首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Cost GJ  Cozzarelli NR 《BioTechniques》2007,42(1):84, 86-84, 89
DNA ligation is a routine laboratory practice, yet the yield of the desired product is often very low due to competing off-pathway reactions. The sensitivity of subsequent manipulations (e.g., selection via bacterial transformation) often obviates the need for a high yield of correctly ligated products. However the ability to perform high-yield, preparative-scale DNA ligations would benefit a number of downstream applications ranging from standard molecular cloning to biophysics and DNA computing. We describe here a ligation technique that specifically converts off-pathway ligation products back into substrate. We term this second-chance strategy enzymatic ligation assisted by nucleases (ELAN) and demonstrate the ordered assembly of four DNA fragments via simultaneous ligation and digestion in the presence of eight restriction enzymes. Use of ELAN increased the yield of the desired product by more than 30-fold.  相似文献   

2.
A method is described for the rapid analysis of DNA ligation products in the assembly of synthetic genes and gene fragments. The method is based on the simultaneous analysis of multiple ligation reactions where a single but different DNA oligomer is radiolabelled per ligation reaction. After each ligation the reaction mixture is electrophoresed on a denaturing, as well as a non-denaturing, polyacrylamide gel allowing one to monitor the ligation reaction products. In addition, a unique method for generating single stranded DNA sizing standards up to approximately 300 nucleotides in length is described.  相似文献   

3.
A protocol for the construction of microsatellite enriched genomic library   总被引:1,自引:0,他引:1  
An improved protocol for constructing microsatellite-enriched libraries was developed. The procedure depends on digesting genomic DNA with a restriction enzyme that generates blunt-ends, and on ligating linkers that, when dimerized, create a restriction site for a different blunt-end producing restriction enzyme. Efficient ligation of linkers to the genomic DNA fragments is achieved by including restriction enzymes in the ligation reaction that eliminate unwanted ligation products. After ligation, the reaction mixture is subjected to subtractive hybridization without purification. DNA fragments containing microsatellites are captured by biotin-labeled oligonucleotide repeats and recovered using streptavidin-coated beads. The recovered fragments are amplified by PCR using the linker sequence as primer, and cloned directly into a plasmid vector. The linker has the sequence GTTT on the 5′ end, which promotes efficient adenylation of the 3′ ends of the PCR products. Consequently, the amplified fragments could be cloned into vectors without purification. This procedure enables efficient enrichment and cloning of microsatellite sequences, resulting in a library with a low level of redundancy.  相似文献   

4.
Here we describe an advanced polymerase chain reaction (PCR) technique, the compatible ends ligation inverse PCR (CELI-PCR) for chromosome walking. In CELI-PCR, several restriction enzymes, which produce compatible cohesive ends, were used to digest target DNA simultaneously or sequentially to produce DNA fragments of suitable size. DNA fragments were then easily circularized and PCR amplification could be carried out efficiently. The previous limitations of inverse PCR were overcome, such as unavailable restriction sites, poor template DNA circularization, and low amplification efficiency. Therefore, successive chromosome walking was performed successfully. Our work, isolating a 11,395-bp fragment from Gossypium hirsutum, was presented as an example to describe how CELI-PCR was carried out.  相似文献   

5.
Efficient ligation and cloning of DNA fragments with 2-bp overhangs   总被引:1,自引:0,他引:1  
Various methods of ligation are currently available and routinely used by molecular biologists, such as blunt end ligation, cohesive end (two and four overhangs), and ligation of Taq polymerase-derived products. However, there is no efficient method for the cloning of DNA fragments with 2-bp overhangs. We present a simple method for the efficient ligation of DNA fragments with 2-bp overhanging ends, ranging in size from 0.7 to 2.5 kbp. Our method involves the initial heating and flash freezing of the vector-insert DNA mix, and a subsequent unique ligation reaction. This method provides a new molecular biology tool for researchers.  相似文献   

6.
This report describes a novel and efficient method for walking the sequence of a genomic deoxyribonucleic acid (DNA) from a known region to an unknown region based on an oligodeoxynucleotide (oligo) cassette-mediated polymerase chain reaction technique. In this method, genomic DNA is digested by a restriction enzyme that generates a sticky 5′-end, followed by ligation of a one-base excess oligo-adaptor using T4 DNA ligase. The adaptor consists of two complementary oligos that form the same sticky end as the digested genomic DNA fragments, except that the 5′-overhang base overlaps the corresponding 3′-end base of the restriction site. This overhanging terminal base prevents ligation between the adaptors, and the appropriate molar ratio of adaptor to genomic DNA enables specific amplification of the target sequence. T4 DNA ligase catalyzes both the ligation of the phosphorylated overhang base of the adaptor to genomic DNA and the excision of the corresponding 3′-terminal base of the genomic DNA. This sequence-specific exonuclease activity of T4 DNA ligase was confirmed by ligation of an alternative adaptor in which the 5′-terminal base was not consistent with the corresponding 3′-terminal base. Using this technique, the 3′- and 5′-flanking sequences of the catalase gene of the ciliate Paramecium bursaria were determined.  相似文献   

7.
Spear MA 《BioTechniques》2000,28(4):660-2, 664, 666 passim
Described here is a selective restriction endonuclease digestion method that eliminates the electrophoresis step that is usually used during the subcloning of new DNA sequences into typical E. coli-based plasmids. The method increases yield while decreasing laboratory resource and time utilization. By using donor and acceptor sequences that contain unique restriction sites found only outside of the intended recombination sequences, the initial digestion products can be directly combined without electrophoresis if the ligation step is followed by a selective digestion using the unique restriction enzymes before transformation. This system is based on the several order of magnitude decrease in transformation efficiency of linearized compared to circular plasmids. As an example, this method was used to obtain recombinants between a 3.6 kb acceptor plasmid and 3.0 kb insert following one ligation reaction after the failure of nine standard reactions using similar amounts of input DNA. It is particularly applicable to situations in which low subcloning efficiencies are expected. The technique can be extended to a large percentage of planned recombinations by using nonidentical compatible cohesive or blunt-ended fragments, or site-directed mutagenesis.  相似文献   

8.
We report the site-specific fluorescent labeling of DNA using Staudinger ligation with high efficiency and high selectivity. An oligonucleotide modified at its 5' end by an azido group was selectively reacted with 5-[(N-(3'-diphenylphosphinyl-4'-methoxycarbonyl)phenylcarbonyl)aminoacetamido]fluorescein (Fam) under aqueous conditions to produce a Fam-labeled oligonucleotide with a high yield (approximately 90%). The fluorescent oligonucleotide was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Because of the relatively high yield of the Staudinger ligation, simple purification of the product by size-exclusion chromatography and desalting is sufficient for the resulting fluorescent oligonucleotide to be used as a primer in a Sanger dideoxy sequencing reaction to produce fluorescent DNA extension fragments, which are analyzed by a fluorescent electrophoresis DNA sequencer. The results indicate that the Staudinger ligation can be used successfully and site-specifically to prepare fluorescent oligonucleotides to produce DNA sequencing products, which are detected with single base resolution in a capillary electrophoresis DNA sequencer using laser-induced fluorescence detection.  相似文献   

9.
Partial digestion of DNA fragments is a standard procedure for subcloning analysis and for generating restriction maps. We have developed a novel method to generate a partial digestion for any DNA fragment that can be amplified by PCR. The method involves the incorporation of 5-methyl-dCTP into the PCR product to protect most of the restriction sites. As a result, complete digestion of the modified PCR products with a 5-methyl-dCTP-sensitive enzyme will produce an array of restriction fragments equivalent to a partial restriction enzyme digestion reaction done on unmethylated PCR products. This method reduces the time and material needed to produce partially-digested DNA fragments by traditional methods. Furthermore, using fluorescein-labeled primers in the reaction, we were able to detect the fluorescein-labeled end fragments resulting from the enzyme digestion using a fluorimager or anti-fluorescein-AP antibody and thus determine the restriction maps.  相似文献   

10.
周翔达  宋晓  怀聪  孙海燕  陈红岩  卢大儒 《遗传》2016,38(2):163-169
传统的DNA重组方法Type Ⅱ型限制酶技术受到片段纯化的限制,无法做到复杂混合体系中DNA片段的特异性连接。为解决这个问题,本研究将耐热连接酶链式反应(Thermostable ligase chain reaction, TLCR)引入DNA片段的连接与捕获。该技术利用耐热型DNA连接酶的特性,在热循环反应中配合针对目的片段末端序列设计的单链寡核苷酸连接模板--Helper,实现目的片段的特异性连接和产物数量的指数性增长。两个质粒构建实验被用于验证TLCR技术的可行性和应用效果。首先利用TLCR技术从一个未经纯化的含有7种不同大小片段的混杂体系中特异性地将一段1.5 kb的片段捕获进载体,随机抽取的克隆样品经检验准确率达到80%,验证TLCR技术在复杂混合体系中特异性连接DNA片段的可行性和准确性。在另一个质粒构建实验中,TLCR技术从λ噬菌体基因组Hind消化物中将两段总长达27 kb的片段按顺序捕获进载体,随机抽取的克隆样品经检验同样达到了80%的准确率。结果表明,TLCR技术能够简化DNA重组实验的操作,并且适用于多片段和大片段的连接,可以为生物学研究提供便利。  相似文献   

11.
Splicing by directed ligation (SDL) is a method of in-phase joining of PCR-generated DNA fragments that is based on a pre-designed combination of class IIS restriction endonuclease recognition and cleavage sites. Since these enzymes cleave outside of their recognition sites, the resulting sticky end can have any desired sequence, and the site itself can be removed and does not appear in the final spliced DNA product. SDL is based on the addition of class IIS recognition sites onto primers used to amplify DNA sequences. Cleavage of the PCR products results in elimination of the recognition site-containing flanking sequences and leaves the DNA fragments crowned with protruding ends. With careful design of the sticky ends, several segments can be ligated together in a predetermined order in a single reaction. SDL requires fewer rounds of amplification than overlap extension methods, and is particularly useful for creating a series of recombinants that differ in one segment.  相似文献   

12.
This article describes a simple but powerful PCR-based protocol for the generation of cohesive ends on linear DNA fragments, permitting the precise engineering of DNA constructs for a variety of applications. These include the introduction of deletion mutations, domain swapping, creating hybrid DNA fusions, or targeted protein engineering. This novel method can also facilitate the cloning of large or complex DNA fragments into a relevant cloning vector independent of the use of internal restriction endonuclease sites. The protocol involves the amplification of the required fragments by polymerase chain reaction through the use of two sets of overlapping desalted oligonucleotide primers. The subsequent mixing, denaturation and re-annealing of these products present correct cohesive terminal ends for ligation. There is no requirement for special vectors, enzymes or bases, suggesting that this protocol provides a unique way of engineering constructs in a rapid and cost-effective way for specific applications, such as precise deletion or swapping of various domains of the epidermal growth factor receptor to determine their role in membrane localization.  相似文献   

13.
DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies—sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and “small fragment accumulation”—for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field. Zhe Chen and Jianbing Wu contributed to this work equally.  相似文献   

14.
We describe a convenient assay for rapid qualitative evaluation of hybridization/ligation fidelity. The approach uses randomized probe strands of DNA and restriction enzyme digestion after amplification of reaction products by the polymerase chain reaction (PCR). We report ligation efficiencies and fidelities of two DNA ligases, T4 DNA ligase and Thermus aquaticus (Taq) DNA ligase, over a range of temperatures.  相似文献   

15.
We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.  相似文献   

16.
A Masny  A Plucienniczak 《BioTechniques》2001,31(4):930-4, 936
A method for generating limited representations of total bacterial DNA, without prior knowledge of the DNA sequence, has been developed. This method consists of three steps: digestion with two restriction enzymes, ligation of two oligonucleotide adapters corresponding to the restriction sites, and selective PCR amplification of the ligation products. The method relies on the use of two restriction enzymes with considerable differences in cleavage frequency of the investigated DNA and the ligation of two different oligonucleotides, each corresponding to one of the two cohesive ends of DNA fragments. Three subsets of DNA fragments are generated during digestion and subsequent ligation: terminated with the same oligonucleotide on both 5' ends of DNA fragments (two subsets) and terminated with two different oligonucleotides. Suppression PCR allows only the third subset of DNA fragments to be amplified exponentially. The method allows bacterial species strain differentiation on the basis of the different DNA band patterns obtained after electrophoresis in polyacrylamide gels stained with ethidium bromide and visualized in UV light.  相似文献   

17.
A new method for specific reamplification of DDRT-PCR products is presented. After transient ligation of the primary DDRT-PCR fragments into a T-vector, the cDNAs of interest were reamplified by hemi-nested PCR and thermally asymmetric cycles. In contrast to the originally described protocol, this method of reamplification is specific, sensitive, reproducibly gives a high yield of DNA and allows direct sequencing of the reamplified product without purification or cloning.  相似文献   

18.
Isolation of deletion and substitution mutants of adenovirus type 5   总被引:57,自引:0,他引:57  
N Jones  T Shenk 《Cell》1978,13(1):181-188
The infectivity of adenovirus type 5 DNA can be increased to about 5 x 103 plaque-forming units per μg DNA if the DNA is isolated as a DNA-protein complex. Utilizing this improved infectivity, a method was developed for the selection of mutants lacking restriction endonuclease cleavage sites. The procedure involves three steps. First, the DNA-protein complex is cleaved with a restriction endonuclease. The Eco RI restriction endonuclease was used here. It cleaves adenovirus type 5 DNA to produce three fragments: fragment A (1–76 map units), fragment C (76–83 map units) and fragment B (10–83 map units). Second, the mixture of fragments is rejoined by incubating with DNA ligase, and, third, the modified DNA is used to infect cells in a DNA plaque assay. Mutants were obtained which lacked the endonuclease cleavage site at 0.83 map units. Such mutant DNAs were selected by this procedure because they were cleaved by the Eco RI endonuclease to produce only two fragments: a normal A fragment and a fused B/C fragment. These two fragments could be rejoined to produce a viable DNA molecule as a result of a bimolecular reaction with one ligation event; this exerted a strong selection for such molecules since a trimolecular reaction (keeping the C fragment in its proper orientation) and two ligation events were required to regenerate a wild-type molecule. The alterations resulting in the loss of the Eco RI endonuclease cleavage site at 0.83 map units include both deletion and substitution mutations. The inserted sequences in the substitution mutations are cellular in origin.  相似文献   

19.
Nonenzymatic ligation of double-stranded DNA has been performed using an alternate-strand binding oligodeoxyribonucleotide template to juxtapose the duplex termini in a triple helical complex. The template associates with the duplex termini by Hoogsteen hydrogen bonding to alternate strands on opposite sides of the ligation site. Intermolecular and intramolecular ligation of linearized plasmid DNA are observed in the reaction, which depends on the template oligodeoxyribonucleotide and a condensing agent, N-cyanoimidazole. Intramolecular ligation products include those in which both strands are covalently closed in a circle. Ligation of the two strands is sequential and occurs at comparable rates for the first and second strands ligating. The covalent linkages formed in the reaction can be cleaved by the restriction endonuclease Stu I, supporting their identification as phosphodiesters.  相似文献   

20.
Here we describe an advanced polymerase chain reaction (PCR) technique, the compatible ends ligation inverse PCR (CELI-PCR) for chromosome walking. In CELI-PCR, several restriction enzymes, which produce compatible cohesive ends, were used to digest target DNA simultaneously or sequentially to produce DNA fragments of suitable size. DNA fragments were then easily circularized and PCR amplification could be carried out efficiently. The previous limitations of inverse PCR were overcome, such as unavailable restriction sites, poor template DNA circularization, and low amplification efficiency. Therefore, successive chromosome walking was performed successfully. Our work, isolating a 11,395-bp fragment from Gossypium hirsutum, was presented as an example to describe how CELI-PCR was carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号