首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of digitonin, dimethylsulfoxide and protamine sulfate on yeast Pichia guilliermondii were studied in order to produce cells with increased permeability and possessing the GTP-cyclohydrolase, riboflavinsynthetase and riboflavinkinase activities. The digitonin-treated cells exhibited a higher cyclohydrolase activity than the cell-free extracts; the activities of riboflavinsynthetase and riboflavinkinase in the cells and cell-free extracts were found to be similar. Treatment of cells with dimethylsulfoxide proved to be most effective to determine the activity of GTP-cyclohydrolase and also helpful to determine that of riboflavinsynthetase. Protamine sulfate had no effect on the cells of P. guilliermondii. The methods developed were used to determine the activities of GTP-cyclohydrolase, riboflavinsynthetase and riboflavinkinase in the cells of flavinogenic (P. guiller-mondii, Torulopsis candida) and non-flavinogenic (Candida utilis, Candida pulcherrima) yeasts grown in iron-rich and iron-deficient media. Derepression of riboflavinsynthetase and GTP-cyclohydrolase syntheses under conditions of Fe deficiency in the flavinogenic yeast cells confirmed previously made assumptions.  相似文献   

2.
The properties of two flavinogenesis enzymes--synthase of the aliphatic precursor of riboflavin (APR-synthase) and 6.7-dimethyl-8-ribityllumazinesynthase (DMRL-synthase) of Pichia guilliermondii. It is established that DMRL-synthase, uses APR as a substrate which contains, evidently, a phosphate group. The value of Km for APR is equal to 0.7.10(-5) M, for 2.4-dihydroxy-5-amino-6-ribitylaminopyrimidine--1.25.10(-5) M. It is riboflavin but not FAD that inhibits the activity of DMRL-synthase; the value (I)0.5 is equal to 2.10(-5) M. DMRL, riboflavin, flavin mononucleotide and FAD do not affect the APR-synthase activity. In iron-deficient cells of P. guilliermondii, Torulopsis candida, Debaryomyces kl?ckeri and Schwanniomyces occidentalis realizing the oversynthesis of riboflavin there occurs derepression of DMRL-synthase and APR-synthase.  相似文献   

3.
The effect of oxidative stress on riboflavin (vitamin B2) biosynthesis and iron accumulation in flavinogenic yeast P. guilliermondii was investigated. Treatment of P. guilliermondii cells with superoxidgenerating agent methylviologen leads to elevated production of malondialdyhyd (MDA) which reflects the overall cellular oxidation state. Increased iron content in the cells and enhanced productivity of flavinogenesis under these conditions has been shown too. Significant increasing of MDA and riboflavin production by yeast cells under iron deficiency was observed. Riboflavin overproducing P. guilliermondii mutant strains rib80, rib81 and hit, possess high iron transport and synthesize increased quantity of MDA. The role of riboflavin overproduction and activation of iron assimilation in the P. guilliermondii antioxidant defence is discussed.  相似文献   

4.
2,5-Diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been isolated from cells of Pichia guilliermondii and subjected to 20-fold purification by treating extracts with streptomycin sulphate, frationating proteins (NH4)2SO4 at 45-75% of saturation and chromatography on blue sepharose CL-6B. The use of gel filtration through Sephadex G-150 and chromatography on DEAE-cellulose proved to be less effective for the enzyme purification. It has been established that it is 2,5-diamino-4-oxy-6-ribosylaminopyrimidine-5-phosphate but not its dephosphorylated form that is the substrate of the given reductase; Km is equal to 7.10(-5) M. The reaction proceeds in the presence of NADPH or NADH. The enzyme affinity to NADPH (Km = 4.7.10(-5) M) is approximately one order higher than that to NADPH (Km = 5.5.10(-4) M). The enzyme manifests the optimum of action at pH 7.2 and the temperature of 37 degrees C; the molecular weight is 140 kD. EDTA as well as flavins in the concentration of 1.10(-3) M exert no effect on the reductase activity. The enzyme is labile at 4 degrees C and is inactivated in the frozen state at -15 degrees C. The 2.5-diamino-4-oxy-6-ribosylaminopyrimidine-5'-phosphate reductase has been also revealed in Torulopsis candida, Debaryomyces kl?ckeri, Schwanniomyces occidentalis, Eremothecium ashbyii (flavinogenic species) and Candida utilis. Aspergillus nidulans, Neurospora crassa (nonflavinogenic species). The synthesis of this enzyme contrary to other enzymes of the riboflavin biosynthesis is not regulated in flavinogenic yeast by iron ions.  相似文献   

5.
The effect of riboflavin and iron on 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate was investigated in the cultures of the yeast Pichia guilliermondii (rib2 mutants) with the blocked second reaction to flavinogenesis. It was shown that riboflavin inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-rich and iron-deficient cells of mutants with low riboflavin requirements. Cycloheximide did not prevent the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis caused by riboflavin starvation. 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)isoalloxazine strongly inhibited the 6-hydroxy-2,4,5-triaminopyrimidine synthesis, while 7-methyl-8-trifluoro-methyl-10-(beta-hydroxyethyl)izoalloxazine and galactoflavin exerted only a slight effect on this process. The 6-hydroxy-2,4,5-triaminopyrimidine synthesis rate in iron-deficient cells was significantly higher than in iron-rich cells. The 2,2'-dipyridyl treatment of iron-rich cells caused the stimulation of 6-hydroxy-2,4,5-triaminopyrimidine synthesis and cycloheximide abolished this effect. The results suggest that the activity of the first enzyme of flavinogenesis (guanylic cyclohydrolase) is under the control of feedback inhibition by flavins and the biosynthesis of this enzyme is regulated by iron.  相似文献   

6.
The monogenic rib83 mutation blocked riboflavin oversynthesis in the yeast Pichia guilliermondii and lowered iron acquisition by cells, their ferric reductase activity, and the growth rate in iron-deficient media. Mutants with the combined mutations of rib83 with rib80 and rib81 (the last two mutations impair the negative control of riboflavin synthesis and thus cause its oversynthesis) were unable to depress the enzymes of flavinogenesis (GTP cyclohydrolase and riboflavin synthase) and to overproduce riboflavin in both iron-deficient and iron-sufficient media. This suggests that the rib83 mutation is epistatic with respect to the rib80 and rib81 mutations. The RIB83 gene may positively control both riboflavin synthesis and iron acquisition in the yeast P. guilliermondii.  相似文献   

7.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5-1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b2, whereas the hitl mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

8.
Mutant strains of the yeast Pichia guilliermondii, carrying both rib80 and hit mutations in a haploid genome, were derived from previously obtained strains with defective rib80 or hit genes, exerting negative control of the riboflavin biosynthesis and iron transport in Pichia guilliermondii. The double mutant rib80hit strains exhibited an increased level of riboflavin biosynthesis and higher activities of GTP cyclohydrolase and riboflavin synthetase. Iron deficiency caused an additional increase in riboflavin overproduction. These results suggest the synergistic interaction of the rib80 and hit mutations. A combination of both mutations in a single genome did not affect iron assimilation by the cells: ferrireductase activity, the rate of 55Fe uptake, and the iron content in cells of the double mutants remained at the level characteristic of the parent strains.  相似文献   

9.
A positive method is proposed for selecting Pichia guilliermondii mutants with derepressed GTP cyclohydrolase. Mutants with the incompletely blocked gene RIB2 were used as parent strains; these can grow in a medium without riboflavin (RF) only if the enzyme is derepressed as the result of iron deficiency in cells. Strains growing in a medium without RF at the optimal supply of cells with iron were selected as regulatory mutants. The mutants accumulated 6,7-dimethylpterin in high concentrations and a small amount of RF in the medium and in the cells. The activity of GTP cyclohydrolase rather than that of RF synthase increased in the mutants; the activity of RF kinase and FAD pyrophosphorylase was not elevated. Hybrids produced by crossing the regulatory mutants with wild type strains did not accumulate 6,7-dimethylpterin in the medium and the activity of the GTP cyclohydrolase did not increase; this is indicative of the negative regulation for the expression of the structural gene for GTP cyclohydrolase. The authors propose a model for the regulation of GTP cyclohydrolase and RF synthase at the gene level involving iron ions as a corepressor.  相似文献   

10.
Pichia guilliermondii is a representative of a group of so-called flavinogenic yeast species that overproduce riboflavin (vitamin B(2)) in response to iron limitation. Using insertion mutagenesis, we isolated P. guilliermondii mutants overproducing riboflavin. Analysis of nucleotide sequence of recombination sites revealed that insertion cassettes integrated into the genome disrupting P. guilliermondii genes similar to the VMA1 gene of Ashbya gossypii and Saccharomyces cerevisiae and FES1 and FRA1 genes of S. cerevisiae. The constructed P. guilliermondiiΔvma1-17 mutant possessed five- to sevenfold elevated riboflavin production and twofold decreased iron cell content as compared with the parental strain. Pichia guilliermondiiΔfra1-45 mutant accumulated 1.8-2.2-fold more iron in the cells and produced five- to sevenfold more riboflavin as compared with the parental strain. Both Δvma1-17 and Δfes1-77 knockout strains could not grow at 37 °C in contrast to the wild-type strain and the Δfra1-45 mutant. Increased riboflavin production by the wild-type strain was observed at 37 °C. Although the Δfes1-77 mutant did not overproduce riboflavin, it showed partial complementation when crossed with previously isolated P. guilliermondii riboflavin-overproducing mutant rib80-22. Complementation analysis revealed that Δvma1-17 and Δfra1-45 mutants are distinct from previously reported riboflavin-producing mutants hit1-1, rib80-22 and rib81-31 of this yeast.  相似文献   

11.
Comparative studies of the process of possible overproduction of flavins by cultures with different flavinogenous activity grown on media with hydrocarbons and glucose have been carried out. The strains with a high flavinogenous activity, Candida guilliermondii and Torulopsis famata O-3, produced more flavins on media containing hydrocarbons than the cultures with a low flavinogenous activity. At a high content of iron in the medium, which is unfavourable for overproduction of riboflavin the rate of flavinogenesis is higher on hydrocarbons than on sugars, especially on alkanes with a longer chain in the strain O-3. Under the conditions of iron deficiency, the activity of flavinogenesis is higher on glucose in the case of both cultures. Iron deficiency in media containing hydrocarbons and their oxygenated derivative (cetyl alcohol, palmitic and acetic acids) has no such effect on the production of flavin by T. famata O-3 as in the glucose containing media. On media with ethanol, overproduction of the vitamin by the strain O-3 obeys the same relationships as on media with glucose. Possible factors that may have effect on the elevated synthesis are discussed.  相似文献   

12.
The RIB1 gene encoding the enzyme of the first stage of the yeast Pichia guillermondii-GTP-cyclohydrolase- was cloned on pFL38 shuttle vector as the Sau3A fragment of chromosomal DNA of about 9 kb. EcoRI fragment of 4 kb with RIB1 gene was subcloned from the pFRI hybrid plasmid obtained into the pUC18 plasmid and then shortened to give 2.9 kb via deletion in SalGI site. The plasmid constructed was designated pR1. Activity of GTP-cyclohydrolase was 80-100-fold higher in extracts of transformants than in the prototroph strain, which evidence of effective expression of the yeast gene within recombinant plasmids in the cells of this species of bacteria. The enzyme isolated from transformants has molecular mass 179 kDa, is inhibited by PAD and adenyl-nucleotides, which is characteristic of GTP-cyclohydrolase of P. guilliermondii but not of Escherichia coli.  相似文献   

13.
GTP-cyclohydrolase was isolated from the Fe-deficient cells of Pichia guilliermondii and purified 440-fold by treatment of extracts with streptomycin sulfate as well as by protein fractionation with (NH4)2SO4 at 25-45% saturation, gel filtration through Sephadex G-200 and DEAE-cellulose chromatography. The curves for the dependence of specific activity of GTP-cyclohydrolase on substrate and cofactor concentrations are non-hyperbolic; the values of [S]0.5 for GTP and Mg2+ are 2.2 X 10(-5) and 2 X 10(-4) M, respectively. The enzyme activity is inhibited by pyrophosphate ([I]0.5 = 5.8 X 10(-4) M), orthophosphate ([I]0.5 = 4.5 X 10(-3) M), heavy metal ions and chelating agents. The temperature optimum for the enzyme activity lies at 42-45 degrees C. The enzyme is labile at 4 degrees C but can well be stored at -15 degrees C. The pyrimidine product of the cyclohydrolase reaction, 2.5-diamino-6-oxy-4-ribosyl-aminopyrimidine-5'-phosphate, as well as pyrophosphate were purified from the reaction medium and identified.  相似文献   

14.
Anthranilate hydroxylase from Aspergillus niger catalyzes the oxidative deamination and dihydroxylation of anthranilic acid to 2,3-dihydroxybenzoic acid. This enzyme has been purified to homogeneity and has a molecular weight of 89,000. The enzyme is composed of two subunits of 42,000 with 2 gram-atoms of nonheme iron per mol. Fe2+-chelators like alpha,alpha'-dipyridyl and o-phenanthroline are potent inhibitors of the enzyme activity. Absorption and fluorescence spectra of the enzyme offer no evidence for the presence of other cofactors like flavin. Flavins and flavin-specific inhibitors like atebrin have no effect on the activity of the enzyme. The enzyme incorporates one atom of oxygen each from 18O2 and H218O into the product 2,3-dihydroxybenzoic acid. Based on these studies, it is concluded that anthranilate hydroxylase from A. niger is a new type of NADPH-linked nonheme iron monooxygenase.  相似文献   

15.
The activity of FAD-pyrophosphorylase and FAD-hydrolase (nucleotidepyrophosphatase) was studied in extracts of Pichia guilliermondii ATCC 9058 capable of riboflavin over-production. The specific activity of the enzymes was highest at the logarithmic growth phase (2.6 and 3.8 mcmoles of FAD per 1 min per 1 mg of protein X10(-5), respectively), and did not increase upon the induction of riboflavin overproduction. A decrease in the content of hemin compounds and a low content of flavins in the cells of Pichia guilliermondii mutants had no considerable effect on the activity of the two enzymes. When the yeast was cultivated on a medium containing hexadecane, an increase in the content of FAD in the cells was not accompanied with a rise in the activity of FAD-pyrophosphorylase. The activity of the enzyme did not change when succinate and lactate, the substrates of FAD-containing enzymes, were used as the source of carbon. The activity of FAD-pyrophosphorylase increased only when iron-deficient cells of the yeast were grown or incubated on a medium containing glycine; this stimulation was inhibited by cycloheximide.  相似文献   

16.
17.
Primary leaves of 7- to 9-day-old etiolated seedlings of Phaseolus vulgaris L. var. Red Kidney infiltrated in darkness with aqueous solutions of alpha, alpha'-dipyridyl, o-phenanthroline, pyridine-2-aldoxime, pyridine-2-aldehyde, 8-hydroxyquinoline, or picolinic acid synthesize large amounts of magnesium protoporphyrin monomethyl ester and lesser amounts of magnesium protoporphyrin, protoporphyrin, and protochlorophyllide. Pigment formation proceeds in a linear manner for up to 21 hours after vacuum infiltration with 10 mm alpha, alpha'-dipyridyl. Etiolated tissues of Zea mays L., Cucumis sativus L., and Pisum sativum L. respond in the same way to dipyridyl treatment. Compounds active in eliciting this response are aromatic heterocyclic nitrogenous bases which also act as bidentate chelators and form extremely stable complexes with iron; other metal ion chelators, such as ethylenediaminetetraacetic acid, salicylaldoxime, and sodium diethyldithiocarbamate, do not elicit any pigment synthesis. The ferrous, ferric, cobaltous, and zinc chelates of alpha, alpha'-dipyridyl are similarly ineffective. If levulinic acid is supplied to etiolated bean leaves together with alpha, alpha'-dipyridyl, porphyrin production is inhibited and delta-aminolevulinic acid accumulates in the tissue. Synthesis of porphyrins proceeds in the presence of 450 micrograms per milliliter chloramphenicol or 50 micrograms per milliliter cycloheximide with only partial diminution. We propose that heme or an iron-protein complex blocks the action of the enzyme(s) governing the synthesis of delta-aminolevulinic acid in etiolated leaves in the dark and that iron chelators antagonize this inhibition, leading to the biosynthesis of delta-aminolevulinic acid and porphyrins.  相似文献   

18.
Stenchuk NN  Kapustiak KE 《Genetika》2003,39(8):1026-1032
A method of positive selection of mutants with impaired regulation of flavinogenesis and metal homeostasis in yeast Pichia guilliermondii was developed. This positive selection system was based on the isolation of pseudo-wild-type revertants (the Rib+ phenotype) in riboflavin-dependent rib1-86 mutant (the Rib- phenotype) of yeast P. guilliermondii. Mutation rib1-86 blocks activity of the GTP cyclohydrolase II catalyzing the first step in riboflavin (RF) biosynthesis. Study of a collection of spontaneous Rib+ revertants allowed the identification of a considerably large number of genetic loci responsible for the suppression of rib1-86, which include both previously identified three loci (rib80, rib81, and hit1) and six new loci designated red1-red6 (reduction). A comparative analysis of the wild-type strain and red mutants revealed that these mutants had higher activity levels of GTP cyclohydrolase and RF-synthase, elevated levels of RF biosynthesis, enhanced Fe/Cu reductase activity and higher total iron content in cells and that they are characterized by enhanced sensitivity to transition metals (Fe(III), Cu(II), Cd(II), Co(II), Zn(II), Ag(I), and to H2O2. The metal hypersensitivity of mutant cells can be prevented by an increased amount of extracellular iron ions. Mutations red1 and red6 synergistically interact with the locus rib81 in the course of RF biosynthesis. Obviously, each RED gene plays an important role in the regulation of both flavinogenesis and metal homeostasis in P. guilliermondii cells.  相似文献   

19.
The properties of mutants resistant to 7-methyl-8-trifluoromethyl-10-(1'-D-ribityl)-isoalloxazine (MTRY) were studied. The mutants were isolated from a genetic line of Pichia guilliermondii. Several of them were riboflavin overproducers and had derepressed flavinogenesis enzymes (GTP cyclohydrolase, 6.7-dimethyl-8-ribityllumazine synthase) in iron-rich medium. An additional derepression of these enzymes as well as derepression of riboflavin synthase occurred in iron-deficient medium. The characters "riboflavin oversynthesis" and "derepression of enzymes" were recessive in mutants of the 1st class, or dominant in those of the 2nd class. The hybrids of analogue-resistant strains of the 1st class with previously isolated regulatory mutants ribR (novel designation rib80) possessed the wild-type phenotype and were only capable of riboflavin overproduction under iron deficiency. Complementation analysis of the MTRY-resistant mutants showed that vitamin B2 oversynthesis and enzymes' derepression in these mutants are caused by impairment of a novel regulatory gene, RIB81. Thus, riboflavin biosynthesis in P. guilliermondii yeast is regulated at least by two genes of the negative action: RIB80 and RIB81. The meiotic segregants which contained rib80 and rib81 mutations did not show additivity in the action of the above regulatory genes. The hybrids of rib81 mutants with natural nonflavinogenic strain P. guilliermondii NF1453-1 were not capable of riboflavin oversythesis in the iron-rich medium. Apparently, the strain NF1453-1 contains an unaltered gene RIB81.  相似文献   

20.
Mutant strains of the yeastPichia guilliermondii, carrying bothrib80 andhit mutations in a haploid genome, were derived from previously obtained strains with defectiverib80 orhit genes, exerting negative control of the riboflavin biosynthesis and iron transport inPichia guilliermondii. The double mutant rib80hit strains exhibited an increased level of riboflavin biosynthesis and higher activities of GTP cyclohydrolase and riboflavin synthetase. Iron deficiency caused an additional increase in riboflavin overproduction. These results suggest the synergistic interaction of therib80 andhit mutations. A combination of both mutations in a single genome did not affect iron assimilation by the cells: ferrireductase activity, the rate of55Fe uptake, and the iron content in cells of the double mutants remained at the level characteristic of the parent strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号