首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Estrogen receptor alpha (ER) is a member of the nuclear hormone receptor family, which upon binding estrogen shows increased apparent affinity for nuclear components (tight nuclear binding). The nuclear components that mediate this tight nuclear binding have been proposed to include both ER-DNA interactions and ER-protein interactions. In this paper, we demonstrate that tight nuclear binding of ER upon estrogen occupation requires ER-DNA interactions. Hormone-bound ER can be extracted from the nucleus in low-salt buffer using various polyanions, which mimic the phosphate backbone of DNA. The importance of specific ER-DNA interactions in mediating tight nuclear binding is also supported by the 380-fold lower concentration of the ERE oligonucleotide necessary to extract estrogen-occupied ER from the nucleus compared to the polyanions. We also demonstrate that estrogen-induced tight nuclear binding requires both the nuclear localization domain and the DNA binding domain of ER. Finally, enzymatic degradation of nuclear DNA allows us to recover 45% of tight nuclear-bound ER. We further demonstrate that ER-AIB1 interaction is not required for estrogen-induced tight nuclear binding. Taken together, we propose a model in which tight nuclear binding of the estrogen-occupied ER is predominantly mediated by ER-DNA interactions. The effects of estrogen binding on altering DNA binding in whole cells are proposed to occur through estrogen-induced changes in ER-chaperone protein interactions, which alter the DNA accessibility of ER but do not directly change the affinity of the ER for DNA, which is similar for both unoccupied and occupied ER.  相似文献   

4.
5.
The steroid and the DNA bindings of the estrogen receptor of the MtTF4 tumor whose growth is inhibited by estradiol where characterized and compared to those of uterine estrogen receptors. In the tumor cytosol: E protects its binding sites against thermal denaturation, depending on the effects of sodium molybdate upon the dissociation rate of [3H]E at 20 degrees C and the ability of receptor to bind to DNA, the activation (or transformation) process, supposed to be necessary for the full action of estrogen ligand, occurs on estrogen receptor complexes and the calf thymus DNA interacts with estrogen receptor with an affinity similar to that of uterine estrogen receptor. Kinetic and equilibrium studies with 17 alpha-[3H]E both in uterus and tumor indicate that this ligand is fast-associating, fast-dissociating and that its affinity for ER is 2- to 4-fold lower than that of 17 beta-[3H]estradiol one. Competition experiments between 17 beta-[3H]estradiol and the unlabelled 17 alpha epimer reveal, in both uterus and tumor, a time-dependent decrease of the apparent potency of 17 alpha-E to inhibit the binding of [3H]E. It is concluded that the estrogen receptors are very similar in MtTF4 tumor and uterus and the diversity of the response of cell growth to E is due rather to differences at the post-receptor level.  相似文献   

6.
UvrB, a central DNA damage recognition protein in bacterial nucleotide excision repair, has weak affinity for DNA, and its ATPase activity is activated by UvrA and damaged DNA. Regulation of DNA binding and ATP hydrolysis by UvrB is poorly understood. Using atomic force microscopy and biochemical assays, we found that truncation of domain 4 of Bacillus caldotenax UvrB (UvrBDelta4) leads to multiple changes in protein function. Protein dimerization decreases with an approximately 8-fold increase of the equilibrium dissociation constant and an increase in DNA binding. Loss of domain 4 causes the DNA binding mode of UvrB to change from dimer to monomer, and affinity increases with the apparent dissociation constants on nondamaged and damaged single-stranded DNA decreasing 22- and 14-fold, respectively. ATPase activity by UvrBDelta4 increases 14- and 9-fold with and without single-stranded DNA, respectively, and UvrBDelta4 supports UvrA-independent damage-specific incision by Cho on a bubble DNA substrate. We propose that other than its previously discovered role in regulating protein-protein interactions, domain 4 is an autoinhibitory domain regulating the DNA binding and ATPase activities of UvrB.  相似文献   

7.
In order to better understand the structural requirements for effective high affinity binding of estrogens and antiestrogens by the human estrogen receptor (ER), a comparative study was undertaken in which we examined: 1) native ER from the MCF-7 ER-positive human breast cancer cell line; 2) full length ER expressed in yeast; 3) the ER hormone binding domain (amino acid residues 302-595) expressed in yeast; 4) a bacterially expressed protein A fusion product encoding a truncated ER (amino acid residues 240-595); and 5) a synthetic peptide encompassing amino acids 510-551 of the ER. The binding parameters studied included affinity, kinetics, structural specificity for ligands, and stability. Full length ER expressed in yeast was very similar to the MCF-7 ER in its affinity [dissociation constant (Kd), 0.35 +/- 0.05 nM], dissociation rate (t1/2, 3-4 h at 25 C), and structural specificity for both reversible and covalently attaching affinity ligands. While the truncated ER expressed in yeast was similar to MCF-7 ER in its specificity of ligand binding, it showed a slightly reduced affinity for estradiol (Kd, 1.00 +/- 0.17 nM). The bacterially expressed ER also had a lower affinity for estradiol (Kd, 1.49 +/- 0.16 nM), which may be due in part to an increase in the dissociation rate (t1/2, 0.5 h at 25 C). The attachment of covalent affinity ligands and structural specificity for a variety of reversible ligands was comparable in the bacterially expressed ER to that observed for the receptors expressed in MCF-7 cells and yeast.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The expression of high levels of full-length human estrogen receptor alpha (hERalpha) in Escherichia coli has proven difficult. We found that expression of the ER DNA binding domain is highly toxic to E. coli, resulting in rapid loss of the expression plasmid. Using a tightly regulated arabinose expression system and the antibiotic Timentin, we were able to overcome ER toxicity and express substantial levels of ER. The expressed ER exhibited protease cleavage at a single site near the N-terminus of the hinge region. Of the many measures we tested to eliminate ER cleavage, only addition of carbonyl cyanide m-chlorophenyl-hydrazone (CCCP), an uncoupler of oxidative phosphorylation, completely blocked intracellular proteolysis of the ER. Using CCCP and our expression methods, full-length FLAG epitope-tagged hERalpha (fER) was expressed in E. coli at approximately 1 mg/l. The fER was purified to homogeneity in a single step by immunoaffinity chromatography with anti-FLAG monoclonal antibody. Purified full-length bacterial fER binds 17beta-estradiol with the same affinity as hER expressed in human cells (K(D) approximately 0.5 nM). At high concentrations of fER (20 nM), a bell-shaped estrogen binding curve with a Hill coefficient of 1.7 was seen. Bacterially-expressed fER exhibits a reduced affinity for the estrogen response element (ERE). Anti-FLAG antibody restores high affinity binding of the fER to the ERE, suggesting that impaired dimerization may be responsible for the reduced affinity of bacterially-expressed fER for the ERE. The use of Timentin and CCCP may provide a general method for high level bacterial expression of steroid/nuclear receptors and other proteins important in hormone action.  相似文献   

9.
We have analyzed the sequence requirements for the binding of the carboxy-terminal (DNA binding) domain of gamma delta resolvase to its recognition site. Using an efficient procedure for saturation mutagenesis we have obtained 31 of the possible 36 base substitutions within the 12 bp minimal binding sequence (using a modified right half of resolvase binding site I as the model sequence). Binding assays in vitro with the 43 residue DNA binding domain show that certain substitutions at eight of the 12 positions strongly inhibit complex formation, increasing the dissociation constant by 100-fold or more. The critical positions fall into two groups: the outside 6 bp of the binding sequence (positions 1-6) and positions 9-10. These positions correspond to the regions where the DNA binding domain spans the major and minor grooves, respectively, of its binding site. Base substitutions at the intervening positions (7 and 8) have more modest (less than 20-fold) effects on binding while substitutions at the inner two positions (11 and 12) are virtually neutral. The hierarchies of base preferences within each critical segment suggest that resolvase makes base-specific contacts in both major and minor grooves.  相似文献   

10.
The primary amino acid sequences of proteins that are receptors for estrogen, glucocorticoids, and ouabain were compared with each other using computer programs designed to detect and quantify similarities between proteins. Three regions of similarity between the estrogen receptor (ER) and the glucocorticoid receptor (GR) were identified. On the ER, residues 173-250, 323-395, and 426-458 are similar to residues 409-486, 540-612, and 644-676, respectively, on the GR. The ALIGN computer analysis of these segments on the ER and the GR gave comparison scores that were 16.8, 13.7, and 6.8 standard deviations higher, respectively, than that obtained with a comparison of randomized sequences of these proteins. The probability of getting these scores by chance is less than 10(-60), 10(-40), and 10(-11), respectively. Others have proposed that the segment on the ER and GR that is nearest their amino terminus (e.g. residues 173-250 of the ER) is part of their DNA binding domain and that the other two similar segments on each receptor, which are closer to their carboxy terminus, are part of their steroid binding domain. Here, we present evidence to support both of these hypotheses. First, an Align computer analysis indicates that residues 323-395 of the ER and residues 570-612 of the GR contain a region that is similar to a part of the alpha-subunit of the (Na+ + K+)ATPase that is hypothesized to bind the steroid ouabain. This similarity provides additional support for the proposed location of the steroid binding site on the ER, GR, and (Na+ + K+)ATPase. Second, a computer search of the protein sequence database revealed that protamine, a DNA binding protein, has some similarity to residues 255-281 of the ER, which are thought to be part of the DNA binding domain in the ER. Further, we find that residues 276-281 of the ER contain a structure that has been found at the nucleotide binding domain of some protein kinases. If this region on the ER binds ATP, then it may be involved in phosphorylation/dephosphorylation of the ER, which is thought to be important in its mechanism of action.  相似文献   

11.
12.
Gel shift assays were employed to distinguish between the contribution of 17 beta-estradiol (E2) and a short heating step to the ability of the rat uterine cytosolic estrogen receptor (ER) to bind to the estrogen response element (ERE) from the vitellogenin A2 gene (vitERE). Despite the popularity of models in which the ER is a ligand-activated DNA-binding protein, these studies find that estrogen does not significantly contribute to receptor-DNA complex formation. An avidin-biotin complex with DNA (ABCD) assay was utilized to obtain quantitative measurement of the affinities of the ER for the vitERE and a mutant sequence. Scatchard analysis gave a dissociation constant of 390 +/- 40 pM for the E2-occupied, heated ER to the vitERE. The data fit a one-site model and evidence for cooperatively was not observed. A dissociation constant of 450 +/- 170 pM was obtained for the unoccupied, heated ER, leading to the conclusion that estrogen was not necessary for specific binding to DNA. The percentage of ER capable of binding vitERE varied with each cytosol preparation, ranging from 60 to 100% and estrogen did not appear to affect this variation. Competition against the vitERE with a 2-bp mutant sequence showed a 250-fold lower relative binding affinity of the receptor for the mutant over the vitERE sequence. This ability of the ER to discriminate between target and nonspecific DNA sequences was also not dependent on the presence of estrogen.  相似文献   

13.
Control of estrogen receptor ligand binding by Hsp90   总被引:7,自引:0,他引:7  
The molecular chaperone Hsp90 interacts with unliganded steroid hormone receptors and regulates their activity. We have analyzed the function of yeast and mammalian Hsp90 in regulating the ability of the human estrogen receptor (ER) to bind ligands in vivo and in vitro. Using the yeast system, we show that the ER expressed in several different hsp82 mutant strains binds reduced amounts of the synthetic estrogen diethylstilbestrol compared to the wild type. This defect in hormone binding occurs without any significant change in the steady state levels of ER protein. To analyze the role of mammalian Hsp90, we synthesized the human ER in rabbit reticulocyte lysates containing geldanamycin, an Hsp90 inhibitor. At low concentrations of geldanamycin we observed reduced levels of hormone binding by the ER. At higher concentrations, we found reduced synthesis of the receptor. These data indicate that Hsp90 functions to maintain the ER in a high affinity hormone-binding conformation.  相似文献   

14.
15.
16.
Multiple steroid receptors (SR) have been proposed to localize to the plasma membrane. Some structural elements for membrane translocation of the estrogen receptor alpha (ER alpha) have been described, but the mechanisms relevant to other steroid receptors are entirely unknown. Here, we identify a highly conserved 9 amino acid motif in the ligand binding domains (E domains) of human/mouse ER alpha and ER beta, progesterone receptors A and B, and the androgen receptor. Mutation of the phenylalanine or tyrosine at position-2, cysteine at position 0, and hydrophobic isoleucine/leucine or leucine/leucine combinations at positions +5/6, relative to cysteine, significantly reduced membrane localization, MAP and PI 3-kinase activation, thymidine incorporation into DNA, and cell viability, stimulated by specific SR ligands. The localization sequence mediated palmitoylation of each SR, which facilitated caveolin-1 association, subsequent membrane localization, and steroid signaling. Palmitoylation within the E domain is therefore a crucial modification for membrane translocation and function of classical sex steroid receptors.  相似文献   

17.
18.
19.
Posttranslational modifications of the estrogen receptor (ER) are emerging as important regulatory elements of cross talk between different signaling pathways. ER phosphorylation, in particular, has been implicated in the ligand-independent effects of ER and in tamoxifen resistance of breast tumors. In our studies, Western immunoblot analysis of endogenous ER in parental MCF-7 cells reveals specific, ligand-dependent phosphorylations at S118 and S167, with this ligand dependence being lost in tamoxifen-resistant, MCF-7 Her2/neu cells. Using highly purified components and sensitive fluorescence methods in an in vitro system, we show that phosphorylation by different kinases alters ER action through distinct mechanisms. Phosphorylation by Src and protein kinase A increases affinity for estradiol (E2), whereas ER phosphorylation by MAPK decreases trans-hydroxytamoxifen (TOT) binding. Affinity of ER for the consensus estrogen response element is also altered by phosphorylation in a ligand-specific manner, with decrease in affinity of MAPK- and Src-phosphorylated ER in the presence of TOT. ER phosphorylation by MAPK, AKT, or protein kinase A increases recruitment of steroid receptor coactivator 3 receptor interaction domain to the DNA-bound receptor in the presence of E2. Taken together, these results suggest that ER phosphorylation alters receptor functions (ligand, DNA, and coactivator binding), effecting changes that could lead to an increase in E2 agonism and a decrease in TOT antagonistic activity, reflecting changes encountered in tamoxifen resistance in endocrine therapy of breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号