首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu W  Lin T  Pan L  Yu M  Li Z  Pang Y  Yang K 《Journal of virology》2006,80(23):11475-11485
38K (ac98) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved baculovirus gene whose function is unknown. To determine the role of 38K in the baculovirus life cycle, a 38K knockout bacmid containing the AcMNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a 38K repair bacmid was constructed by transposing the 38K open reading frame with its native promoter region into the polyhedrin locus of the 38K knockout bacmid. After transfection of these viruses into Spodoptera frugiperda cells, the 38K knockout bacmid led to a defect in production of infectious budded virus, while the 38K repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Slot blot analysis indicated that 38K deletion did not affect the levels of viral DNA replication. Subsequent immunoelectron-microscopic analysis revealed that masses of electron-lucent tubular structures containing the capsid protein VP39 were present in cells transfected with 38K knockout bacmids, suggesting that nucleocapsid assembly was interrupted. In contrast, the production of normal nucleocapsids was restored when the 38K knockout bacmid was rescued with a copy of 38K. Recombinant virus that expresses 38K fused to green fluorescent protein as a visual marker was constructed to monitor protein transport and localization within the nucleus during infection. Fluorescence was first detected along the cytoplasmic periphery of the nucleus and subsequently localized to the center of the nucleus. These results demonstrate that 38K plays a role in nucleocapsid assembly and is essential for viral replication in the AcMNPV life cycle.  相似文献   

2.
3.
An essential component in the assembly of nucleocapsids of tailed bacteriophages and of herpes viruses is the portal protein that is located at the unique vertex of the icosahedral capsid through which DNA movements occur. A library of mutations in the bacteriophage SPP1 portal protein (gp6) was generated by random mutagenesis of gene 6. Screening of the library allowed identification of 67 single amino acid substitutions that impair portal protein function. Most of the mutations cluster within stretches of a few amino acids in the gp6 carboxyl-terminus. The mutations were divided into five classes according to the step of virus assembly that they impair: (1) production of stable gp6; (2) interaction of gp6 with the minor capsid protein gp7; (3) incorporation of gp6 in the procapsid structure; (4) DNA packaging; and (5) sizing of the packaged DNA molecule. Most of the mutations fell in classes 3 and 4. This is the first high-resolution functional map of a portal protein, in which its function at different steps of viral assembly can be directly correlated with specific regions of its sequence. The work provides a framework for the understanding of central processes in the assembly of viruses that use specialized portals to govern entry and exit of DNA from the viral capsid.  相似文献   

4.
5.
Wu W  Liang H  Kan J  Liu C  Yuan M  Liang C  Yang K  Pang Y 《Journal of virology》2008,82(24):12356-12364
It has been shown that the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) 38K (ac98) is required for nucleocapsid assembly. However, the exact role of 38K in nucleocapsid assembly remains unknown. In the present study, we investigated the relationship between 38K and the nucleocapsid. Western blotting using polyclonal antibodies raised against 38K revealed that 38K was expressed in the late phase of infection in AcMNPV-infected Spodoptera frugiperda cells and copurified with budded virus (BV) and occlusion-derived virus (ODV). Biochemical fractionation of BV and ODV into the nucleocapsid and envelope components followed by Western blotting showed that 38K was associated with the nucleocapsids. Immunoelectron microscopic analysis revealed that 38K was specifically localized to the nucleocapsids in infected cells and appeared to be distributed over the cylindrical capsid sheath of nucleocapsid. Yeast two-hybrid assays were performed to examine potential interactions between 38K and nine known nucleocapsid shell-associated proteins (PP78/83, PCNA, VP1054, FP25, VLF-1, VP39, BV/ODV-C42, VP80, and P24), three non-nucleocapsid shell-associated proteins (P6.9, PP31, and BV/ODV-E26), and itself. The results revealed that 38K interacted with the nucleocapsid proteins VP1054, VP39, VP80, and 38K itself. These interactions were confirmed by coimmunoprecipitation assays in vivo. These data demonstrate that 38K is a novel nucleocapsid protein and provide a rationale for why 38K is essential for nucleocapsid assembly.  相似文献   

6.
Yuan M  Huang Z  Wei D  Hu Z  Yang K  Pang Y 《Journal of virology》2011,85(22):11664-11674
Autographa californica nucleopolyhedrovirus (AcMNPV) orf93 (ac93) is a highly conserved uncharacterized gene that is found in all of the sequenced baculovirus genomes except for Culex nigripalpus NPV. In this report, using bioinformatics analyses, ac93 and odv-e25 (ac94) were identified as baculovirus core genes and thus p33-ac93-odv-e25 represent a cluster of core genes. To investigate the role of ac93 in the baculovirus life cycle, an ac93 knockout AcMNPV bacmid was constructed via homologous recombination in Escherichia coli. Fluorescence and light microscopy showed that the AcMNPV ac93 knockout did not spread by infection, and titration assays confirmed a defect in budded virus (BV) production. However, deletion of ac93 did not affect viral DNA replication. Electron microscopy indicated that ac93 was required for the egress of nucleocapsids from the nucleus and the formation of intranuclear microvesicles, which are precursor structures of occlusion-derived virus (ODV) envelopes. Immunofluorescence analyses showed that Ac93 was concentrated toward the cytoplasmic membrane in the cytoplasm and in the nuclear ring zone in the nucleus. Western blot analyses showed that Ac93 was associated with both nucleocapsid and envelope fractions of BV, but only the nucleocapsid fraction of ODV. Our results suggest that ac93, although not previously recognized as a core gene, is one that plays an essential role in the formation of the ODV envelope and the egress of nucleocapsids from the nucleus.  相似文献   

7.
In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.  相似文献   

8.
Eighteen genes of Autographa californica nuclear polyhedrosis virus are necessary and sufficient to transactivate expression from the late vp39 promoter in transient-expression assays in SF-21 cells. These 18 genes, known as late expression factor genes (lefs), are also required to transactivate the very late promoter of the polyhedrin gene, polh, but expression from this promoter is relatively weak compared with expression from the vp39 promoter. To further define the factors required for late and very late promoter expression, we first determined that the eighteen lefs were also required for expression from two other major baculovirus promoters: the late basic 6.9-kDa protein gene, p6.9, and the very late 10-kDa protein gene, p10. We next examined the effect of the very late expression factor 1 gene (vlf-1), a gene previously identified by analysis of a temperature-sensitive mutant, in the transient expression assay and found that vlf-1 specifically transactivated the two very late promoters but not the two late promoters. We then surveyed the Autographa californica nuclear polyhedrosis virus genome for additional genes which might specifically regulate very late gene expression; no additional vlf genes were detected, suggesting that VLF-1 is the primary regulator of very late gene expression. Finally, we found that the relative contribution of the antiapoptosis gene p35, which behaves as a lef in these transient-expression assays, depended on the nature of the other viral genes provided in the cotransfection mixtures, suggesting that other viral genes also contribute to the ability of the virus to block apoptosis.  相似文献   

9.
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. “Decoration” proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to ∼ 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage λ as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage λ capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to “idle” at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-γS only partially stabilizes the nucleocapsid, and a DNA is released in “quantized” steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.  相似文献   

10.
Role of the UL25 protein in herpes simplex virus DNA encapsidation   总被引:1,自引:0,他引:1       下载免费PDF全文
The herpes simplex virus protein UL25 attaches to the external vertices of herpes simplex virus type 1 capsids and is required for the stable packaging of viral DNA. To define regions of the protein important for viral replication and capsid attachment, the 580-amino-acid UL25 open reading frame was disrupted by transposon mutagenesis. The UL25 mutants were assayed for complementation of a UL25 deletion virus, and in vitro-synthesized protein was tested for binding to UL25-deficient capsids. Of the 11 mutants analyzed, 4 did not complement growth of the UL25 deletion mutant, and analysis of these and additional mutants in the capsid-binding assay demonstrated that UL25 amino acids 1 to 50 were sufficient for capsid binding. Several UL25 mutations were transferred into recombinant viruses to analyze the effect of the mutations on UL25 capsid binding and on DNA cleavage and packaging. Studies of these mutants demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids and that the C terminus is essential for DNA packaging and the production of infectious virus through its interactions with other viral packaging or tegument proteins. Analysis of viral DNA cleavage demonstrated that in the absence of a functional UL25 protein, aberrant cleavage takes place at the unique short end of the viral genome, resulting in truncated viral genomes that are not retained in capsids. Based on these observations, we propose a model where UL25 is required for the formation of DNA-containing capsids by acting to stabilize capsids that contain full-length viral genomes.  相似文献   

11.
Hou S  Chen X  Wang H  Tao M  Hu Z 《BioTechniques》2002,32(4):783-4, 786, 788
Here we describe a convenient method to generate homologous recombinant baculoviral genomes in E. coli. The recombination takes place with the aid of recombination enzymes provided by the phage lambda Red system between a bacmid (a baculoviral genome that can replicate in bacteria) and a linear fragment. Proof of concept was provided when the cathepsin gene (v-cath) of the Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus (HaSNPV) was replaced by the chloramphenicol resistance gene (CmR). First, CmR was inserted between the flanking sequences of the HaS-NPV v-cath. Each of the flanking regions was about 1 kb. The fragment was linearized and electroporated into bacteria containing both the HaSNPV bacmid and the lambda Red system. Recombinant bacmids resistant to chloramphenicol were selected. In comparison to the standard co-transfection/plaque assays, this method significantly reduces the time required to construct baculovirus knockout mutants. It may also be useful in the manipulation of other large viral genomes.  相似文献   

12.
Double-stranded DNA packaging in icosahedral bacteriophages is driven by an ATPase-coupled packaging machine constituted by the portal protein and two non-structural packaging/terminase proteins assembled at the unique portal vertex of the empty viral capsid. Recent studies show that the N-terminal ATPase site of bacteriophage T4 large terminase protein gp17 is critically required for DNA packaging. It is likely that this is the DNA translocating ATPase that powers directional translocation of DNA into the viral capsid. Defining this ATPase center is therefore fundamentally important to understand the mechanism of ATP-driven DNA translocation in viruses. Using combinatorial mutagenesis and biochemical approaches, we have defined the catalytic carboxylate residue that is required for ATP hydrolysis. Although the original catalytic carboxylate hypothesis suggested the presence of a catalytic glutamate between the Walker A (SRQLGKT(161-167)) and Walker B (MIYID(251-255)) motifs, none of the four candidate glutamic acid residues, E198, E208, E220 and E227, is required for function. However, the E256 residue that is immediately adjacent to the putative Walker B aspartic acid residue (D255) exhibited a phenotypic pattern that is consistent with the catalytic carboxylate function. None of the amino acid substitutions, including the highly conservative D and Q, was tolerated. Biochemical analyses showed that the purified E256V, D, and Q mutant gp17s exhibited a complete loss of gp16-stimulated ATPase activity and in vitro DNA packaging activity, whereas their ATP binding and DNA cleavage functions remained intact. The data suggest that the E256 mutants are trapped in an ATP-bound conformation and are unable to catalyze the ATP hydrolysis-transduction cycle that powers DNA translocation. Thus, this study for the first time identified and characterized a catalytic glutamate residue that is involved in the energy transduction mechanism of a viral DNA packaging machine.  相似文献   

13.
M Yu  J Summers 《Journal of virology》1994,68(7):4341-4348
We have investigated the role of phosphorylation of the capsid protein of the avian hepadnavirus duck hepatitis B virus in viral replication. We found previously that three serines and one threonine in the C-terminal 24 amino acids of the capsid protein serve as phosphorylation sites and that the pattern of phosphorylation at these sites in intracellular viral capsids is complex. In this study, we present evidence that the phosphorylation state of three of these residues affects distinct steps in viral replication. By substituting these residues with alanine in order to mimic serine, or with aspartic acid in order to mimic phosphoserine, and assaying the effects of these substitutions on various steps in virus replication, we were able to make the following inferences. (i) The presence of phosphoserines at residues 245 and 259 stimulates DNA synthesis within viral nucleocapsids. (ii) The absence of phosphoserine at residue 257 and at residues 257 and 259 stimulates covalently closed circular DNA synthesis and virus production, respectively. (iii) The presence of phosphoserine at position 259 is required for initiation of infection. The results implied that both phosphorylated and nonphosphorylated capsid proteins were necessary for a nucleocapsid particle to carry out all its functions in virus replication, explaining why differential phosphorylation of the capsid protein occurs in hepadnaviruses. Whether these differentially phosphorylated proteins coexist on the same nucleocapsid, or whether the nucleocapsid acquires sequential functions through selective phosphorylation and dephosphorylation, is discussed.  相似文献   

14.
V B Rao  L W Black 《Cell》1985,42(3):967-977
A phage T4 DNA packaging enzyme appears to arise as a processed form of the major T4 capsid structural protein gp23. The enzyme activity and antigen are missing from all head gene mutants that block the morphogenetic proteolytic processing reactions of the head proteins in vivo. The enzyme antigen can be formed in vitro by T4 (gp21) specific processing of gp23 containing extracts. Enzyme antigen is found in active processed proheads but not in full heads. The enzyme and the major capsid protein show immunological cross-reactivity, produce common peptides upon proteolysis, and share an assembly-conformation-dependent ATP binding site. The packaging enzyme and the mature capsid protein (gp23*) both appear to arise from processing of gp23, the former as a minor product of a specific gp23 structure in the prohead, acting in DNA packaging as a DNA-dependent ATPase, and a headful-dependent terminase.  相似文献   

15.
16.
17.
Long G  Pan X  Westenberg M  Vlak JM 《Journal of virology》2006,80(22):11226-11234
F proteins from baculovirus nucleopolyhedrovirus (NPV) group II members are the major budded virus (BV) viral envelope fusion proteins. They undergo furin-like proteolysis processing in order to be functional. F proteins from different baculovirus species have a long cytoplasmic tail domain (CTD), ranging from 48 (Spodoptera litura multicapsid NPV [MNPV]) to 78 (Adoxophyes honmai NPV) amino acid (aa) residues, with a nonassigned function. This CTD is much longer than the CTD of GP64-like envelope fusion proteins (7 aa), which appear to be nonessential for BV infectivity. Here we have investigated the functional role of the CTD of Helicoverpa armigera single-capsid NPV (HearNPV), a group II NPV. We combined a newly constructed HearNPV f-null bacmid knockout-repair system and an Autographa californica MNPV (AcMNPV) gp64-null bacmid knockout-pseudotype system with mutation and rescue experiments to study the functional role of the baculovirus F protein CTD. We show that except for the 16 C-terminal aa, the HearNPV F CTD is essential for virus spread from cell to cell. In addition, the CTD of HearNPV F is involved in BV production in a length-dependent manner and is essential for BV infectivity. The tyrosine residue Y658, located 16 aa from the C terminus, seems to be critical. However, HearNPV F without a CTD still rescues the infectivity of gp64-null AcMNPV BV, indicating that the CTD is not involved in processing and fusogenicity. Altogether, our results indicate that the F protein is essential for baculovirus BV infectivity and that the CTD is important for F protein incorporation into BV.  相似文献   

18.
Architecturally conserved viral portal dodecamers are central to capsid assembly and DNA packaging. To examine bacteriophage T4 portal functions, we constructed, expressed and assembled portal gene 20 fusion proteins. C-terminally fused (gp20-GFP, gp20-HOC) and N-terminally fused (GFP-gp20 and HOC-gp20) portal fusion proteins assembled in vivo into active phage. Phage assembled C-terminal fusion proteins were inaccessible to trypsin whereas assembled N-terminal fusions were accessible to trypsin, consistent with locations inside and outside the capsid respectively. Both N- and C-terminal fusions required coassembly into portals with approximately 50% wild-type (WT) or near WT-sized 20am truncated portal proteins to yield active phage. Trypsin digestion of HOC-gp20 portal fusion phage showed comparable protection of the HOC and gp20 portions of the proteolysed HOC-gp20 fusion, suggesting both proteins occupy protected capsid positions, at both the portal and the proximal HOC capsid-binding sites. The external portal location of the HOC portion of the HOC-gp20 fusion phage was confirmed by anti-HOC immuno-gold labelling studies that showed a gold 'necklace' around the phage capsid portal. Analysis of HOC-gp20-containing proheads showed increased HOC protein protection from trypsin degradation only after prohead expansion, indicating incorporation of HOC-gp20 portal fusion protein to protective proximal HOC-binding sites following this maturation. These proheads also showed no DNA packaging defect in vitro as compared with WT. Retention of function of phage and prohead portals with bulky internal (C-terminal) and external (N-terminal) fusion protein extensions, particularly of apparently capsid tethered portals, challenges the portal rotation requirement of some hypothetical DNA packaging mechanisms.  相似文献   

19.
Venezuelan equine encephalitis virus (VEEV) is a pathogenic alphavirus, which circulates in the Central, South, and North Americas, including the United States, and represents a significant public health threat. In recent years, strong progress has been made in understanding the structure of VEEV virions, but the mechanism of their formation has yet to be investigated. In this study, we analyzed the functions of different capsid-specific domains and its amino-terminal subdomains in viral particle formation. Our data demonstrate that VEEV particles can be efficiently formed directly at the plasma membrane without cytoplasmic nucleocapsid preassembly. The entire amino-terminal domain of VEEV capsid protein was found to be dispensable for particle formation. VEEV variants encoding only the capsid''s protease domain efficiently produce genome-free VEEV virus-like particles (VLPs), which are very similar in structure to the wild-type virions. The amino-terminal domain of the VEEV capsid protein contains at least four structurally and functionally distinct subdomains, which mediate RNA packaging and the specificity of packaging in particular. The most positively charged subdomain is a negative regulator of the nucleocapsid assembly. The three other subdomains are not required for genome-free VLP formation but are important regulators of RNA packaging. Our data suggest that the positively charged surface of the VEEV capsid-specific protease domain and the very amino-terminal subdomain are also involved in interaction with viral RNA and play important roles in RNA encapsidation. Finally, we show that VEEV variants with mutated capsid acquire compensatory mutations in either capsid or nsP2 genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号