首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-linked glycosylation is an essential posttranslational modification of proteins in eukaryotes. The substrate of N-linked glycosylation, dolichol pyrophosphate (DolPP)-GlcNAc(2)Man(9)Glc(3), is assembled through a complex series of ordered reactions requiring the translocation of the intermediate DolPP-GlcNAc(2)Man(5) structure across the endoplasmic-reticulum membrane. A young patient diagnosed with a congenital disorder of glycosylation characterized by an intracellular accumulation of DolPP-GlcNAc(2)Man(5) was found to carry a homozygous point mutation in the RFT1 gene. The c.199C-->T mutation introduced the amino acid substitution p.R67C. The human RFT1 protein shares 22% identity with its yeast ortholog, which is involved in the translocation of DolPP-GlcNAc(2)Man(5) from the cytosolic into the lumenal side of the endoplasmic reticulum. Despite the low sequence similarity between the yeast and the human RFT1 proteins, we demonstrated both their functional orthology and the pathologic effect of the human p.R67C mutation by complementation assay in Deltarft1 yeast cells. The causality of the RFT1 p.R67C mutation was further established by restoration of normal glycosylation profiles in patient-derived fibroblasts after lentiviral expression of a normal RFT1 cDNA. The definition of the RFT1 defect establishes the functional conservation of the DolPP-GlcNAc(2)Man(5) translocation process in eukaryotes. RFT1 deficiency in both yeast and human cells leads to the accumulation of incomplete DolPP-GlcNAc(2)Man(5) and to a profound glycosylation disorder in humans.  相似文献   

2.
3.
Hypophosphatasia is a rare inherited bone disorder characterized by defective bone and dental mineralization and deficiency of serum and liver/bone/kidney alkaline phosphatase activity. The disease is due to mutations in the alkaline phosphatase liver-type (ALPL) gene. Gross deletions or insertions have not previously been reported in this gene. We report here the characterization of nine novel ALPL gene mutations in a series of 8 patients affected by various forms of hypophosphatasia. The newly discovered mutations included five missense mutations (c.368C --> A, c.814C--> T, c.1196C--> T, c.1199C--> T, c.1283G--> C), two small deletions (c.797_802del, c.1044_1055del), and two large deletions. The large deletions were detected by quantitative multiplex polymerase chain reaction (PCR) of short fluorescent fragments (QMPSF). We conclude that QMPSF slightly reduces the proportion of undetected mutations in hypophosphatasia and improves genetic counselling in the affected families.  相似文献   

4.
Polymorphisms of the CYP1B1 gene have higher risk for prostate cancer   总被引:6,自引:0,他引:6  
Various carcinogenic factors including estrogen metabolites play a role in malignant transformation. These metabolites are formed in part, as a result of the hydroxylation activity of cytochrome P450 (CYP) 1B1. Variant forms of this enzyme have been shown to enhance its activity, and thus, we hypothesize that single nucleotide polymorphisms of the CYP1B1 gene can be a risk factor for prostate cancer. To test this hypothesis, the genetic distribution of six different CYP1B1 polymorphisms at intron 1 (C-->T), codon 48 (C-->G), codon 119 (G-->T), codon 432 (C-->G), codon 449 (C-->T), and codon 453 (A-->G) was analyzed in 117 prostate cancer samples and 200 healthy normal subjects from a Japanese population. Results of these experiments demonstrate that the genotype at codon 119 is significantly different between prostate cancer patients and controls (P<0.001). The odds ratio of genotype T/T compared to G/G (reference) was calculated as 4.02 with a 95% confidence interval of 1.73-9.38. All other codons, except 453, showed polymorphisms but were not significantly different between cancer patients and controls. No association was found between stage and grade of cancer with any of the polymorphic sites. This is the first report that demonstrates the polymorphism at codon 119 of CYP1B1 to be associated with prostatic carcinogenesis. These results are important in understanding the role of CYP1B1 polymorphisms in the pathogenesis of prostate cancer.  相似文献   

5.
The molecular nature of a severe multisystemic disorder with a recurrent nonimmune hydrops fetalis was identified as deficiency of GDP-Man:GlcNAc(2)-PP-dolichol mannosyltransferase, the human orthologue of the yeast ALG1 gene (MIM 605907). The disease belongs to the group of congenital disorders of glycosylation (CDG) and is designated as subtype CDG-Ik. In patient-derived serum, the total amount of the glycoprotein transferrin was reduced. Moreover, a partial loss of N-glycan chains was observed, a characteristic feature of CDG type I forms. Metabolic labeling with [6-(3)H]glucosamine revealed an accumulation of GlcNAc(2)-PP-dolichol and GlcNAc(1)-PP-dolichol in skin fibroblasts of the patient. Incubation of fibroblast extracts with [(14)C]GlcNAc(2)-PP-dolichol and GDP-mannose indicated a severely reduced activity of the beta 1,4-mannosyltransferase, elongating GlcNAc(2)-PP-dolichol to Man(1)GlcNAc(2)-PP-dolichol at the cytosolic side of the endoplasmic reticulum. Genetic analysis of the patient's hALG1 gene identified a homozygous mutation leading to the exchange of a serine residue to leucine at position 258 in the hALG1 protein. The disease-causing nature of the hALG1 mutation for the glycosylation defect was verified by a retroviral complementation approach in patient-derived primary fibroblasts and was confirmed by the expression of wild-type and mutant hALG1 in the Saccharomyces cerevisiae alg1-1 strain.  相似文献   

6.
Ehlers-Danlos syndrome (EDS) type VIIC is a recessively inherited connective-tissue disorder, characterized by extreme skin fragility, characteristic facies, joint laxity, droopy skin, umbilical hernia, and blue sclera. Like the animal model dermatosparaxis, EDS type VIIC results from the absence of activity of procollagen I N-proteinase (pNPI), the enzyme that excises the N-propeptide of type I and type II procollagens. The pNPI enzyme is a metalloproteinase containing properdin repeats and a cysteine-rich domain with similarities to the disintegrin domain of reprolysins. We used bovine cDNA to isolate human pNPI. The human enzyme exists in two forms: a long version similar to the bovine enzyme and a short version that contains the Zn++-binding catalytic site but lacks the entire C-terminal domain in which the properdin repeats are located. We have identified the mutations that cause EDS type VIIC in the six known affected human individuals and also in one strain of dermatosparactic calf. Five of the individuals with EDS type VIIC were homozygous for a C-->T transition that results in a premature termination codon, Q225X. Four of these five patients were homozygous at three downstream polymorphic sites. The sixth patient was homozygous for a different transition that results in a premature termination codon, W795X. In the dermatosparactic calf, the mutation is a 17-bp deletion that changes the reading frame of the message. These data provide direct evidence that EDS type VIIC and dermatosparaxis result from mutations in the pNPI gene.  相似文献   

7.
8.
N-Glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to man. Here we identify and characterize two essential yeast proteins having homology to bacterial glycosyltransferases, designated Alg13p and Alg14p, as being required for the formation of GlcNAc(2)-PP-dolichol (Dol), the second step in the biosynthesis of the unique lipid-linked core oligosaccharide. Down-regulation of each gene led to a defect in protein N-glycosylation and an accumulation of GlcNAc(1)-PP-Dol in vivo as revealed by metabolic labeling with [(3)H]glucosamine. Microsomal membranes from cells repressed for ALG13 or ALG14, as well as detergent-solubilized extracts thereof, were unable to catalyze the transfer of N-acetylglucosamine from UDP-GlcNAc to [(14)C]GlcNAc(1)-PP-Dol, but did not impair the formation of GlcNAc(1)-PP-Dol or GlcNAc-GPI. Immunoprecipitating Alg13p from solubilized extracts resulted in the formation of GlcNAc(2)-PP-Dol but required Alg14p for activity, because an Alg13p immunoprecipitate obtained from cells in which ALG14 was down-regulated lacked this activity. In Western blot analysis it was demonstrated that Alg13p, for which no well defined transmembrane segment has been predicted, localizes both to the membrane and cytosol; the latter form, however, is enzymatically inactive. In contrast, Alg14p is exclusively membrane-bound. Repression of the ALG14 gene causes a depletion of Alg13p from the membrane. By affinity chromatography on IgG-Sepharose using Alg14-ZZ as bait, we demonstrate that Alg13-myc co-fractionates with Alg14-ZZ. The data suggest that Alg13p associates with Alg14p to a complex forming the active transferase catalyzing the biosynthesis of GlcNAc(2)-PP-Dol.  相似文献   

9.
Mutations in the MTR gene, which encodes methionine synthase on human chromosome 1p43, result in the methylcobalamin deficiency G (cblG) disorder, which is characterized by homocystinuria, hyperhomocysteinemia, and hypomethioninemia. To investigate the molecular basis of the disorder, we have characterized the structure of the MTR gene, thereby identifying exon-intron boundaries. This enabled amplification of each of the 33 exons of the gene, from genomic DNA from a panel of 21 patients with cblG. Thirteen novel mutations were identified. These included five deletions (c.12-13delGC, c.381delA, c.2101delT, c.2669-2670delTG, and c.2796-2800delAAGTC) and two nonsense mutations (R585X and E1204X) that would result in synthesis of truncated proteins that lack portions critical for enzyme function. One mutation was identified that resulted in conversion of A to C of the invariant A of the 3' splice site of intron 9. Five missense mutations (A410P, S437Y, S450H, H595P, and I804T) were identified. The latter mutations, as well as the splice-site mutation, were not detected in a panel of 50 anonymous DNA samples, suggesting that these sequence changes are not polymorphisms present in the general population. In addition, a previously described missense mutation, P1173L, was detected in 16 patients in an expanded panel of 24 patients with cblG. Analysis of haplotypes constructed using sequence polymorphisms identified within the MTR gene demonstrated that this mutation, a C-->T transition in a CpG island, has occurred on at least two separate genetic backgrounds.  相似文献   

10.
To obtain insights into the mechanisms of spontaneous mutations in Saccharomyces cerevisiae, we have characterized the genetic alterations that inactivate either the CAN1 gene in haploid cells or heterozygously situated in diploid cells. The mutation rate in haploid cells was 9.08 x 10(-7), 100-fold lower than that in diploid cells (1.03 x 10(-4)). In haploid cells, among 69 independent CAN1 mutations, 75% were base substitutions and 22% frameshifts. The base substitutions were both transitions (33%) and transversions (42%), with G:C-->A:T and G:C-->T:A dominating. Minus frameshifts (12%) and plus frameshifts (10%) were also observed at run and non-run bases, and at A:T and G:C pairs with almost equal efficiency. An analysis of chromosome structure in diploid yeast cells indicated that allelic crossover was the predominant event followed by gene conversion and chromosome loss. We argued that genetic alterations leading to spontaneous phenotypic changes in wild-type diploid yeast cells occurred through two steps; replication-dependent alterations of bases in either allele then recombination-dependent transfer of the mutated allele to the intact one.  相似文献   

11.
BACKGROUND: UCP3 is a mitochondrial membrane transporter that is postulated to uncouple oxidative phosphorylation from ATP synthesis producing heat instead of ATP. Human UCP3 is mainly expressed in skeletal muscle, which plays an important role in energy homeostasis and substrate oxidation. Therefore, UCP3 is a good candidate gene for obesity. MATERIALS AND METHODS: We analyzed, among 734 subjects from the Québec Family Study, a new GA repeat microsatellite located in intervening sequence (IVS) 6 (GAIVS6) in UCP3 gene, and two already described restriction fragment length polymorphisms (RFLP) Y210Y(C-->T) and V102I(G-->A). Covariance analysis across genotypes for different adiposity, resting energy expenditure, and glucose metabolism variables was undertaken with age and sex, plus body fat and body mass for nonadiposity phenotypes, as covariates. RESULTS: We found strong associations between GAIVS6 and body mass index (p = 0.0001), fat mass (p = 0.0005), percentage body fat (p = 0.0004), the sum of six skinfold thickness (p = 0.0001), and leptin level (p = 0.0001). Homozygote for the GAIVS6 240 bp alleles (15% frequency in QFS) showed higher adiposity than subjects with the GAIVS6 238 bp allele (70% in QFS). The exons, the 5' untranslated region (UTR), and the exon-intron junctions of UCP3 gene from subjects homozygote for either GAIVS6 238 bp or 240 bp alleles were sequenced in search for mutations. Variants 5'UTR-55C-->T and Y210Y(C-->T) were detected, whereas IVS4-36C-->T was uncovered, but no new exonic or splice junction mutation was observed. RFLP Y210Y(C-->T) was not associated to adiposity in QFS; V1021(G-->A) showed no variation. CONCLUSION: Our results suggest that some alleles of UCP3 are involved in the etiology of human obesity.  相似文献   

12.
Vibrio parahaemolyticus is one of the human pathogenic vibrios. During the infection of mammalian cells, this pathogen exhibits cytotoxicity that is dependent on its type III secretion system (T3SS1). VepA, an effector protein secreted via the T3SS1, plays a major role in the T3SS1-dependent cytotoxicity of V. parahaemolyticus. However, the mechanism by which VepA is involved in T3SS1-dependent cytotoxicity is unknown. Here, we found that protein transfection of VepA into HeLa cells resulted in cell death, indicating that VepA alone is cytotoxic. The ectopic expression of VepA in yeast Saccharomyces cerevisiae interferes with yeast growth, indicating that VepA is also toxic in yeast. A yeast genome-wide screen identified the yeast gene VMA3 as essential for the growth inhibition of yeast by VepA. Although VMA3 encodes subunit c of the vacuolar H+-ATPase (V-ATPase), the toxicity of VepA was independent of the function of V-ATPases. In HeLa cells, knockdown of V-ATPase subunit c decreased VepA-mediated cytotoxicity. We also demonstrated that VepA interacted with V-ATPase subunit c, whereas a carboxyl-terminally truncated mutant of VepA (VepAΔC), which does not show toxicity, did not. During infection, lysosomal contents leaked into the cytosol, revealing that lysosomal membrane permeabilization occurred prior to cell lysis. In a cell-free system, VepA was sufficient to induce the release of cathepsin D from isolated lysosomes. Therefore, our data suggest that the bacterial effector VepA targets subunit c of V-ATPase and induces the rupture of host cell lysosomes and subsequent cell death.  相似文献   

13.
14.
Human immunodeficiency virus type 1 enhancer-binding protein 3 (Hivep3) suppresses osteoblast differentiation by inducing proteasomal degradation of the osteogenesis master regulator Runx2. In this study, we tested the possibility of cooperation of Hivep1, Hivep2, and Hivep3 in osteoblast and/or chondrocyte differentiation. Microarray analyses with ST-2 bone stroma cells demonstrated that expression of any known osteochondrogenesis-related genes was not commonly affected by the three Hivep siRNAs. Only Hivep3 siRNA promoted osteoblast differentiation in ST-2 cells, whereas all three siRNAs cooperatively suppressed differentiation in ATDC5 chondrocytes. We further used microarray analysis to identify genes commonly down-regulated in both MC3T3-E1 osteoblasts and ST-2 cells upon knockdown of Hivep3 and identified asparagine-linked glycosylation 2 (Alg2), which encodes a mannosyltransferase residing on the endoplasmic reticulum. The Hivep3 siRNA-mediated promotion of osteoblast differentiation was negated by forced Alg2 expression. Alg2 suppressed osteoblast differentiation and bone formation in cultured calvarial bone. Alg2 was immunoprecipitated with Runx2, whereas the combined transfection of Runx2 and Alg2 interfered with Runx2 nuclear localization, which resulted in suppression of Runx2 activity. Chondrocyte differentiation was promoted by Hivep3 overexpression, in concert with increased expression of Creb3l2, whose gene product is the endoplasmic reticulum stress transducer crucial for chondrogenesis. Alg2 silencing suppressed Creb3l2 expression and chondrogenesis of ATDC5 cells, whereas infection of Alg2-expressing virus promoted chondrocyte maturation in cultured cartilage rudiments. Thus, Alg2, as a downstream mediator of Hivep3, suppresses osteogenesis, whereas it promotes chondrogenesis. To our knowledge, this study is the first to link a mannosyltransferase gene to osteochondrogenesis.  相似文献   

15.
N-linked glycosylation requires the synthesis of an evolutionarily conserved lipid-linked oligosaccharide (LLO) precursor that is essential for glycoprotein folding and stability. Despite intense research, several of the enzymes required for LLO synthesis have not yet been identified. Here we show that two poorly characterized yeast proteins known to be required for the synthesis of the LLO precursor, GlcNAc2-PP-dolichol, interact to form an unusual hetero-oligomeric UDP-GlcNAc transferase. Alg13 contains a predicted catalytic domain, but lacks any membrane-spanning domains. Alg14 spans the membrane but lacks any sequences predicted to play a direct role in sugar catalysis. We show that Alg14 functions as a membrane anchor that recruits Alg13 to the cytosolic face of the ER, where catalysis of GlcNAc2-PP-dol occurs. Alg13 and Alg14 physically interact and under normal conditions, are associated with the ER membrane. Overexpression of Alg13 leads to its cytosolic partitioning, as does reduction of Alg14 levels. Concomitant Alg14 overproduction suppresses this cytosolic partitioning of Alg13, demonstrating that Alg14 is both necessary and sufficient for the ER localization of Alg13. Further evidence for the functional relevance of this interaction comes from our demonstration that the human ALG13 and ALG14 orthologues fail to pair with their yeast partners, but when co-expressed in yeast can functionally complement the loss of either ALG13 or ALG14. These results demonstrate that this novel UDP-GlcNAc transferase is a unique eukaryotic ER glycosyltransferase that is comprised of at least two functional polypeptides, one that functions in catalysis and the other as a membrane anchor.  相似文献   

16.
Down syndrome is a complex genetic and metabolic disorder attributed to the presence of three copies of chromosome 21. The extra chromosome derives from the mother in 93% of cases and is due to abnormal chromosome segregation during meiosis (nondisjunction). Except for advanced age at conception, maternal risk factors for meiotic nondisjunction are not well established. A recent preliminary study suggested that abnormal folate metabolism and the 677C-->T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene may be maternal risk factors for Down syndrome. The present study was undertaken with a larger sample size to determine whether the MTHFR 677C-->T polymorphism was associated with increased risk of having a child with Down syndrome. Methionine synthase reductase (MTRR) is another enzyme essential for normal folate metabolism. A common polymorphism in this gene was recently associated with increased risk of neural tube defects and might also contribute to increased risk for Down syndrome. The frequencies of the MTHFR 677C-->T and MTRR 66A-->G mutations were evaluated in DNA samples from 157 mothers of children with Down syndrome and 144 control mothers. Odds ratios were calculated for each genotype separately and for potential gene-gene interactions. The results are consistent with the preliminary observation that the MTHFR 677C-->T polymorphism is more prevalent among mothers of children with Down syndrome than among control mothers, with an odds ratio of 1.91 (95% confidence interval [CI] 1.19-3.05). In addition, the homozygous MTRR 66A-->G polymorphism was independently associated with a 2. 57-fold increase in estimated risk (95% CI 1.33-4.99). The combined presence of both polymorphisms was associated with a greater risk of Down syndrome than was the presence of either alone, with an odds ratio of 4.08 (95% CI 1.94-8.56). The two polymorphisms appear to act without a multiplicative interaction.  相似文献   

17.
Carnitine palmitoyltransferase I (CPT I) catalyzes the formation of acylcarnitine, the first step in the oxidation of long-chain fatty acids in mitochondria. The enzyme exists as liver (L-CPT I) and muscle (M-CPT I) isoforms that are encoded by separate genes. Genetic deficiency of L-CPT I, which has been reported in 16 patients from 13 families, is characterized by episodes of hypoketotic hypoglycemia beginning in early childhood and is usually associated with fasting or illness. To date, only two mutations associated with L-CPT I deficiency have been reported. In the present study we have identified and characterized the mutations underlying L-CPT I deficiency in six patients: five with classic symptoms of L-CPT I deficiency and one with symptoms that have not previously been associated with this disorder (muscle cramps and pain). Transfection of the mutant L-CPT I cDNAs in COS cells resulted in L-CPT I mRNA levels that were comparable to those expressed from the wild-type construct. Western blotting revealed lower levels of each of the mutant proteins, indicating that the low enzyme activity associated with these mutations was due, at least in part, to protein instability. The patient with atypical symptoms had approximately 20% of normal L-CPT I activity and was homozygous for a mutation (c.1436C-->T) that substituted leucine for proline at codon 479. Assays performed with his cultured skin fibroblasts indicated that this mutation confers partial resistance to the inhibitory effects of malonyl-CoA. The demonstration of L-CPT I deficiency in this patient suggests that the spectrum of clinical sequelae associated with loss or alteration of L-CPT I function may be broader than was previously recognized.  相似文献   

18.
Amino acid sequence of rat argininosuccinate lyase deduced from cDNA   总被引:3,自引:0,他引:3  
Argininosuccinate lyase [EC 4.3.2.1] is an enzyme of the urea cycle in the liver of ureotelic animals. The enzymes of the urea cycle, including argininosuccinate lyase, are regulated developmentally and in response to dietary and hormonal changes, in a coordinated manner. The nucleotide sequence of rat argininosuccinate lyase cDNA, which was isolated previously (Amaya, Y., Kawamoto, S., Oda, T., Kuzumi, T., Saheki, T., Kimula, S., & Mori, M. (1986) Biochem. Int. 13, 433-438), was determined. The cDNA clone contained an open reading frame encoding a polypeptide of 461 amino acid residues (predicted Mr = 51,549), a 5'-untranslated sequence of 150 bp, and a 3'-untranslated sequence of 41 bp. The amino acid composition of rat liver argininosuccinate lyase predicted from the cDNA sequence is in close agreement with that determined on the purified enzyme. The predicted amino acid sequences of the human and yeast enzymes along the entire sequences (94 and 39%, respectively), except for a region of 66 residues of the human enzyme near the COOH terminus. However, the sequence of this region of the human enzyme predicted from another reading frame of the human enzyme cDNA is homologous with the corresponding sequences of the rat and yeast enzymes. Therefore, the human sequence should be re-examined. Lysine-51, the putative binding site for argininosuccinate, and the flanking sequences are highly conserved among the rat, steer, human, and yeast enzymes.  相似文献   

19.
Human phosphofructokinase (PFK) is a tetrameric enzyme, encoded by muscle, liver, and platelet genes. Deficiency of muscle PFK (PFK-M), glycogenosis type VII (Tarui disease), is an autosomal recessive disorder characterized by an exertional myopathy and hemolytic syndrome. Several disease-causing mutations have been identified in the PFK-M gene in Japanese, Ashkenazi Jewish, and Italian patients. We describe the genetic defects in French Canadian and Swiss patients with the disease, and we use a genetically well-defined yeast system devoid of endogenous PFK for structure-function studies of the mutant PFKs. A G-to-A transition at codon 209-in exon 8 of the PFK-M gene, changing an encoded Gly to Asp, is responsible for the disease in a homozygous French Canadian patient. Gly-209-mutated protein is completely inactive in the yeast system. The Swiss patient is a genetic compound, carrying a G-to-A transition at codon 100 in exon 6 (Arg to Gln) and a G-to-A transition at codon 696 in exon 22 (Arg to His). The mutants expressed in yeast generate functional enzyme with modest changes in thermal stability. The advantages and limitations of the yeast system for expression of human mutant PFKs are discussed.  相似文献   

20.
Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency   总被引:12,自引:0,他引:12  
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138G-->A, 561G-->A, 708G-->A) and two associated with ITPase deficiency (94C-->A, IVS2+21A-->C). Homozygotes for the 94C-->A missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94C-->A heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21A-->C homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94C-->A (allele frequency: 0.06), 24 were heterozygotes for IVS2+21A-->C (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21A-->C heterozygotes and 94C-->A/IVS2+21A-->C compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号