLAKA)(3), and alpha3 forms a fibrous assembly. To clarify how the side chains of amino acid residues affect the formation of alpha helix, Leu residues, which are located in the hydrophobic surface of an amphipathic helix, were replaced by other hydrophobic aliphatic amino acid residues systematically, and the characters of the resulting polypeptides were studied. According to the circular dichroism (CD) spectra, the Ile-substituted polypeptides formed alpha helix like alpha3. However, their helix formation ability was weaker than that of alpha3 under some conditions. The Val-substituted polypeptides formed alpha helix only under restricted condition. The Ala-substituted polypeptides did not form alpha helix under any condition. Thus, it is clear that the order of the alpha helix formation ability is as follows: Leu >or= Ile > Val > Ala. The formation of alpha helix was confirmed by Fourier Transform Infrared (FTIR) spectra. Through electron microscopic observation, it was clarified that the formation of the alpha helix structure correlates with the formation of a fibrous assembly. The amphipathic alpha helix structure would be stabilized by the formation of the fibrous assembly.  相似文献   

18.
The protein Ser/Thr kinase CK2 (former name: casein kinase II) exists predominantly as a heterotetrameric holoenzyme composed of two catalytic subunits (CK2α) bound to a dimer of noncatalytic subunits (CK2β). We undertook a study to further understand how these subunits interact to form the tetramer. To this end, we used recombinant, C-terminal truncated forms of human CK2 subunits that are able to form the holoenzyme. We analyzed the interaction thermodynamics between the binding of CK2α and CK2β as well as the impact of changes in temperature, pH, and the ionization enthalpy of the buffer using isothermal titration calorimetry (ITC). With structure-guided alanine scanning mutagenesis we truncated individual side chains in the hydrophobic amino acid cluster located within the CK2α interface to identify experimentally the amino acids that dominate affinity. The ITC results indicate that Leu41 or Phe54 single mutations were most disruptive to binding of CK2β. Additionally, these CK2α mutants retained their kinase activity. Furthermore, the substitution of Leu41 in combination with Phe54 showed that the individual mutations were not additive, suggesting that the cooperative action of both residues played a role. Interestingly, the replacement of Ile69, which has a central position in the interaction surface of CK2α, only had modest effects. The differences between Leu41, Phe54, and Ile69 in interaction relevance correlate with solvent accessibility changes during the transition from unbound to CK2β-bound CK2α. Identifying residues on CK2α that play a key role in CK2α/CK2β interactions is important for the future generation of small molecule drug design.  相似文献   

19.
Protein kinase CK2, formerly known as casein kinase II, is a ubiquitous protein serine/threonine kinase. The enzyme exists in tetrameric complexes composed of two catalytic (CK2α and/or CK2α′) subunits and two subunits (CK2β) that appear to have a role in modulating the activity of the catalytic subunits. With the exception of their unrelated carboxy-terminal domains, the two isozymic forms of mammalian CK2 display extensive sequence identity. Furthermore, CK2α and CK2α′ exhibit remarkable conservation between species, suggesting that they may have unique functions. In the present study, the cDNAs encoding CK2α and CK2α′ were modified by addition of the hemagglutinin tag of the influenza virus at the amino terminus of the respective proteins. The epitope-tagged proteins were transfected into Cos-7 cells and the localization of the expressed proteins determined by indirect immunofluorescence using monoclonal antibodies specific for the epitope tag. The use of transfection favors the formation of homotetrameric complexes (i.e., α2β2, α′2β2) instead of heterotetrameric complexes (i.e., αα′β2) that are present in many cells. Epitope-tagged CK2α and CK2α′ displayed kinase activity and the ability to form complexes with CK2β. The results of these studies also indicate definitively that CK2α and CK2α′ are both localized predominantly within the nucleus. Mutation of conserved lysine residues within the ATP binding domains of CK2α and CK2α′ resulted in loss of kinase activity. However, examination of these mutants indicates that kinase activity is not essential for formation of complexes between subunits of CK2 and is not required for nuclear localization of CK2. J. Cell. Biochem. 64: 525–537. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Casein kinase 2 (CK2) is a ubiquitous, multifunctional eukaryotic serine/threonine kinase that phosphorylates an array of proteins. CK2 is a heterotetramer composed of two catalytic (alpha,alpha(')) and two regulatory (beta) subunits. CK2 plays an essential role in regulatory pathways in cell transformation and proliferation. But the role and function of the individual subunits of CK2, which are not in the holoenzyme, are not yet clear. Northern blot analysis reveals the highest CK2beta activity in mouse testicles and brain. By employing a yeast two-hybrid screen to identify the proteins that interact with CK2beta, we have isolated a cDNA clone encoding a 14-kDa protein with homology to dynein light chains and have designated it as Tctex4. CK2beta interacts specifically with Tctex4 both in a yeast two-hybrid system and in an in vitro interaction assay. Northern blot and in situ hybridization showed that Tctex4 is a novel gene that is expressed in mouse testis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号