首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U Boege  D S Ko    D G Scraba 《Journal of virology》1986,57(1):275-284
Mengovirus 14S subviral protein particles generated in infected L cells and in a cell-free translation system primed with mengovirus RNA were purified by sucrose gradient centrifugation and immunoaffinity chromatography. The preparations from both sources contained essentially pure proteins epsilon, alpha, and gamma, as was demonstrated in terms of virus-specific proteins (by autoradiography) and total protein content (by silver staining of sodium dodecyl sulfate-polyacrylamide electrophoresis gels). These purified proteins sedimented as discrete particles at the 14S position when recentrifuged in sucrose gradients. Although their assembly properties have not yet been studied in detail, preliminary results indicate that during incubation with virion RNA the 14S particles purified from infected cells can form a structure cosedimenting with mature mengovirus.  相似文献   

2.
The stabilities and translation of Ehrlich ascites tumor cell poly(A)-containing mRNA and mengovirus RNA in fractionated cell-free protein synthesizing systems from uninfected and mengovirus-infected Ehrlich ascites tumor cells were studied. During incubation of the systems about 20% of the input RNA is reduced in size and associated with ribosomes engaged in polypeptide synthesis; the remainder is rapidly degraded by RNases. At the end of active translation, both mRNA and nascent proteins are bound to polysomes which are of the same size as those formed during active protein synthesis. The kinetics of protein synthesis closely follow those of RNA hydrolysis. The stabilities of mengovirus RNA and poly(A)-containing mRNA from Ehrlich ascites tumor cells are the same in both systems.  相似文献   

3.
The RNA genomes from the cardioviruses, hepatoviruses, and aphthoviruses encode two to five tandem pseudoknots within their 5' untranslated regions. These pseudoknots lie adjacent to a pyrimidine-rich sequence, which in cardio- and aphthoviruses takes the form of a homopolymeric poly(C) tract. Seven deletion mutations within mengovirus pseudoknots PK(B) and PK(C) were created and characterized. tested in tissue culture, mengovirus genomes with alterations in PK(C) were viable but had small plaque phenotypes. Larger plaque revertants were isolated and partially characterized, and each proved to be a second-site pseudorevertant with (unmapped) changes elsewhere in the genome. The infectious PK(C) mutant viruses were highly lethal to mice, and deletions in this motif did not affect mengovirus virulence in the same manner as deletions in the adjacent poly(C) tract. In contrast, deletions in PK(B), or deletions which spanned PK(B) + PK(C), produced nonviable genomes. Cell-free translations directed by any of the altered PK sequences gave normal polyprotein amounts relative to wild-type mengovirus. But viral RNA accumulation during HeLa cell infection was dramatically impaired, even with the least disruptive of the PK(C) changes, suggesting the pseudoknots play an essential though undefined role in RNA synthesis and moreover that an intact PK(B) structure is critical to this function.  相似文献   

4.
Effect of Canavanine on Murine Retrovirus Polypeptide Formation   总被引:1,自引:1,他引:0       下载免费PDF全文
Canavanine is an arginine analog which is widely used to inhibit proteolytic processing of viral polyproteins. Certain results obtained with canavanine have suggested that it may have other effects. Therefore, we examined the effects of canavanine on the cell-free synthesis of murine retrovirus proteins. It was found that the electrophoretic mobility of the major gag-related cell-free product of both Rauscher murine leukemia virus (R-MuLV) and Moloney murine sarcoma virus 124 (Mo-MuSV-124) RNA was dependent on the concentration of canavanine used during translation. As the canavanine concentration was increased up to 4 mM, the apparent size of the major gag-related polypeptide also increased from 65,000 (R-MuLV RNA) or 63,000 (Mo-MuSV-124 RNA) to approximately 80,000 daltons. Additional increases in the canavanine concentration up to 12 mM did not increase the size of the gag gene product beyond 80,000 daltons. This change in electrophoretic mobility appeared to be due to a substitution of canavanine for arginine residues in the polypeptides, not to a change in their actual size. If amber suppressor tRNA and canavanine were used together during translation of Mo-MuSV-124 RNA and Mo-MuLV RNA, the results were also in agreement with this proposal. Translation experiments done with ovalbumin mRNA and mengovirus 35S RNA indicated that canavanine incorporation caused a shift in the electrophoretic mobility of ovalbumin from 43,000 to 45,000 daltons and caused the appearance of two slightly larger polypeptides in the 155,000- and 115,000- dalton regions of the mengovirus RNA cell-free product.  相似文献   

5.
Binding of ribosomes to the 32P-labeled genomic RNA of mengovirus was studied in lysates of mouse L929 and Krebs ascites cells under conditions for initiation of translation. Upon total digestion with RNase T1, the 32P-labeled RNA protected in either 40S or 80S initiation complexes yielded four unique, large oligonucleotides. Each of these oligonucleotides occurred once in the viral RNA molecule. The same four oligonucleotides were recovered from 80S initiation complexes formed in lysates in which unlabeled mengovirus RNA had been translated extensively, indicating that recognition by ribosomes was not modulated detectably by a viral translation product. The recognition of intact, 32P-labeled mengovirus RNA by eucaryotic initiation factor 2 (eIF-2) was examined by direct complex formation. Fingerprint analysis of the RNA protected by eIF-2 against RNase T1 digestion yielded three T1 oligonucleotides that were identical to three of the four oligonucleotides protected in either 40S or 80S initiation complexes. A physical map of the large T1 oligonucleotides of the mengovirus RNA molecule was constructed, and the four protected oligonucleotides were found to map internally, within the region between the polycytidylate tract and the 3' end. For either ribosomes or eIF-2, the protected oligonucleotides could not be arranged in a continuous sequence, suggesting that they constitute at least two widely separated domains. These results show that ribosomes recognize and blind to more than a single sequence in mengovirus RNA, located internally in regions that are far removed from the 5' end of the molecule. eIF-2 itself binds with high specificity to mengovirus RNA, recognizing apparently three of the four sequences recognized by ribosomes.  相似文献   

6.
Plagemann, Peter G. W. (Western Reserve University, Cleveland, Ohio), and H. Earle Swim. Replication of mengovirus. I. Effect on synthesis of macromolecules by host cell. J. Bacteriol. 91:2317-2326. 1966.-The replication of mengovirus was studied in two strains of Novikoff (rat) hepatoma cells propagated in vitro. The replicative cycle in both strains required 6.5 to 7 hr. Infection resulted in a marked depression of ribonucleic acid (RNA) and protein synthesis by strain N1S1-63. Inhibition of RNA synthesis was reflected by a decrease in the deoxyribonucleic acid (DNA)-dependent RNA polymerase activity of isolated nuclei. Mengovirus had no effect on either protein or RNA synthesis or on the DNA-dependent RNA polymerase activity of a second strain, N1S1-67. The time course of viral-induced synthesis of RNA by cells was studied in cells treated with actinomycin D. It was first detectable between 2.5 and 3 hr after infection and continued until 6.5 to 7 hr. The formation of mature virus was estimated biochemically by measuring the amount of RNA synthesized as a result of viral infection which was resistant to degradation by ribonuclease in the presence of deoxycholate. Approximately 70% of the deoxycholate-ribonuclease-resistant RNA was located in mature virus, and the remainder was double-stranded. The formation of mature virus began about 45 min after viral-directed (actinomycin-resistant) synthesis of RNA was detectable in the cell, and only about 18 to 20% of the total RNA synthesized was incorporated into virus. Release of virus from cells began about 1 hr after maturation was first detectable. Release of virus from cells was accompanied by a loss of a large proportion of their cytoplasmic RNA and protein.  相似文献   

7.
The addition of low levels (40 ng/ml) of the synthetic double-stranded polyribonucleotide poly I:C to lysates of interferon-treated L-cells resulted in a strong inhibition (70 to 75%) of the in vitro translation of mengovirus RNA. Under these conditions, the rates of incorporation of [35S]methionine or formyl-[35S]methionine were depressed to a comparable extent. The sequences of mengovirus RNA recognized by ribosomes of interferon-treated cells at initiation of translation were compared with those present in initiation complexes formed by ribosomes of untreated controls. Fingerprint analysis revealed that the same sequences of mengovirus RNA were protected against nuclease attack by the 80S and the 40S initiation complexes formed in vitro in lysates of control or interferon-treated L-cells. Mengovirus RNA-coded proteins were labeled at their N-terminal end with formyl-[35S]methionine and digested to completion with trypsin. The resulting fragments were separated by high-voltage paper electrophoresis. Two different formyl-[35S]methionine-labeled N termini were resolved. Further analyses supported the notion that the two radioactive peaks originated in the initiation of translation at two different sites. This pattern did not change when mengovirus RNA was translated in lysates of interferon-treated cells.  相似文献   

8.
A new approach for the determination of the bilayer location of Trp residues in proteins has been applied to the study of the membrane topology of the channel-forming bacteriocin, colicin E1. This method, red-edge excitation shift (REES) analysis, was initially applied to the study of 12 single Trp-containing channel peptides of colicin E1 in the soluble state in aqueous medium. Notably, REES was observed for most of the channel peptides in aqueous solution upon low pH activation. The extent of REES was subsequently characterized using a model membrane system composed of the tripeptide, Lys-Trp-Lys, bound to dimyristoyl-sn-glycerol-3-phosphatidylserine liposomes. Subsequently, data accrued from the model peptide-lipid system was used to interpret information obtained on the channel peptides when bound to dioleoyl-sn-glycerol-3-phosphatidylcholine/dioleoyl-sn-glycerol-3-phosphatidylglycerol membrane vesicles. The single Trp mutant peptides were divided into three categories based on the change in the REES values observed for the Trp residues when the peptides were bound to liposomes as compared to the REES values measured for the soluble peptides. F-404W, F-413W, F-443W, F-484W, and W-495 peptides exhibited small and/or insignificant REES changes (ΔREES) whereas W-424, F-431W, and Y-507W channel peptides possessed modest REES changes (3 nm≤ΔREES≤7 nm). In contrast, wild-type, Y-367W, W-460, Y-478W, and I-499W channel peptides showed large ΔREES values upon membrane binding (7 nm<ΔREES≤12 nm). The REES data for the membrane-bound structure of the colicin E1 channel peptide proved consistent with previous data for the topology of the closed channel state, which lends further credence to the currently proposed channel model. In conclusion, the REES method provides another source of topological data for assignment of the bilayer location for Trp residues within membrane-associated proteins; however, it also requires careful interpretation of spectral data in combination with structural information on the proteins being investigated.  相似文献   

9.
The p19 protein (p19) encoded from Tombusvirus is involved in various activities such as pathogenicity and virus transport. Recent studies have found that p19 is a plant suppressor of RNA silencing, which binds to short interfering RNAs (siRNAs) with high affinity. We use molecular dynamics (MD) simulations of the wild-type and mutant p19 protein (W39 and W42G) binding with a 21-nt siRNA duplex to study the p19-siRNA recognition mechanism and mutation effects. Our simulations with standard MD and steered molecular dynamics have shown that the double mutant structure is indeed much less stable than the wild-type, consistent with the recent experimental findings. Comprehensive structural analysis also shows that the W39/42G mutations first induce the loss of stacking interactions between p19 and siRNA, Trp42-Cyt1 (Cyt1 from the 5′ to 3′ strand) and Trp39-Gua′19 (Gua19 from the 3′ to 5′ strand), and then breaks the hydrophobic core formed by W39-W42 with nucleotide basepairs in the wild-type. The steered molecular dynamics simulations also show that the mutant p19 complex is “decompounded” very fast under a constant separation force, whereas the wild-type remains largely intact under the same steering force. Moreover, we have used the free energy perturbation to predict a binding affinity loss of 6.98 ± 0.95 kcal/mol for the single mutation W39G, and 12.8 ± 1.0 kcal/mol loss for the double mutation W39/42G, with the van der Waals interactions dominating the contribution (∼90%). These results indicate that the W39/42G mutations essentially destroy the important p19-siRNA recognition by breaking the strong stacking interaction between Cyt1 and Gua′19 with end-capping tryptophans. These large scale simulations might provide new insights to the interactions and co-evolution relationship between RNA virus proteins and their hosts.  相似文献   

10.
Twenty-four temperature-sensitive mutants of mengovirus were characterized physiologically with respect to phenotype. The mutants were separated into four classes on the basis of viral RNA synthesis. L-67-S cells infected with five of the mutants synthesized little viral RNA at 39.5 C. These mutants are designated RNA-. One mutant is designated RNA* since its RNA synthesis is altered at both 39.5 and 31.5 C. The other mutants were divided into two groups, RNA plus or minus (25 TO 49% of wild-type RNA synthesis) and RNA plus (50 to 100% of wild-type RNA synthesis). The time of expression of the mutation in the RNA- mutants was estimated from the results of reciprocal temperature-shift experiments. The mutatation in ts12 appears to be expressed at the time RNA synthesis normally begins. The defect in three of the mutants was expressed 1 to 2 h before RNA synthesis is normally detectable. Protein synthesis is required before RNA synthesis begins when the cells are shifted from 39.5 to 31.5 C. The RNA polymerase synthesized by cells infected with these RNA- mutants at 31.5 C was stable and fully active when assayed at 39.5 C in vitro. The sedimentation profiles of the viral RNA synthesized by cells infected with RNA plus and RNA plus or minus mutants are similar to wild-type profiles with the exception of ts148. Cells infected with this RNA plus or minus mutant synthesize RNA that sediments in a sucrose gradient like replicative-intermediate RNA, but little mature viral RNA is evident. The results of step-up experiments indicate that the temperature-sensitive period for the majority of the RNA plus and RNA plus and minus mutants extends through most of the replicative cycle. The temperature-sensitive defect of four of the mutants, however, was expressed in the first hour, suggesting that some undefined early function is required for the eventual maturation of mengovirus. The virions of three of the RNA- mutants were more thermolabile than wild-type virions. Five of the RNA plus and RNA plus or minus mutants were also thermolabile. Genetic complementation at a significant level was not detectable in mixed infections of the mutants described.  相似文献   

11.
3H-labeled particles with the density of intact mengovirus in CsCl were detected following the incubation of cell-free extracts from mengovirus infected cells with 3H-UTP in a RNA polymerase reaction mixture. The 3H-particles contained complete strands of 3H-labeled 35 S mengovirus RNA. The viral-like particles were found in the region of a sucrose gradient (150–250 S) where viral-specific RNA polymerase activity is detected.  相似文献   

12.
A trans-encapsidation assay was established to study the specificity of picornavirus RNA encapsidation. A poliovirus replicon with the luciferase gene replacing the capsid protein-coding region was coexpressed in transfected HeLa cells with capsid proteins from homologous or heterologous virus. Successful trans-encapsidation resulted in assembly and production of virions whose replication, upon subsequent infection of HeLa cells, was accompanied by expression of luciferase activity. The amount of luciferase activity was proportional to the amount of trans-encapsidated virus produced from the cotransfection. When poliovirus capsid proteins were supplied in trans, >2 × 106 infectious particles/ml were produced. When coxsackievirus B3, human rhinovirus 14, mengovirus, or hepatitis A virus (HAV) capsid proteins were supplied in trans, all but HAV showed some encapsidation of the replicon. The overall encapsidation efficiency of the replicon RNA by heterologous capsid proteins was significantly lower than when poliovirus capsid was used. trans-encapsidated particles could be completely neutralized with specific antisera against each of the donor virus capsids. The results indicate that encapsidation is regulated by specific viral nucleic acid and protein sequences.  相似文献   

13.
Dipyridamole is an effective inhibitor of cardiovirus growth in cell culture. The effects of dipyridamole on mengovirus replication in vivo and in vitro were examined in the hope the drug could be used as an experimental analog of the poliovirus inhibitor guanidine. Guanidine selectively inhibits poliovirus RNA synthesis but not RNA translation, and as such, has been a valuable research tool. Although guanidine does not inhibit cardiovirus infection, a compound with similar discriminatory characteristics would be experimentally useful for parallel work with these viruses. We found that mengovirus plaque formation in HeLa or L cells was inhibited nearly 100% by the presence of 80 muM dipyridamole. The inhibitory effect was reversible and targeted an early step in the replication cycle. Studies with luciferase-expressing mengovirus replicons showed that viral protein synthesis was unaffected by dipyridamole, and rather, RNA synthesis was the step targeted by the drug. This assessment was confirmed by direct analyses of viral translation and RNA synthesis activities in a Krebs-2-derived in vitro system that supported complete, infectious cardiovirus replication. In Krebs extracts, dipyridamole specifically inhibited viral RNA synthesis to more than 95%, with no concomitant effect on viral protein translation or polyprotein processing. The observed inhibition reversibly affected an early step in both minus-strand and plus-strand RNA synthesis, although inhibition of plus-strand synthesis was more profound than that of minus-strand synthesis. We conclude that dipyridamole is a potent experimental tool that readily distinguishes between cardiovirus translation and RNA replication functions.  相似文献   

14.
15.
Lin X  Liu J  Maley F  Chu E 《Nucleic acids research》2003,31(16):4882-4887
The role of cysteine sulfhydryl residues on the RNA binding activity of human thymidylate synthase (TS) was investigated by mutating each cysteine residue on human TS to a corresponding alanine residue. Enzymatic activities of TS:C43A and TS:C210A mutant proteins were nearly identical to wild-type TS, while TS:C180A and TS:C199A mutants expressed >80% of wild-type enzyme activity. In contrast, TS:C195A was completely inactive. Mutant proteins, TS:C195A, TS:C199A and TS:C210A, retained RNA binding activity to nearly the same degree as wild-type human TS. RNA binding activity of TS:C43A was reduced by 30% when compared to wild-type TS, while TS:C180A was completely devoid of RNA binding activity. In vitro translation studies confirmed that mutant proteins TS:C43A, TS:C195A, TS:C199A and TS:C210A, significantly repressed human TS mRNA translation, while TS:C180A was unable to do so. To confirm the in vivo significance of the cysteine sulfhydryl residue, mutant proteins TS:C180A and TS:C195A were each expressed in human colon cancer HCT-C18:TS(–) cells that expressed a functionally inactive TS. A recombinant luciferase reporter gene under the control of a TS-response element was co-transfected into these same cells, and luciferase activity increased in the presence of the TS:C195A mutant TS protein to a level similar to that observed upon expression of wild-type TS protein. In contrast, luciferase activity remained unchanged in cells expressing the TS:C180A mutant protein. Taken together, these findings identify Cys-180 as a critical residue for the in vitro and in vivo translational regulatory effects of human TS.  相似文献   

16.
This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promote growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.  相似文献   

17.
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (kcat/Km) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in kcat, but not due to variations in Km, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pKa of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pKa. Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme.  相似文献   

18.
The replication of mengovirus in HeLa cells preinfected with poliovirus in the presence of 10(-3) M guanidine was investigated. Although host cell protein synthesis is inhibited by the presence of nonreplicating poliovirus, it is found that mengovirus ribonucleic acid (RNA) and protein synthesis proceed normally under the same conditions. Furthermore, no effects on mengovirus growth by poliovirus can be detected either when Mengo protein synthesis is interrupted by Acti-Dione or when its RNA synthesis is reduced by incubation at 28 C. It is suggested that the poliovirus inhibitory factor may be able to distinguish between an RNA element required in the protein-synthesizing apparatus of the host cell and a comparable element in that of the heterologous virus.  相似文献   

19.
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5′ to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg2+, while ssDNA AP site cleavage required Mg2+ (optimally at 0.5-2.0 mM). We also found that a 2′-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3′-PO42− group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo.  相似文献   

20.
The selective translation of viral RNA in mengovirus-infected Ehrlich ascites tumor cells was investigated using fractionated translational systems whose macromolecular components were derived entirely from uninfected or virus-infected cells. Both systems translate host mRNA from uninfected cells, host mRNA from virus-infected cells, and mengovirus RNA. In competition experiments, where viral RNA and host mRNA were translated together in systems from uninfected cells, the relative amounts of virus-specific and host-specific proteins synthesized were proportional to the relative concentrations of the RNA templates. In systems whose components were obtained from virus-infected cells, mengovirus RNA was preferentially translated. 70% of the selectivity found in the translational systems derived from infected cells was due to the initiation factor fraction, the remaining 30% to components of the pH 5 enzyme fraction. In addition, host mRNA isolated after virus infection is translated in vitro to a lower extent in the presence of mengovirus RNA than is host mRNA from uninfected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号