首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholinergic agonists are major stimuli for fluid secretion in parotid acinar cells. Saliva bicarbonate is essential for maintaining oral health. Electrogenic and electroneutral Na(+)-HCO(3)(-) cotransporters (NBCe1 and NBCn1) are abundant in parotid glands. We previously reported that angiotensin regulates NBCe1 by endocytosis in Xenopus oocytes. Here, we studied cholinergic regulation of NBCe1 and NBCn1 membrane trafficking by confocal fluorescent microscopy and surface biotinylation in parotid epithelial cells. NBCe1 and NBCn1 colocalized with E-cadherin monoclonal antibody at the basolateral membrane (BLM) in polarized ParC5 cells. Inhibition of constitutive recycling with the carboxylic ionophore monensin or the calmodulin antagonist W-13 caused NBCe1 to accumulate in early endosomes with a parallel loss from the BLM, suggesting that NBCe1 is constitutively endocytosed. Carbachol and PMA likewise caused redistribution of NBCe1 from BLM to early endosomes. The PKC inhibitor, GF-109203X, blocked this redistribution, indicating a role for PKC. In contrast, BLM NBCn1 was not downregulated in parotid acinar cells treated with constitutive recycling inhibitors, cholinergic stimulators, or PMA. We likewise demonstrate striking differences in regulation of membrane trafficking of NBCe1 vs. NBCn1 in resting and stimulated cells. We speculate that endocytosis of NBCe1, which coincides with the transition to a steady-state phase of stimulated fluid secretion, could be a part of acinar cell adjustment to a continuous secretory response. Stable association of NBCn1 at the membrane may facilitate constitutive uptake of HCO(3)(-) across the BLM, thus supporting HCO(3)(-) luminal secretion and/or maintaining acid-base homeostasis in stimulated cells.  相似文献   

2.
Using pH- and voltage-sensitive microelectrodes, as well as the two-electrode voltage-clamp and macropatch techniques, we compared the functional properties of the three NBCe1 variants (NBCe1-A, -B, and -C) with different amino and/or carboxy termini expressed in Xenopus laevis oocytes. Oocytes expressing rat brain NBCe1-B and exposed to a CO(2)/HCO(3)(-) solution displayed all the hallmarks of an electrogenic Na(+)/HCO(3)(-) cotransporter: (a) a DIDS-sensitive pH(i) recovery following the initial CO(2)-induced acidification, (b) an instantaneous hyperpolarization, and (c) an instantaneous Na(+)-dependent outward current under voltage-clamp conditions (-60 mV). All three variants had similar external HCO(3)(-) dependencies (apparent K(M) of 4-6 mM) and external Na(+) dependencies (apparent K(M) of 21-36 mM), as well as similar voltage dependencies. However, voltage-clamped oocytes (-60 mV) expressing NBCe1-A exhibited peak HCO(3)(-)-stimulated NBC currents that were 4.3-fold larger than the currents seen in oocytes expressing the most dissimilar C variant. Larger NBCe1-A currents were also observed in current-voltage relationships. Plasma membrane expression levels as assessed by single oocyte chemiluminescence with hemagglutinin-tagged NBCs were similar for the three variants. In whole-cell experiments (V(m) = -60 mV), removing the unique amino terminus of NBCe1-A reduced the mean HCO(3)(-)-induced NBC current 55%, whereas removing the different amino terminus of NBCe1-C increased the mean NBC current 2.7-fold. A similar pattern was observed in macropatch experiments. Thus, the unique amino terminus of NBCe1-A stimulates transporter activity, whereas the different amino terminus of the B and C variants inhibits activity. One or more cytosolic factors may also contribute to NBCe1 activity based on discrepancies between macropatch and whole-cell currents. While the amino termini influence transporter function, the carboxy termini influence plasma membrane expression. Removing the entire cytosolic carboxy terminus of NBCe1-C, or the different carboxy terminus of the A/B variants, causes a loss of NBC activity due to low expression at the plasma membrane.  相似文献   

3.
Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO(3) precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO(3)(-) secretion and is critical for mefugu acclimation to seawater. We assayed fugu-NBCe1 (fNBCe1) activity in the Xenopus oocyte expression system. Similar to NBCe1 found in other species, fNBCe1 is an electrogenic Na(+)/HCO(3)(-) cotransporter and sensitive to the stilbene inhibitor DIDS. However, our experiments revealed several unique and distinguishable fNBCe1 transport characteristics not found in mammalian or other teleost NBCe1-orthologs: electrogenic Li(+)/nHCO(3)(-) cotransport; HCO(3)(-) independent, DIDS-insensitive transport; and increased basal intracellular Na(+) accumulation. fNBCe1 is a voltage-dependent Na(+)/nHCO(3)(-) cotransporter that rectifies, independently from the extracellular Na(+) or HCO(3)(-) concentration, around -60 mV. Na(+) removal (0Na(+) prepulse) is necessary to produce the true HCO(3)(-)-elicited current. HCO(3)(-) addition results in huge outward currents with quick current decay. Kinetic analysis of HCO(3)(-) currents reveals that fNBCe1 has a much higher transport capacity (higher maximum current) and lower affinity (higher K(m)) than human kidney NBCe1 (hkNBCe1) does in the physiological range (membrane potential = -80 mV; [HCO(3)(-)] = 10 mM). In this state, fNBCe1 is in favor of operating as transepithelial HCO(3)(-) secretion, opposite of hkNBCe1, from blood to the luminal side. Thus, fugu-NBCe1 represents the first ortholog-based tool to study amino acid substitutions in NBCe1 and how those change ion and voltage dependence.  相似文献   

4.
Na/HCO(3) cotransporters (NBCs) are important regulators of intracellular pH (pH(i) in a variety of organ systems where acid-base status is critical for tissue function. To characterize the pharmacology of NBCs in more detail, we used the two-electrode voltage-clamp technique to examine the effect of previously identified inhibitors of anion exchanger 1 (AE1) on the activity of rat NBCe1-A expressed in Xenopus laevis oocytes. NBC-expressing oocytes voltage-clamped at -60 mV and exposed to a 5% CO(2)/33 mM HCO(3)(-) solution displayed NBC-mediated outward currents that were inhibited by either niflumic acid or one of the two bis-oxonol dyes diBA(3)C4 and diBA(5)C4. NBCe1-A was less sensitive to niflumic acid (apparent K(i) of 100 microM) than 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, apparent K(i) of 36 microM) but more sensitive to the diBAC dyes (apparent K(i) of approximately 10 microM). Based on current-voltage relationships, the diBAC dyes inhibited HCO(3)(-) -induced NBCe1-mediated inward currents more so than outward currents. NBCe1 sensitivity to the dyes was (1) lower in the presence of 40 microM DIDS, (2) unaffected by changes in external HCO(3)(-) concentration and (3) only modestly higher at an external Na(+) concentration of 5, but not 15 or 33, mM. Therefore, the diBAC dyes compete with DIDS but not appreciably with Na(+) or HCO(3)(-) for binding. The mechanism of diBAC inhibition of NBCe1 appears similar to that previously reported for AE1.  相似文献   

5.
NBCe1-B, a major splice variant of the electrogenic Na+--HCO3- cotransporter (NBCe1) fulfills basic cellular functions including regulation of intracellular pH and epithelial HCO3- secretion. However, its cellular regulatory mechanism still remains elusive. Here, we provide evidence for the first time that NBCe1-B activity can be controlled by intracellular Mg2+ (Mg2+(i)), the physiologically most abundant intracellular divalent cation. Using the whole-cell patch-clamp technique, we found that recombinant NBCe1-B currents expressed in HEK293 and NIH3T3 cells were inhibited voltage-independently by Mg2+(i) in a concentration-dependent manner (K(i) approximately 0.01 mM). The Mg2+(i) inhibition was partially relieved by truncation of the NBCe1-B specific N-terminal region (K(i) approximately 0.3 mM), and was also observed for native electrogenic Na+--HCO3- cotransporter current in bovine parotid acinar cells that endogenously express NBCe1-B (K(i) approximately 1 mM). These results suggest that Mg2+ may be a cytosolic factor that limits intrinsic cotransport activity of NBCe1-B in mammalian cells.  相似文献   

6.
The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.  相似文献   

7.
The electrogenic sodium bicarbonate cotransporter NBCe1-A mediates the basolateral absorption of sodium and bicarbonate in the proximal tubule. In this study the oligomeric state and minimal functional unit of NBCe1-A were investigated. Wild-type (wt) NBCe1-A isolated from mouse kidney or heterologously expressed in HEK293 cells was predominantly in a dimeric state as was shown using fluorescence energy transfer, pulldown, immunoprecipitation, cross-linking experiments, and nondenaturing perfluorooctanoate-PAGE. NBCe1-A monomers were found to be covalently linked by S-S bonds. When each of the 15 native cysteine residues were individually removed on a wt-NBCe1-A backbone, dimerization of the cotransporter was not affected. In experiments involving multiple native cysteine residue removal, both Cys(630) and Cys(642) in extracellular loop 3 were shown to mediate S-S bond formation between NBCe1-A monomers. When native NBCe1-A cysteine residues were individually reintroduced into a cysteineless NBCe1-A mutant backbone, the finding that a Cys(992) construct that lacked S-S bonds functioned normally indicated that stable covalent linkage of NBCe1-A monomers was not a necessary requirement for functional activity of the cotransporter. Studies using concatameric constructs of wt-NBCe1-A, whose activity is resistant to methanesulfonate reagents, and an NBCe1-A(T442C) mutant, whose activity is completely inhibited by methanesulfonate reagents, confirmed that NBCe1-A monomers are functional. Our results demonstrate that wt-NBCe1-A is predominantly a homodimer, dependent on S-S bond formation that is composed of functionally active monomers.  相似文献   

8.
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.  相似文献   

9.
NBCe1-A is an integral membrane protein that cotransports Na+ and HCO3 - ions across the basolateral membrane of the proximal tubule. It is essential for maintaining a homeostatic balance of cellular and blood pH. In X-ray diffraction studies, we reported that the cytoplasmic, N-terminal domain of NBCe1-A (NtNBCe1-A) is a dimer. Here, biophysical measurements show that the dimer is in a concentration-dependent dynamic equilibrium among three additional states in solution that are characterized by its hydrodynamic properties, molar masses, emission spectra, binding properties, and stabilities as a function of pH. Under physiological conditions, dimers are in equilibrium with monomers that are pronounced at low concentration and clusters of molecular masses up to 3-5 times that of a dimer that are pronounced at high concentration. The equilibrium can be influenced so that individual dimers predominate in a taut conformation by lowering the pH. Conversely, dimers begin to relax and disassociate into an increasing population of monomers by elevating the pH. A mechanistic diagram for the inter-conversion of these states is given. The self-associations are further supported by surface plasmon resonance (SPR-Biacore) techniques that illustrate NtNBCe1-A molecules transiently bind with one another. Bicarbonate and bicarbonate-analog bisulfite appear to enhance dimerization and induce a small amount of tetramers. A model is proposed, where the Nt responds to pH or bicarbonate fluctuations inside the cell and plays a role in self-association of entire NBCe1-A molecules in the membrane.  相似文献   

10.
11.
Na(+)/HCO(3)(-) cotransporter (NBC)e1 catalyze the electrogenic movement of 1 Na(+):2 HCO(3)(-) into cardiomyocytes cytosol. NBC proteins associate with carbonic anhydrases (CA), CAII, and CAIV, forming a HCO(3)(-) transport metabolon. Herein, we examined the physical/functional interaction of NBCe1 and transmembrane CAIX in cardiac muscle. NBCe1 and CAIX physical association was examined by coimmunoprecipitation, using rat ventricular lysates. NBCe1 coimmunoprecipitated with anti-CAIX antibody, indicating NBCe1 and CAIX interaction in the myocardium. Glutathione-S-transferase (GST) pull-down assays with predicted extracellular loops (EC) of NBCe1 revealed that NBCe1-EC4 mediated interaction with CAIX. Functional NBCe1/CAIX interaction was examined using fluorescence measurements of BCECF in rat cardiomyocytes to monitor cytosolic pH. NBCe1 transport activity was evaluated after membrane depolarization with high extracellular K(+) in the presence or absence of the CA inhibitors, benzolamide (BZ; 100 μM) or 6-ethoxyzolamide (ETZ; 100 μM) (*P < 0.05). This depolarization protocol produced an intracellular pH (pH(i)) increase of 0.17 ± 0.01 (n = 11), which was inhibited by BZ (0.11 ± 0.02; n = 7) or ETZ (0.06 ± 0.01; n = 6). NBCe1 activity was also measured by changes of pH(i) in NBCe1-transfected human embryonic kidney 293 cells subjected to acid loads. Cotransfection of CAIX with NBCe1 increased the rate of pH(i) recovery (in mM/min) by about fourfold (12.1 ± 0.8; n = 9) compared with cells expressing NBCe1 alone (3.1 ± 0.5; n = 7), which was inhibited by BZ (7.5 ± 0.3; n = 9). We demonstrated that CAIX forms a complex with EC4 of NBCe1, which activates NBCe1-mediated HCO(3)(-) influx in the myocardium. CAIX and NBCe1 have been linked to tumorigenesis and cardiac cell growth, respectively. Thus inhibition of CA activity might be useful to prevent activation of NBCe1 under these pathological conditions.  相似文献   

12.
Others report that carbonic anhydrase II (CA II) binds to the C termini of the anion exchanger AE1 and the electrogenic Na/HCO3 cotransporter NBCe1-A, enhancing transport. After injecting oocytes with NBCe1-A cRNA (Day 0), we measured NBC current (I(NBC)) by two-electrode voltage clamp (Day 3), injected CA II protein + Tris or just Tris (Day 3), measured I(NBC) or the initial rate at which the intracellular pH fell (dpH(i)/dt) upon applying 5% CO2 (Day 4), exposed oocytes to the permeant CA inhibitor ethoxzolamide (EZA), and measured I(NBC) or dpH(i)/dt (Day 4). Because dpH(i)/dt was greater in CA II than Tris oocytes, and EZA eliminated the difference, injected CA II was functional. I(NBC) slope conductance was unaffected by injecting CA II. Moreover, EZA had identical effects in CA II versus Tris oocytes. Thus, injected CA II does not enhance NBC activity. In a second protocol, we made a fusion protein with enhanced green fluorescent protein (EGFP) at the 5' end of NBCe1-A and CA II at the 3' end (EGFP-e1-CAII). We measured I(NBC) or dpH(i)/dt (days 3-4), exposed oocytes to EZA, and measured I(NBC) or dpH(i)/dt (Day 3-4). dpH(i)/dt was greater in oocytes expressing EGFP-e1-CA II versus EGFP-e1, and EZA eliminated the difference. Thus, fused CA II was functional. Slope conductances of EGFP-e1-CAII versus EGFP-e1 oocytes were indistinguishable, and EZA had no effect. Thus, even when fused to NBCe1-A, CA II does not enhance NBCe1-A activity.  相似文献   

13.
The electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1-B can be regulated by intracellular Mg(2+) (Mg(2+)(i)). We previously reported that under whole-cell voltage-clamp conditions, bovine NBCe1-B (bNBCe1-B) currents heterologously expressed in mammalian cells are strongly inhibited by Mg(2+)(i), and the inhibition is likely mediated by electrostatic interaction and relieved by truncation of the cytosolic NBCe1-B specific N-terminal region. Intriguingly, NBCe1-B-like currents natively expressed in bovine parotid acinar (BPA) cells are much less sensitive to Mg(2+)(i) inhibition than bNBCe1-B currents. Here, we hypothesized that this apparent discrepancy may involve IRBIT, a previously identified NBCe1-B-interacting protein. RT-PCR, Western blot and immunofluorescence confocal microscopy revealed that IRBIT was not only expressed in the cytosol, but also colocalized with NBCe1-B in the region of plasma membranes of BPA cells. IRBIT was coimmunoprecipitated with NBCe1-B by an anti-NBCe1 antibody in bovine parotid cell lysate. Whole-cell patch-clamp experiments showed that coexpression of IRBIT lowered the Mg(2+)(i) sensitivity of bNBCe1-B currents stably expressed in HEK293 cells. Collectively, these results suggest that IRBIT may reduce the apparent affinity for Mg(2+)(i) in inhibition of NBCe1-B activity in mammalian cells.  相似文献   

14.
The human electrogenic renal Na-HCO3 cotransporter (NBCe1-A; SLC4A4) is localized to the basolateral membrane of proximal tubule cells. Mutations in the SLC4A4 gene cause an autosomal recessive proximal renal tubular acidosis (pRTA), a disease characterized by impaired ability of the proximal tubule to reabsorb HCO3 from the glomerular filtrate. Other symptoms can include mental retardation and ocular abnormalities. Recently, a novel homozygous missense mutant (R881C) of NBCe1-A was reported from a patient with a severe pRTA phenotype. The mutant protein was described as having a lower than normal activity when expressed in Xenopus oocytes, despite having normal Na+ affinity. However, without trafficking data, it is impossible to determine the molecular basis for the phenotype. In the present study, we expressed wild-type NBCe1-A (WT) and mutant NBCe1-A (R881C), tagged at the COOH terminus with enhanced green fluorescent protein (EGFP). This approach permitted semiquantification of surface expression in individual Xenopus oocytes before assay by two-electrode voltage clamp or measurements of intracellular pH. These data show that the mutation reduces the surface expression rather than the activity of the individual protein molecules. Confocal microscopy on polarized mammalian epithelial kidney cells [Madin-Darby canine kidney (MDCK)I] expressing nontagged WT or R881C demonstrates that WT is expressed at the basolateral membrane of these cells, whereas R881C is retained in the endoplasmic reticulum. In summary, the pathophysiology of pRTA caused by the R881C mutation is likely due to a deficit of NBCe1-A at the proximal tubule basolateral membrane, rather than a defect in the transport activity of individual molecules. bicarbonate; intracellular pH; acidbase; SLC4A4; Na+-HCO3 cotransporter 1  相似文献   

15.
16.
The renal cortical collecting duct (CCD) plays an important role in systemic acid-base homeostasis. The beta-intercalated cells secrete most of the HCO(-)(3), which is mediated by a luminal, DIDS-insensitive, Cl(-)/HCO(-)(3) exchange. The identity of the luminal exchanger is a matter of debate. Anion exchanger isoform 4 (AE4) cloned from the rabbit kidney was proposed to perform this function (Tsuganezawa H et al. J Biol Chem 276: 8180-8189, 2001). By contrast, it was proposed (Royaux IE et al. Proc Natl Acad Sci USA 98: 4221-4226, 2001) that pendrin accomplishes this function in the mouse CCD. In the present work, we cloned, localized, and characterized the function of the rat AE4. Northern blot and RT-PCR showed high levels of AE4 mRNA in the CCD. Expression in HEK-293 and LLC-PK(1) cells showed that AE4 is targeted to the plasma membrane. Measurement of intracellular pH (pH(i)) revealed that AE4 indeed functions as a Cl(-)/HCO(-)(3) exchanger. However, AE4 activity was inhibited by DIDS. Immunolocalization revealed species-specific expression of AE4. In the rat and mouse CCD and the mouse SMG duct AE4 was in the basolateral membrane. By contrast, in the rabbit, AE4 was in the luminal and lateral membranes. In both, the rat and rabbit CCD AE4 was in alpha-intercalated cells. Importantly, localization of AE4 was not affected by the systemic acid-base status of the rats. Therefore, we conclude that expression and possibly function of AE4 is species specific. In the rat and mouse AE4 functions as a Cl(-)/HCO(-)(3) exchanger in the basolateral membrane of alpha-intercalated cells and may participate in HCO(-)(3) absorption. In the rabbit AE4 may contribute to HCO(-)(3) secretion.  相似文献   

17.
Although AHCYL2 (long-IRBIT) is highly homologous to IRBIT, which regulates ion-transporting proteins including the electrogenic Na+-HCO3 cotransporter NBCe1-B, its functions are poorly understood. Here, we found that AHCYL2 interacts with NBCe1-B in bovine parotid acinar cells using yeast two-hybrid, immunofluorescence confocal microscopy and co-immunoprecipitation analyses. Whole-cell patch-clamp experiments revealed that co-expression of AHCYL2 reduces the apparent affinity for intracellular Mg2+ in inhibition of NBCe1-B currents specifically in a HCO3-deficient cellular condition. Our data unveil AHCYL2 as a potential regulator of NBCe1-B in mammalian cells. We propose that cytosolic ionic condition appropriate for AHCYL2 to function might be different from IRBIT.  相似文献   

18.
Marine teleost fish precipitate divalent cations as carbonate deposits in the intestine to minimize the potential for excessive Ca2+ entry and to stimulate water absorption by reducing luminal osmotic pressure. This carbonate deposit formation, therefore, helps maintain osmoregulation in the seawater (SW) environment and requires controlled secretion of HCO3(-) to match the amount of Ca2+ entering the intestinal lumen. Despite its physiological importance, the process of HCO3(-) secretion has not been characterized at the molecular level. We analyzed the expression of two families of HCO3(-) transporters, Slc4 and Slc26, in fresh-water- and SW-acclimated euryhaline pufferfish, mefugu (Takifugu obscurus), and obtained the following candidate clones: NBCe1 (an Na+-HCO3(-) cotransporter) and Slc26a6A and Slc26a6B (putative Cl(-)/HCO3(-) exchangers). Heterologous expression in Xenopus oocytes showed that Slc26a6A and Slc26a6B have potent HCO3(-)-transporting activity as electrogenic Cl(-)/nHCO3(-) exchangers, whereas mefugu NBCe1 functions as an electrogenic Na+-nHCO3(-) cotransporter. Expression of NBCe1 and Slc26a6A was highly induced in the intestine in SW and expression of Slc26a6B was high in the intestine in SW and fresh water, suggesting their involvement in HCO3(-) secretion and carbonate precipitate formation. Immunohistochemistry showed staining on the apical (Slc26a6A and Slc26a6B) and basolateral (NBCe1) membranes of the intestinal epithelial cells in SW. We therefore propose a mechanism for HCO3(-) transport across the intestinal epithelial cells of marine fish that includes basolateral HCO3(-) uptake (NBCe1) and apical HCO3(-) secretion (Slc26a6A and Slc26a6B).  相似文献   

19.
In humans and terrestrial vertebrates, the kidney controls systemic pH in part by absorbing filtered bicarbonate in the proximal tubule via an electrogenic Na+/HCO3- cotransporter (NBCe1/SLC4A4). Recently, human genetics revealed that NBCe1 is the major renal contributor to this process. Homozygous point mutations in NBCe1 cause proximal renal tubular acidosis (pRTA), glaucoma, and cataracts (Igarashi, T., Inatomi, J., Sekine, T., Cha, S. H., Kanai, Y., Kunimi, M., Tsukamoto, K., Satoh, H., Shimadzu, M., Tozawa, F., Mori, T., Shiobara, M., Seki, G., and Endou, H. (1999) Nat. Genet. 23, 264-266). We have identified and functionally characterized a novel, homozygous, missense mutation (S427L) in NBCe1, also resulting in pRTA and similar eye defects without mental retardation. To understand the pathophysiology of the syndrome, we expressed wild-type (WT) NBCe1 and S427L-NBCe1 in Xenopus oocytes. Function was evaluated by measuring intracellular pH (HCO3- transport) and membrane currents using microelectrodes. HCO3- -elicited currents for S427L were approximately 10% of WT NBCe1, and CO2-induced acidification was approximately 4-fold faster. Na+ -dependent HCO3- transport (currents and acidification) was also approximately 10% of WT. Current-voltage (I-V) analysis reveals that S427L has no reversal potential in HCO3-, indicating that under physiological ion gradient conditions, NaHCO3 could not move out of cells as is needed for renal HCO3- absorption and ocular pressure homeostasis. I-V analysis without Na+ further shows that the S427L-mediated NaHCO3 efflux mode is depressed or absent. These experiments reveal that voltage- and Na+ -dependent transport by S427L-hkNBCe1 is unfavorably altered, thereby causing both insufficient HCO3- absorption by the kidney (proximal RTA) and inappropriate anterior chamber fluid transport (glaucoma).  相似文献   

20.
The mammalian esophagus has the capacity to secrete a HCO(3)(-) and mucin-rich fluid in the esophageal lumen. These secretions originate from the submucosal glands (SMG) and can contribute to esophageal protection against refluxed gastric acid. The cellular mechanisms by which glandular cells achieve these secretions are largely unknown. To study this phenomenon, we used the pH-stat technique to measure luminal alkali secretion in an isolated, perfused pig esophagus preparation. Immunohistochemistry was used to localize receptors and transporters involved in HCO(3)(-) transport. The SMG-bearing esophagus was found to have significant basal alkali secretion, predominantly HCO(3)(-), which averaged 0.21 +/- 0.04 microeq.h(-1).cm(-2). This basal secretion was doubled when stimulated by carbachol but abolished by HCO(3)(-) or Cl(-) removal. Basal- and carbachol-stimulated secretions were also blocked by serosal application of atropine, pirenzipine, DIDS, methazolamide, and ethoxzolamide. The membrane-impermeable carbonic anhydrase inhibitor benzolamide, applied to the serosal bath, partially inhibited basal HCO(3)(-) secretion and blocked the stimulation by carbachol. Immunohistochemistry using antibodies to M(1) cholinergic receptor or carbonic anhydrase-II enzyme showed intense labeling of duct cells and serous demilunes but no labeling of mucous cells. Labeling with an antibody to Na(+)-(HCO(3)(-))(n) (rat kidney NBC) was positive in ducts and serous cells, whereas labeling for Cl(-)/HCO(3)(-) exchanger (AE2) was positive in duct cells but less pronounced in serous cells. These data indicate that duct cells and serous demilunes of SMG play a role in HCO(3)(-) secretion, a process that involves M(1) cholinergic receptor stimulation. HCO(3)(-) transport in these cells is dependent on cytosolic and serosal membrane-bound carbonic anhydrase. HCO(3)(-) secretion is also dependent on serosal Cl(-) and is mediated by DIDS-sensitive transporters, possibly NBC and AE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号