首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. We studied the effect of mesh size (6 and 3 mm) on interactions between brown trout ( Salmo trutta ) and benthic invertebrates in enclosures placed in a stream in southern Sweden. We also compared how different prey exchange rates affected interactions between trout and invertebrates.
2. Trout had strong impacts on some benthic taxa, and different mesh sizes produced different patterns. Trout affected the abundance of 10 of the 21 taxa examined, six in enclosures with 3 mm mesh and six in enclosures with 6 mm mesh. The abundance of nine of the prey taxa was lower in the presence of trout, only leptocerids were more numerous in the presence of trout.
3. Our measurements of prey immigration/emigration, together with trout diet data, suggest that direct consumption by trout, rather than avoidance behaviour by prey, explains most decreases in prey abundance. There was avoidance behaviour by only two of the twenty-one prey taxa, with trout inducing emigration of the mayflies Baetis rhodani and Paraleptophlebia sp.
4. Trout indirectly increased periphyton biomass in both 3 and 6 mm enclosures. The effect of trout on periphyton was probably due to strong effects of trout on the grazer, Baetis rhodani , Heptagenia sp. and Paralepthoplebia sp.
5. Our results suggest that mesh size, through its effects on exchange rates of prey, may affect interactions between predators and prey in running waters, but that the effects of dispersal and predation on invertebrates are taxon specific.  相似文献   

2.
1. Artificial bryophytes were placed in a shaded and an unshaded New Zealand alpine stream to investigate why invertebrates colonized these structures and, by inference, real plants. Three experiments were conducted to investigate the influence of (i) periphyton and detritus (ii) shelter, and (iii) time, on invertebrate colonization. 2. In the first experiment, seven taxa at the unshaded site displayed a preference for substrata with high detrital and periphyton biomass, presumably reflecting a food relationship. At the shaded, less stable site, only two taxa displayed such a relationship. 3. Reducing substratum ‘stem’ density (i.e. ‘shelter’) in the second experiment had little effect on the biomass of periphyton at each site, and only at the shaded site was detrital biomass reduced on low-density substrata. Abundances of most of the twenty-two invertebrate taxa analysed were unaffected by stem density reduction: densities of only four taxa at the unshaded site, and two at the shaded site were reduced. 4. Stepwise multiple regression showed that invertebrate abundance was little affected by stem density at either site. Indeed, shelter was the primary factor influencing abundance of only two of twenty-two taxa at the unshaded site, and none at the shaded site. Abundances of most taxa were related to periphyton or detrital biomass at each site. 5. The third experiment investigated temporal relationships between invertebrate density, periphyton and detrital biomass, and exposure time of artificial bryophytes. Regression analyses indicated that of twenty-two taxa at the stable, unshaded site, eight were influenced by periphyton biomass, three by detrital biomass, and two by exposure time. At the unstable shaded site, abundances of only eight of twenty-two taxa were significantly related to the measured variables, of which exposure time was most important (four taxa).  相似文献   

3.
1. The relationship between macroinvertebrate assemblages and the breakdown of alder [Alnus viridis (Chaix), Dc.] leaves was examined by exposing leaf packs in four streams in an alpine glacial floodplain over 8 months. Although glacially fed, the four sites (pro-glacial, glacial lake outlet, main channel, and a side-channel with a mix of water sources) differed physically and contained different benthic communities.
2. Leaf breakdown and associated fungal properties differed widely among sites. Leaf decay rate varied by an order of magnitude ( k ranged from 0.0029 to 0.0305 day–1), and was fastest at the lake outlet (< 20% leaf mass remaining by day 45) and slowest at the pro-glacial site (> 75% remaining on day 45). Rapid processing at the lake outlet was because of the presence of Acrophylax zerberus Brauer, a shredding caddisfly.
3. There were few macroinvertebrate taxa at the pro-glacial site (two to four taxa present in packs) and leaf breakdown was attributed primarily to micro-organisms. Leuctra abundance in leaf packs was strongly correlated with fungal biomass but not with the sporulation activity of any specific aquatic hyphomycete. Other taxa, such as Baetis and chironomids, showed no relationship with any leaf characteristic, suggesting that leaf packs were used mainly as a habitat and not as a food resource.
4. The predatory stonefly Isoperla was significantly associated with the abundance of macroinvertebrate prey ( Baetis , Chironomidae and Leuctra ) in leaf packs at the main and side-channel sites. The results indicate that leaf breakdown can vary widely in alpine lotic environments, reflecting site-specific differences in habitat characteristics, and in macroinvertebrate and fungal composition.  相似文献   

4.
1. We examined the spatial and temporal dynamics of pink salmon ( Oncorhynchus gorbuscha ) carcass decomposition (mass loss and macroinvertebrate colonisation) in south-eastern Alaskan streams. Dry mass and macroinvertebrate fauna of carcasses placed in streams were measured every two weeks over two months in six artificial streams and once after six weeks in four natural streams. We also surveyed the macroinvertebrate fauna and wet mass of naturally occurring salmon carcasses.
2. Carcass mass loss in artificial streams was initially rapid and then declined over time ( k =–0.033 day–1), and no significant differences were found among natural streams.
3. Several macroinvertebrate taxa colonised carcasses, but chironomid midge (Diptera: Chironomidae) and Zapada (Plecoptera: Nemouridae) larvae were found consistently and were the most abundant (on average 95 and 2%, respectively, of the invertebrates found). Chironomid abundance and biomass increased over time, whereas Zapada abundance and biomass did not. Significant differences in abundance were found among natural streams for Baetis (Ephemeroptera: Baetidae) and Sweltsa (Plecoptera: Chloroperlidae) larvae, while no significant differences were found for chironomid and Zapada abundance or biomass.
4. Our results suggest that salmon carcasses initially undergo a high rate of mass loss that tapers off with time. Chironomid and Zapada larvae are likely to be important in mediating nutrient and energy transfer between salmon carcasses and other components of the freshwater-riparian food web in south-eastern Alaskan streams.  相似文献   

5.
1. Changes in benthic invertebrate community structure following 16 years of forest succession after logging were examined by estimating benthic invertebrate abundance, biomass and secondary production in streams draining a forested reference and a recovering clear-cut catchment. Benthic invertebrate abundance was three times higher, and invertebrate biomass and production were two times higher in the disturbed stream.
2. Comparison of invertebrate community abundance 1, 5 and 16 years after clear-cutting indicated that the proportion of scrapers had decreased, whereas shredders had increased. Functional group percentage similarity indicated that the invertebrate community in the disturbed stream 16 years after clear-cutting was more similar to the reference than to that found earlier in the disturbed stream.
3. The five indices calculated from data collected over the past 16 years, as well as the abundance, biomass and production data collected during this study, proved to be of differing value in assessing recovery of the disturbed stream from logging. Percent dominant taxon and EPT (Ephemeroptera, Plecoptera and Trichoptera) taxon richness failed to show any initial differences between reference and disturbed streams, indicating that these indices may not be useful for measuring recovery from logging. The percentage Baetis and shredder–scraper indices showed significant differences only during the 1977 study and suggest recovery (no difference between reference and disturbed) by 1982. The North Carolina Biotic Index showed continued differences during 1982 in the riffle and depositional habitats and recovery by 1993. Total macroinvertebrate abundance, biomass and production, as well as EPT abundance, indicated continued differences between the reference and disturbed streams in the 1993 study.  相似文献   

6.
SUMMARY. 1. Two predictive models were employed along with intensive field sampling to estimate production of black flies ( Simulium spp.) on snags (submerged wood) in three blackwater streams on the Georgia Coastal Plain of the southeastern U.S.A. One model predicts daily growth rate from temperature and hydrograph pattern; the other predicts habitat abundance (of snags) from river height.
2. In the sixth order Ogeechee River, annual production was twice as high in 1982 (7.1 g dry mass [=DM] m−2 of snag surface) as in 1983 (3.6 g DM m−2). When converted to production per m2 of river bottom, values were 35–40% of the snag surface estimates. Annual production was much lower in fourth order Black Creek (1982, 1.3 g DM m−2 of snag surface) and much higher in the sixth order Satilla River (1975, 15.6–40.0 g DM m−2).
3. There was a distinct bimodal pattern of black fly production in the Ogeechee River in both years, with peaks occurring in winter and summer. Similar bimodal patterns of production were found in Black Creek and in the Satilla River. Although there appears to be an intrinsic component to the bimodal pattern, production peaks (growth rate and biomass) appear to be associated with initial stages of flooding.
4. Annual production/biomass ratios (37–85) are the highest reported for black fly populations. The variation of annual P/B ratios among sites was more strongly dependent on the temporal distribution of standing stock biomass than on differences in growth rates. Variation in production among sites appears to be due to differences in current velocity, hydro-graph variability, and abundance of coexisting consumers.  相似文献   

7.
Effects of snow cover on the benthic fauna in a glacier-fed stream   总被引:4,自引:0,他引:4  
1. Alpine streams above the tree line are covered by snow for 6–9 months a year. However, winter dynamics in these streams are poorly known. The annual patterns of macroinvertebrate assemblages were studied in a glacial stream in the Austrian Alps, providing information on conditions under the snow.
2. Snow cover influenced water temperature, the content of benthic organic matter and insect development. Taxa richness and abundance of macroinvertebrates did not show a pronounced seasonal pattern. The duration of the autumn period with stable stream beds was important in determining the abundance and composition of the winter fauna.
3. There were significant differences in species composition between summer and winter. Two potential strategies in larval survival were evident: adaptation to the extreme abiotic conditions in summer (e.g. Diamesa spp.) or avoidance of these conditions and development during winter (e.g. Ephemeroptera and Plecoptera).
4. A comparison of a stream reach with continuous snow cover and a stream reach that remained open throughout winter showed that conditions under snow are suboptimal. At the open stream site, with higher water temperatures and greater food supply (benthic organic matter content), abundance and taxa richness was higher and larval growth was faster. Several taxa were found exclusively at this site.
5. Winter conditions did not provide an entirely homogeneous environment, abiotic conditions changed rapidly, especially at the onset of snowfall and at snowmelt. Continuous monitoring is necessary to recognize spatial and temporal heterogeneity in winter environments and the fauna of alpine streams.  相似文献   

8.
Parke A. Rublee 《Hydrobiologia》1992,240(1-3):133-141
Microplankton community structures and abundance was assessed in lakes at the Toolik Lake LTER site in northern Alaska during the summers of 1989 and 1990. The microplankton community included oligotrich ciliates, but rotifers and zooplankton nauplii comprised greater than 90% of total estimated heterotrophic microplankton biomass. Dominant rotifer taxa included Keratella cochlearis, Kellicottia longispina, Polyarthra vulgaris, Conochilus unicornis and a Synchaeta sp. Microplankton biomass was lowest in highly oligotrophic Toolik Lake (< 5 μgCl−1 at the surface) and highest (up to 55 μCl−1) in the most eutrophic lakes, experimentally fertilized lakes, and fertilized limnocorrals, consistent with bottom-up regulation of microplankton abundance.  相似文献   

9.
SUMMARY. 1. Major landscape features and hydrological parameters indicative of black fly species assemblages were examined at 101 stream sites in Alberta, northern British Columbia, the Yukon and Alaska during the summer. Forty-one black fly taxa were recorded at seventy- nine sites using qualitative sampling procedures. River sites lacking black flies had significantly higher conductivity, greater depth, shallower slope and were farther from the Pacific Ocean than sites with black flies.
2. Classification of sites by taxon occurrence using hierarchical cluster analysis suggested five groupings: A. Simulium tuberosum (Lundstrëm) complex + several taxa. B, S. venustum Saylverecundum Stone and Jamnback complexes + S, tuberosum complex; C. 5. arcticum Malloch complex + S. corbis Twinn complex; D, Gymnopais Stone/ Prosimulium Roubaud; and E. P. onychodactytum Dyar and Shannon complex + several taxa.
3. Multiple discriminant analysis (MDA) was used to predict group membership of the seventy-nine sites using nineteen environmental variables; 71% of the sites were classified correctly. MDA identified latitude and distance from stream source as important factors separating group D from other groups. Stream width and drainage basins entering the Arctic Oeean and Hudson Bay delineated group B. There was no clear separation among groups A. C or E. The presence of sibling species probably accounts for the overlap of black fly assemblages.
4. Our findings are briefly discussed in the context of stream classification systems, notably the river continuum concept.  相似文献   

10.
1. Small cages (294cm2) containing unglazed clay quarry tiles were used to investigate the influence of periphytic algae on macroinvertebrate abundance in a Hong Kong stream. Algal biomass was manipulated by shading cages with plastic sheets. Individual cages were assigned to one of three treatment groups: unshaded, shaded and deeply shaded. Invertebrate densities and algal biomass within cages were monitored after 23, 37 and 65 days. 2. Multiple-regression analysis revealed that algal biomass, invertebrate morphospecies richness and total abundance declined with greater shading intensity. The responses of individual invertebrate taxa varied: some (especially Trichoptera) were unaffected by shading, whereas grazers (Baetidae, Psephenidae and Elmidae) declined as shading increased. 3. Significant regressions of the densities of individual taxa upon algal and detrital standing stocks in cages had positive slopes, but algal biomass increased during the study while detrital standing stocks declined. Abundance of invertebrates declined or remained rather stable over time. Density increases resulting from a positive association with algae were apparently offset by declines in abundance correlated with reductions in detritus. 4. Declines in algal biomass were associated with greater shading to which animals may respond directly. To uncouple the link between scarcity of algae and reduction of light intensity, the plastic covers on two groups of cages (deeply shaded and unshaded) which had been placed in the stream for 28 days were reversed so that cages which had been shaded became unshaded and vice versa. The cages were recovered on day 33, Only Coleoptera demonstrated a positive association with atgae inside cages; no relationship between population densities and algal biomass or light intensity was apparent for other taxa. However, the design may have been confounded by deposition of sediment in the cages (due to declining stream discharge) which reduced population densities of colonizers. 5. This study documents changes in invertebrate abundance and morphospecies richness in response periphyton and detritus standing stocks within patches. Summation of such responses may account for observed variations in benthic communities among Hong Kong streams which differ in the extent of shading by riparian vegetation.  相似文献   

11.
SUMMARY.
  • 1 Based on monthly samples taken over a 1-year period, average density (individuals m-2). average standing biomass and annual production of benthic macroinvertebrates were estimated at five sites within an Appalachian Mountain drainage basin. Two sites were on first order streams and differed from the three second order sites: they were smaller and more shallow and they were depressed in pH and chemical richness.
  • 2 Patterns of abundance of individual taxa, of higher taxonomic groups and of functional (feeding) groups differed according to whether abundance was measured as density, as standing biomass or as annual production. Standing biomass was chosen as the measure of macroinvertebrate abundance because available evidence indicates that only standing biomass is consistently, positively correlated with survivorship, and thus with habitat favourability.
  • 3 Two non-insect taxa (the crayfish Cambarus and the snail Leptoxis carinata) dominated standing biomass at each site. Consequently, differences among sites in total macroinvertebrate standing biomass and differences within and among sites in standing biomass of functional groups were determined by differences in estimated standing biomass of these two taxa. Differences in estimates of crayfish standing biomass were consistent with an explanation based on the availability of refuges created by large substrate particles. The abundance of L. carinata appeared to be controlled primarily by water chemistry and possibly secondarily by predators. A number of insect taxa exhibited patterns of standing biomass consistent with hypotheses based on effects of annual depth-flow regimes. Hypotheses based on differences in food resource and on competition appeared, in general, to be inconsistent with observed patterns of macroinvertebrate abundance.
  • 4 Contrary to predictions of the River Continuum Concept, the shredder functional group in the Guys Run drainage and in other temperate woodland streams was found to be a minor part of total macroinvertebrate standing biomass. Further, in a majority of small forested stream sites studied to date, standing biomass of grazers has been determined to be greater than that of shredders.
  相似文献   

12.
SUMMARY. 1. During a 2-year study of the fish and macroinvertebrates of a third-order montane stream, a severe drought in the first year resulted in a temporary cessation of surface flow. Flow was continuous during the second year.
2. Some taxa (e.g. Ophiogomphus severus ) exhibited higher density during the drought year, others declined in abundance during low flow (e.g. Baetis spp.), whereas a few (e.g. Tricorythodes minutus ) appeared unaffected. Total macroinvertebrate density decreased by 50% during the low flow year compared to the normal flow year. Mayflies were most severely affected, but also exhibited the most dramatic recovery.
3. The collector-gatherer functional feeding group was abundant only during the normal flow year, whereas shredders and predators exhibited increased relative abundance during low flow.
4. Fish populations were severely reduced in the low flow year. However, fishes rapidly invaded the area following resumption of normal flow.  相似文献   

13.
1. Hydraulic conditions, periphyton biomass and invertebrate communities were compared on artificial substrates exposed to a range of upstream roughness conditions across an area of uniform current velocity and depth in a gravel-bedded river. The effect of river bed roughness was simulated by installing roughness elements upstream of artificial substrates.
2. Increasing upstream roughness reduced the average near-bed velocity above the substrates and increased short-term variability in velocity (i.e. turbulence).
3. Periphyton chlorophyll a density showed a general decline with near-bed velocity and was significantly lower on the substrates exposed to the river bed reference and 0 mm roughness treatments than the 110 mm roughness elements. Chlorophyll a was also negatively correlated with the abundance of larger collector-browsing invertebrates. This indicates that effects of the changes in hydraulic conditions on invertebrates may have contributed to the observed treatment effects on periphyton.
4. Invertebrate abundance and diversity declined with increasing upstream roughness. Filter-feeders, collector-browsers and predatory invertebrates all declined in abundance with increasing upstream roughness, but the effect was strongest for filter-feeders. Eight of the nine most common taxa showed significant treatment effects. The orthoclad chironomid, Eukiefferiella sp., was not influenced strongly by upstream roughness, but its abundance was correlated significantly with periphyton biomass.  相似文献   

14.
1. Hydraulic conditions, periphyton biomass and invertebrate communities were compared on artificial substrates exposed to a range of upstream roughness conditions across an area of uniform current velocity and depth in a gravel-bedded river. The effect of river bed roughness was simulated by installing roughness elements upstream of artificial substrates.
2. Increasing upstream roughness reduced the average near-bed velocity above the substrates and increased short-term variability in velocity (i.e. turbulence).
3. Periphyton chlorophyll a density showed a general decline with near-bed velocity and was significantly lower on the substrates exposed to the river bed reference and 0 mm roughness treatments than the 110 mm roughness elements. Chlorophyll a was also negatively correlated with the abundance of larger collector-browsing invertebrates. This indicates that effects of the changes in hydraulic conditions on invertebrates may have contributed to the observed treatment effects on periphyton.
4. Invertebrate abundance and diversity declined with increasing upstream roughness. Filter-feeders, collector-browsers and predatory invertebrates all declined in abundance with increasing upstream roughness, but the effect was strongest for filter-feeders. Eight of the nine most common taxa showed significant treatment effects. The orthoclad chironomid, Eukiefferiella sp., was not influenced strongly by upstream roughness, but its abundance was correlated significantly with periphyton biomass.  相似文献   

15.
The leaf feeding beetle Gratiana boliviana Spaeth has been released since 2003 in the southeastern United States for biological control of tropical soda apple, Solanum viarum Dunal. In Florida, G. boliviana can be found on tropical soda apple growing in open pastures as well as in shady wooded areas. The objectives of this study were to determine the effect of light intensity on the performance of tropical soda apple and G. boliviana under greenhouse conditions, and to determine the abundance and mortality of G. boliviana in open and shaded habitats. Leaves growing in the shade were less tough, had higher water and nitrogen content, lower soluble sugars, and less dense and smaller glandular trichomes compared with leaves growing in the open. Plants grew slightly taller and wider under shaded conditions but total biomass was significantly reduced compared with plants grown in the open. In the greenhouse, G. boliviana had higher immature survival, greater folivory, larger adult size, and higher fecundity when reared on shaded plants compared with open plants. Sampling of field populations revealed that the overall abundance of G. boliviana was lower but leaf feeding damage was higher in shaded habitats compared with the open habitats. The percentage of eggs surviving to adult was greater in shaded compared with open habitats. The abundance of predators was higher in the open pasture and was positively correlated with the abundance of G. boliviana. These results indicate that not only plant quality but also habitat structure are important to the performance of weed biological control agents.  相似文献   

16.
The first part (1969) dealt with the abundance and biomass of the may-flies (Ephemeroptera). On the basis of the measurement of length of all may-flies and of the determination of the respective weight (according to the curve expressing the relation length : weight) the production for each month was calculated. The annual average for Baetis rhodani amounted to 5,317 g/m2, for Rhithrogena semicolorata 12,478 and for the species belonging to the genus Ecdyonurus 8,47 g/m2. The relation between the annual production and average annual biomass was nearly the same in all three species = 1 : 8,37. These three taxa formed 76% of the biomass. After addition of the remaining taxa of mayflies the production of Ephemeroptera in the two brooks under investigation totalled 27,152 g/m2 = 271,52 kg/ha per year.  相似文献   

17.
Connolly  Rod M. 《Hydrobiologia》1997,346(1-3):137-148
Assemblages of small, motile invertebrates (epifauna) from eelgrass(Zostera muelleri) and unvegetated habitats in a shallow, marine-dominatedestuary were compared at five sampling periods over one year. Assemblagesbased on abundance and biomass of 21 taxa from the two habitats groupedseparately in multivariate analyses (MDS ordination), and these groupingswere shown to be significant using an analysis of similarities (ANOSIM)randomisation routine. Secondarily to habitat differences, weak influencesof water temperature and distance to open water, but not of salinity, weredetected at some periods. Abundance and biomass of key taxa and all speciescombined were higha in eelgrass than in unvegetated habitat. Cumaceans wereexceptional in being collected predominantly from unvegetated habitat. Totalepifaunal production and crustacean production estimated using twovariables, (1) the biomass of individuals of each size class, and (2) watertemperature, were also higher in eelgrass than in unvegetated habitat. Thehigher abundance in eelgrass of taxa such as amphipods, harpacticoidcopepods and polychaetes that are major components of the diets of smallfish is consistent with a model explaining higher fish numbers in eelgrassin terms of prey availability.  相似文献   

18.
SUMMARY 1. Recent studies provide evidence for the use of exudates from living plants by epilithic microheterotrophs in streams. This study investigated the possible use of such non-detrital sources of dissolved organic matter (DOM) by streatn microheterotrophs colonizing leaf litter. Biomass of bacteria and of fungi accumulating in situ on autumn-shed leaves in flow-through troughs from which light was excluded was compared to that accumulating on leaves in troughs open to natural illumination.
2. In experiments repeated at different times of year and in different stream sections, greater biomass of microheterotrophs consistently accumulated on the leaf detritus in troughs open to natural illumination. Differences in water temperature or in grazing of leaf surfaces by macroinvertebrates could not account for these consistent differences. Further, greater microheterotroph biomass accumulated on light- and dark-incubated leaves in a stream section relatively open to sunlight, compared to corresponding leaves in a section heavily shaded by canopy and understorey vegetation.
3. These and other results suggest that, to some yet undetermined extent, detritus-associated microheterotrophs use non-detrital DOM. This conclusion is consistent with a priori predictions based on consideration of microbial energetics involved in the use of detrital versus non-detrital DOM.
4. Studies of trophic pathways in streams and other aquatic habitats have failed to assess some potentially important sources of non-detrital DOM. The ability of available techniques to assess the relative roles of detrital and non-detrital sources of DOM is evaluated, and alternative approaches to this problem are suggested.  相似文献   

19.
SUMMARY. 1. Changes in species composition of the periphyton on introduced substrates were determined in an oligotrophic mountain stream subject to long-term heavy metal contamination.
2. At the upstream control site, the numerically most abundant taxa were Bacillarioph yta i( Achnanlhes minutissima, Achnanthes microcephala and Achnanthes linearis ) as well as, in summer, the Chlorophyta ( Mougeotia spp. and Ulothrix subtilissima ).
3. At the downstream contaminated site the periphyton community was totally dominated by Bacillariophyta throughout the sampling period. A, minutissima and A, microcephala were co-dominants during spring. Seasonal succession patterns did not parallel those at the upstream site. Chlorophyta were virtually absent and A. minutissima comprised 94% of the community during summer.
4. Species diversity, species evenness and dissimilarity index were utilized to detect differences in species composition, abundance and number. Slight differences were found in spring samples while summer samples indicated major differences between sampling sites.  相似文献   

20.
Patchiness and composition of coral reef demersal zooplankton   总被引:1,自引:0,他引:1  
Zooplankton samples were collected weekly for a full year withdemersal traps on a coral reef off the west coast of Barbados.There was a marked temporal variability in weekly catches bothin terms of abundance and biomass. Patchiness occurred at allsampling frequencies from 2 to 26 weeks, but spectral analysisindicated a variance shift at a frequency of 8–10 weeksAggregations of the two most abundant taxa, the copepoditesand the microzooplankton, occurred at 8–12 week intervalsand significant differences in abundance and biomass were foundbetween mean bimonthly zooplankton catches Lagged cross-correlationsat 7 and 11 weeks between chlorophyll and microzooplankton andcopepodites suggest that aggregations are connected to cyclesof primary production. There was a negative correlation betweenzooplankton abundance and surface water salinity in 8 of 16taxa Copepods were the most abundant taxon overall. Microzooplanktonand copepodites comprised 96% of the abundance and 66% of thebiomass Decreases in taxonomic richness and in diversity wereassociated with patchiness of small-sized copepodites and microzooplankton,suggesting that composition was altered and stability temporarilylessened during peaks of abundance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号