首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shikonin, a major active component of the Chinese herbal plant Lithospermum erythrorhizon, has been applied for centuries in traditional Chinese medicine. Although shikonin demonstrates potent anticancer efficacy in numerous types of human cancer cells, the cellular targets of shikonin have not been fully defined. We report here that shikonin may interact with the cytosolic thioredoxin reductase (TrxR1), an important selenocysteine (Sec)-containing antioxidant enzyme with a C-terminal -Gly-Cys-Sec-Gly active site, to induce reactive oxygen species (ROS)-mediated apoptosis in human promyelocytic leukemia HL-60 cells. Shikonin primarily targets the Sec residue in TrxR1 to inhibit its physiological function, but further shifts the enzyme to an NADPH oxidase to generate superoxide anions, which leads to accumulation of ROS and collapse of the intracellular redox balance. Importantly, overexpression of functional TrxR1 attenuates the cytotoxicity of shikonin, whereas knockdown of TrxR1 sensitizes cells to shikonin treatment. Targeting TrxR1 with shikonin thus discloses a previously unrecognized mechanism underlying the biological activity of shikonin and provides an in-depth insight into the action of shikonin in the treatment of cancer.  相似文献   

2.
Inhalational exposure to hexavalent chromium (Cr(VI)) compounds (e.g., chromates) is of concern in many Cr-related industries and their surrounding environments. The bronchial epithelium is directly exposed to inhaled Cr(VI). Cr(VI) species gain easy access inside cells, where they are reduced to reactive Cr species, which may also contribute to the generation of reactive oxygen species. The thioredoxin (Trx) system promotes cell survival and has a major role in maintaining intracellular thiol redox balance. Previous studies with normal human bronchial epithelial cells (BEAS-2B) demonstrated that chromates cause dose- and time-dependent oxidation of Trx1 and Trx2. The Trx’s keep many intracellular proteins reduced, including the peroxiredoxins (Prx’s). Prx1 (cytosolic) and Prx3 (mitochondrial) were oxidized by Cr(VI) treatments that oxidized all, or nearly all, of the respective Trx’s. Prx oxidation is therefore probably the result of a lack of reducing equivalents from Trx. Trx reductases (TrxR’s) keep the Trx’s largely in the reduced state. Cr(VI) caused pronounced inhibition of TrxR, but the levels of TrxR protein remained unchanged. The inhibition of TrxR was not reversed by removal of residual Cr(VI) or by NADPH, the endogenous electron donor for TrxR. In contrast, the oxidation of Trx1, Trx2, and Prx3 was reversible by disulfide reductants. Prolonged inhibition of TrxR in Cr(VI)-treated cells might contribute to the sustained oxidation of Trx’s and Prx’s. Reduced Trx binds to an N-terminal domain of apoptosis signaling kinase (ASK1), keeping ASK1 inactive. Cr(VI) treatments that significantly oxidized Trx1 resulted in pronounced dissociation of Trx1 from ASK1. Overall, the effects of Cr(VI) on the redox state and function of the Trx’s, Prx’s, and TrxR in the bronchial epithelium could have important implications for redox-sensitive cell signaling and tolerance of oxidant insults.  相似文献   

3.
Cigarette smoking contributes to the development or progression of numerous chronic and age-related disease processes, but detailed mechanisms remain elusive. In the present study, we examined the redox states of the GSH/GSSG and Cys/CySS couples in plasma of smokers and nonsmokers between the ages of 44 and 85 years (n = 78 nonsmokers, n = 43 smokers). The Cys/CySS redox in smokers (−64 ± 16 mV) was more oxidized than nonsmokers (− 76 ± 11 mV; p < .001), with decreased Cys in smokers (9 ± 5 μM) compared to nonsmokers (13 ± 6 μM; p < .001). The GSH/GSSG redox was also more oxidized in smokers (−128 ± 18 mV) than in nonsmokers (−137 ± 17 mV; p = .01) and GSH was lower in smokers (1.8 ± 1.3 μM) than in nonsmokers (2.4 ± 1.0; p < .005). Although the oxidation of GSH/GSSG can be explained by the role of GSH in detoxification of reactive species in smoke, the more extensive oxidation of the Cys pool shows that smoking has additional effects on sulfur amino acid metabolism. Cys availability and Cys/CySS redox are known to affect cell proliferation, immune function, and expression of death receptor systems for apoptosis, suggesting that oxidation of Cys/CySS redox or other perturbations of cysteine metabolism may have a key role in chronic diseases associated with cigarette smoking.  相似文献   

4.
Superoxide (O2•−) is implicated in inflammatory states including arteriosclerosis and ischemia-reperfusion injury. Cobalamin (Cbl) supplementation is beneficial for treating many inflammatory diseases and also provides protection in oxidative-stress-associated pathologies. Reduced Cbl reacts with O2•− at rates approaching that of superoxide dismutase (SOD), suggesting a plausible mechanism for its anti-inflammatory properties. Elevated homocysteine (Hcy) is an independent risk factor for cardiovascular disease and endothelial dysfunction. Hcy increases O2•− levels in human aortic endothelial cells (HAEC). Here, we explore the protective effects of Cbl in HAEC exposed to various O2•− sources, including increased Hcy levels. Hcy increased O2•− levels (1.6-fold) in HAEC, concomitant with a 20% reduction in cell viability and a 1.5-fold increase in apoptotic death. Pretreatment of HAEC with physiologically relevant concentrations of cyanocobalamin (CNCbl) (10-50 nM) prevented Hcy-induced increases in O2•− and cell death. CNCbl inhibited both Hcy and rotenone-induced mitochondrial O2•− production. Similarly, HAEC challenged with paraquat showed a 1.5-fold increase in O2•− levels and a 30% decrease in cell viability, both of which were prevented with CNCbl pretreatment. CNCbl also attenuated elevated O2•− levels after exposure of cells to a Cu/Zn-SOD inhibitor. Our data suggest that Cbl acts as an efficient intracellular O2•− scavenger.  相似文献   

5.
Glyphosate is the primary active constituent of the commercial pesticide Roundup. The present results show that acute Roundup exposure at low doses (36 ppm, 0.036 g/L) for 30 min induces oxidative stress and activates multiple stress-response pathways leading to Sertoli cell death in prepubertal rat testis. The pesticide increased intracellular Ca2+ concentration by opening L-type voltage-dependent Ca2+ channels as well as endoplasmic reticulum IP3 and ryanodine receptors, leading to Ca2+ overload within the cells, which set off oxidative stress and necrotic cell death. Similarly, 30 min incubation of testis with glyphosate alone (36 ppm) also increased 45Ca2+ uptake. These events were prevented by the antioxidants Trolox and ascorbic acid. Activated protein kinase C, phosphatidylinositol 3-kinase, and the mitogen-activated protein kinases such as ERK1/2 and p38MAPK play a role in eliciting Ca2+ influx and cell death. Roundup decreased the levels of reduced glutathione (GSH) and increased the amounts of thiobarbituric acid-reactive species (TBARS) and protein carbonyls. Also, exposure to glyphosate–Roundup stimulated the activity of glutathione peroxidase, glutathione reductase, glutathione S-transferase, γ-glutamyltransferase, catalase, superoxide dismutase, and glucose-6-phosphate dehydrogenase, supporting downregulated GSH levels. Glyphosate has been described as an endocrine disruptor affecting the male reproductive system; however, the molecular basis of its toxicity remains to be clarified. We propose that Roundup toxicity, implicated in Ca2+ overload, cell signaling misregulation, stress response of the endoplasmic reticulum, and/or depleted antioxidant defenses, could contribute to Sertoli cell disruption in spermatogenesis that could have an impact on male fertility.  相似文献   

6.
Formation of DNA-protein crosslinks (DPCs) in mammalian cells upon treatment with iron or copper ions was investigated. Cultured murine hybridoma cells were treated with Fe(II) or Cu(II) ions by addition to the culture medium at various concentrations. Subsequently, chromatin samples were isolated from treated and control cells. Analyses of chromatin samples by gas chromatography/mass spectrometry after hydrolysis and derivatization revealed a significant increase over the background amount of 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)-methyl]--tyrosine (Thy-Tyr crosslink) in cells treated with Fe(II) ions in the concentration range of 0.01 to 1 mM. In contrast, Cu(II) ions at the same concentrations did not produce this DPC in cells. No DNA base damage was observed in cells treated with Cu(II) ions, either. Preincubation of cells with ascorbic acid or coincubation with dimethyl sulfoxide did not significantly alleviate the Fe(II) ion-mediated formation of DPCs. In addition, a modified fluorometric analysis of DNA unwinding assay was used to detect DPCs formed in cells. Fe(II) ions caused significant formation of DPCs, but Cu(II) ions did not. The nature of the Fe(II)-mediated DPCs suggests the involvement of the hydroxyl radical in their formation. The Thy-Tyr crosslink may contribute to pathological processes associated with free radical reactions.  相似文献   

7.
YCT is a semipurified extract from Cratoxylum cochinchinense that has antioxidant properties and contains mostly mangiferin. We show here that YCT is selectively toxic to certain cell types and investigate the mechanisms of this toxicity in Jurkat T cells. By flow cytometric analyses, we show that YCT causes intense oxidative stress and a rise in cytosolic Ca2+. This is followed by a rise in mitochondrial Ca2+, release of cytochrome c, collapse of Δψm, a fall in ATP levels, and eventually cell death. The mechanism(s) of intense oxidative stress may involve a plasma membrane redox system, as cell death is inhibited by potassium ferricyanide. Cell death has some features of apoptosis (propidium iodide staining, externalization of phosphatidylserine, limited caspase-3 and -9 activities), but there was no internucleosomal DNA fragmentation.  相似文献   

8.
Retinoblastoma (RB) is a malignant intra-ocular neoplasm that affects children (usually below the age of 5 years). In addition to conventional chemotherapy, novel therapeutic strategies that target metabolic pathways such as glycolysis and lipid metabolism are emerging. Fatty acid synthase (FASN), a lipogenic multi-enzyme complex, is over-expressed in retinoblastoma cancer. The present study evaluated the biochemical basis of FASN inhibition induced apoptosis in cultured Y79 RB cells. FASN inhibitors (cerulenin, triclosan and orlistat) significantly inhibited FASN enzyme activity (P < 0.05) in Y79 RB cells. This was accompanied by a decrease in palmitate synthesis (end-product depletion), and increased malonyl CoA levels (substrate accumulation). Differential lipid profile was biochemically estimated in neoplastic (Y79 RB) and non-neoplastic (3T3) cells subjected to FASN inhibition. The relative proportion of phosphatidyl choline to neutral lipids (triglyceride + total cholesterol) in Y79 RB cancer cells was found to be higher than the non-neoplastic cells, indicative of altered lipid distribution and utilization in tumor cells. FASN inhibitor treated Y79 RB and fibroblast cells showed decrease in the cellular lipids (triglyceride, cholesterol and phosphatidyl choline) levels. Apoptotic DNA damage induced by FASN inhibitors was accompanied by enhanced lipid peroxidation.  相似文献   

9.
9,10-Phenanthrenequinone (9,10-PQ), a major quinone found in diesel exhaust particles, is considered to generate reactive oxygen species (ROS) through its redox cycling. Here, we show that 9,10-PQ evokes apoptosis in human aortic endothelial cells (HAECs) and its apoptotic signaling includes ROS generation and caspase activation. The 9,10-PQ-induced cytotoxicity was inhibited by ROS scavengers, indicating that intracellular ROS generation is responsible for the 9,10-PQ-induced apoptosis. Comparison of mRNA expression levels and kinetic constants in the 9,10-PQ reduction among 10 human reductases suggests that aldo-keto reductase 1C3 (AKR1C3) is a 9,10-PQ reductase in HAECs. In in vitro 9,10-PQ reduction by AKR1C3, the reduced product 9,10-dihydroxyphenanthrene and superoxide anions were formed, suggesting the enzymatic two-electron reduction of 9,10-PQ that thereby causes oxidative stress through its redox cycling. In addition, the participation of AKR1C3 in 9,10-PQ-redox cycling was confirmed by the data that AKR1C3 overexpression in endothelial cells augmented the ROS generation and cytotoxicity by 9,10-PQ, and the ROS scavengers inhibited the toxic effects. Pretreatment of the overexpressing cells with AKR1C3 inhibitors, flufenamic acid and indomethacin, suppressed the 9,10-PQ-induced GSH depletion. These results suggest that AKR1C3 is a key enzyme in the initial step of 9,10-PQ-induced cytotoxicity in HAECs.  相似文献   

10.
A recent study identified a haplotype on a small region of chromosome 12, between markers D12S1725 and D12S1596, shared by all patients with familial neuroblastoma (NB). We previously localized the human MGST1 gene, whose gene product protects against oxidative stress, to this very same chromosomal region (12p112.1–p13.33). Owing to the chromosomal location of MGST1; its roles in tumorigenesis, drug resistance, and oxidative stress; and the known sensitivity of NB cell lines to oxidative stress, we considered a role for MGST1 in NB development. Surprisingly there was no detectable MGST1 mRNA or protein in either NB cell lines or NB primary tumor tissue, although all other human tissues, cell lines, and primary tumor tissue examined to date express MGST1 at high levels. The mechanism behind the failure of NB cells and tissue to express MGST1 mRNA is unknown and involves the failure of MGST1 pre-mRNA expression, but does not involve chromosomal rearrangement or nucleotide variation in the promoter, exons, or 3' untranslated region of MGST1. MGST1 provides significant protection against oxidative stress and constitutes 4 to 6% of all protein in the outer membrane of the mitochondria. As NB cells are extremely sensitive to oxidative stress, and often used as a model system to investigate mitochondrial response to endogenous and exogenous stress, these findings may be due to the lack of expression MGST1 protein in NB. The significance of this finding to the development of neuroblastoma (familial or otherwise), however, is unknown and may even be incidental. Although our studies provide a molecular basis for previous work on the sensitivity of NB cells to oxidative stress, and possibly marked variations in NB mitochondrial homeostasis, they also imply that the results of these earlier studies using NB cells are not transferable to other tumor and cell types that express MGST1 at high concentrations.  相似文献   

11.
Salinomycin is perhaps the first promising compound that was discovered through high throughput screening in cancer stem cells. This novel agent can selectively eliminate breast and other cancer stem cells, though the mechanism of action remains unclear. In this study, we found that salinomycin induced autophagy in human non-small cell lung cancer (NSCLC) cells. Furthermore, we demonstrated that salinomycin stimulated endoplasmic reticulum stress and mediated autophagy via the ATF4-DDIT3/CHOP-TRIB3-AKT1-MTOR axis. Moreover, we found that the autophagy induced by salinomycin played a prosurvival role in human NSCLC cells and attenuated the apoptotic cascade. We also showed that salinomycin triggered more apoptosis and less autophagy in A549 cells in which CDH1 expression was inhibited, suggesting that the inhibition of autophagy might represent a promising strategy to target cancer stem cells. In conclusion, these findings provide evidence that combination treatment with salinomycin and pharmacological autophagy inhibitors will be an effective therapeutic strategy for eliminating cancer cells as well as cancer stem cells.  相似文献   

12.
Aldose reductase (AR) is abundantly expressed in a variety of cell lineages and has been implicated in the cellular response against oxidative stress. However, the exact functional role of AR against oxidative stress remains relatively unclear. This study investigated the role of AR in acrolein- or hydrogen peroxide-induced apoptosis using the J774.A.1 macrophage cell line. Ablation of AR with a small interference RNA or inhibition of AR activity significantly enhanced the acrolein- or hydrogen peroxide-induced generation of reactive oxygen species and aldehydes, leading to increased apoptotic cell death. Blockade of AR activity in J774A.1 cells markedly augmented the acrolein- or hydrogen peroxide-induced translocation of Bax to mitochondria along with reduced Bcl-2 and increased release of cytochrome c from the mitochodria. Taken together, these findings indicate that AR plays an important role in the cellular response against oxidative stress, by sequestering the reactive molecules generated in cells exposed to toxic substances.  相似文献   

13.
The aims of the study were to ascertain the potential role of oxidative stress in the onset of disease-related pathophysiological complications in young type 1 diabetes patients. Indicative parameters of lipoperoxidation, protein oxidation, and changes in antioxidant defense system status were measured in blood samples from 26 young diabetic patients with recently diagnosed (< 6 months) microangiopathy (+DC), 28 diabetic patients without complications (−DC), and 40 healthy age-matched controls (CR). Both diabetic groups presented similar fructosamine and glycated hemoglobin (HbA1c) values. Results showed erythrocyte glutathione peroxidase activity, glutathione content, and plasma β-carotene to be significantly lower in diabetic patients compared with control subjects, but with no significant differences between −DC and +DC groups. Antioxidant enzyme superoxide dismutase activity was significantly higher in the erythrocytes of diabetic patients independently of the presence of microvascular complications. However, the plasma -tocopherol/total lipids ratio was significantly diminished in +DC group compared with −DC (p = .008). Lipid peroxidation indices measured in plasma included malondialdehyde, lipid hydroperoxides, and lipoperoxides, which were significantly elevated in our diabetic patients regardless of the presence of complications. Evidence of oxidative damage to proteins was shown both through the quantification of plasma protein carbonyl levels, which were significantly higher in −DC (0.61 ± 0.09 mmol/mg prot), and higher still in the +DC patients (0.75 ± 0.09 mmol/mg prot) compared with those of controls (0.32 ± 0.03 mmol/mg prot; p < .01) and immunoblot analysis of protein-bound carbonyls. Additionally, a marked increase in protein oxidation was observed in +DC patients through assessment of advanced oxidation protein products (AOPP) considered to be an oxidized albumin index; AOPP values were significantly higher in +DC than in −DC patients (p < .01) and CR (p < .0001). These results point to oxidatively modified proteins as a differential factor possibly related to the pathogenesis of diabetic complications.  相似文献   

14.
Autophagy can promote cell survival or death, but the molecular basis of its dual role in cancer is not well understood. Here, we report that glucosamine induces autophagic cell death through the stimulation of endoplasmic reticulum (ER) stress in U87MG human glioma cancer cells. Treatment with glucosamine reduced cell viability and increased the expression of LC3 II and GFP-LC3 fluorescence puncta, which are indicative of autophagic cell death. The glucosamine-mediated suppression of cell viability was reversed by treatment with an autophagy inhibitor, 3-MA, and interfering RNA against Atg5. Glucosamine-induced ER stress was manifested by the induction of BiP, IRE1α, and phospho-eIF2α expression. Chemical chaperon 4-PBA reduced ER stress and thereby inhibited glucosamine-induced autophagic cell death. Taken together, our data suggest that glucosamine induces autophagic cell death by inducing ER stress in U87MG glioma cancer cells and provide new insight into the potential anticancer properties of glucosamine.  相似文献   

15.
The primary purpose of this research is to investigate whether exposure to polychlorinated biphenyls (PCBs), i.e. PCB153 and PCB126, is associated with induction of reactive oxygen species (ROS), poly(ADP-ribose) polymerase-1 (PARP-1) activation, and cell death in human T47D and MDA-MB-231 breast cancer cells. Results indicated that PCB153 and PCB126 induced concentration- and time-dependent increases in cytotoxic response and ROS formation in both T47D and MDA-MB-231 cells. At non-cytotoxic concentrations both PCB153 and PCB126 induced decreases in intracellular NAD(P)H and NAD+ in T47D and MDA-MB-231 cells where T47D cells were more resistant to PCB-induced reduction in intracellular NAD(P)H than MDA-MB-231 cells. Further investigation indicated that three specific PARP inhibitors completely blocked PCB-induced decreases in intracellular NAD(P)H in both T47D and MDA-MB-231 cells. These results imply that decreases in intracellular NAD(P)H in PCB-treated cells may be, in part, due to depletion of intracellular NAD+ pool mediated by PARP-1 activation through formation of DNA strand breaks. Overall, the extent of cytotoxic response, ROS formation, and PARP-1 activation generated in T47D and MDA-MB-231 cells was greater for PCB153 than for PCB126. In addition, the cytotoxicity induced by PCB153 and PCB126 in both T47D and MDA-MB-231 cells was completely blocked by co-treatment of catalase, dimethylsulfoxide, cupper (I)-/iron (II)-specific chelators, and CYP1A/2B inhibitors. This evidence suggests the involvement of ROS, Cu(I), Fe(II), and CYP1A/2B enzymes in mediating the induction of cell death by PCB153 and PCB126. Further, antagonism was observed between PCB126 and PCB153 for effects on cytotoxic response and ROS formation in T47D and MDA-MB-231 cells. Antagonism was also observed between PCB153 and PCB126 in the induction of NAD(P)H depletion at lower concentration (<10 microM) in T47D cells, but not in MDA-MB-231 cells. In conclusions, results from our investigation suggest that ROS formation induced by PCBs is a significant determinant factor in mediating the DNA damage and cell death in human breast cancer cells. The data also suggests that the status of estrogen receptor alpha may play a role in modulating the PCB-induced oxidative DNA damage and cell death in human breast cancer cells.  相似文献   

16.
The outcomes of breast cancer patients are still poor although new compounds have recently been introduced into the clinic. Therefore, novel chemical approaches are required. In the present study, palladium(II) and corresponding platinum(II) complexes containing bis(2-pyridylmethyl)amine (bpma) and saccharine were synthesized and tested against human breast cancer cell lines, MCF-7 and MDA-MB-231, in vitro. Cytotoxicity was first screened by the MTT assay and the results were further confirmed by the ATP assay. The palladium complexes 1 and 3 yielded stronger cytotoxicity than the corresponding platinum complexes 2 and 4 at the same doses. The palladium complex 3 was found to be the most cytotoxic one. Therefore, a more comprehensive study was carried out with this complex only. The mode of cell death was determined morphologically under fluorescent microscope and biochemically with detection of active caspase-3 and PARP cleavage by Western blot. Changes in apoptosis-related gene expressions were measured with qPCR. It was demonstrated that complex 3 caused cell death by apoptosis determined by fluorescence imaging and Western blot. As a sign of apoptosis, PARP was cleaved in both of the cell lines. In addition, caspase-3 was cleaved in MDA-MB-231 cells while this cleavage was not observed in MCF-7. The results show that the complex 3 is a promising anti-cancer compound against breast cancer with an IC50 value of 3.9 μM for MCF-7 and 4.2 μM for MDA-MB-231 cells, which warrants further animal experiments.  相似文献   

17.
Hydrogen peroxide (H2O2) is implicated in cardiac myocyte (CM) damage during myocardial ischemia-reperfusion (IR) injury. Myoglobin (Mb) is present in CM at significant concentrations and reacts with H2O2 to yield one- and two-electron oxidants that may promote myocardial injury. Paradoxically, hearts from mice lacking Mb are more susceptible to H2O2-induced dysfunction than the corresponding controls [U. Flogel, A. Godecke, L.O. Klotz, J. Schrader, Role of myoglobin in the anti-oxidant defense of the heart, FASEB J. 18 (2004) 1156-1158]. We have overexpressed wild-type or Y103F variant of human Mb in cultured CMs to test whether Mb protects against H2O2 insult. Contrary to expectation, cells expressing WT or the Y103F Mb show increased mitochondrial dysfunction and apoptosis, and decreased ATP in response to H2O2 that follows the order native < Y103F Mb < WT human Mb consistent with the increasing pro-oxidant activity for these proteins. These data indicate that (i) Mb promotes oxidative damage to cultured CM and (ii) Mb may be a useful target for the design of inhibitors of myocardial IR injury.  相似文献   

18.
Taxanes remain first line chemotherapy in management of metastatic breast cancer and have a key role in epithelial ovarian cancer, with increasingly common use of weekly paclitaxel dosing regimens. However, their clinical utility is limited by the development of chemoresistance. To address this, we modelled in vitro paclitaxel resistance in MCF-7 cells. We show that at clinically relevant drug doses, emerging paclitaxel resistance is associated with profound changes in cell death responses and a switch from apoptosis to autophagy as the principal mechanism of drug-induced cytotoxicity. This was characterised by a complete absence of caspase-mediated apoptotic cell death (using the pan-caspase-inhibitor Z-VAD) in paclitaxel-resistant MCF-7TaxR cells, compared with parent MCF-7 or MDA-MB-231 cell lines on paclitaxel challenge, downregulation of caspase-7, caspase-9 and BCl2-interacting mediator of cell death (BIM) expression. Silencing with small interfering RNA to BIM in MCF-7 parental cells was sufficient to confer paclitaxel resistance, inferring the significance in downregulation of this protein in contributing to the resistant phenotype of the MCF-7TaxR cell line. Conversely, there was an increased autophagic response in the MCF-7TaxR cell line with reduced phospho-mTOR and relative resistance to the mTOR inhibitors rapamycin and RAD001. In conclusion, we show for the first time that paclitaxel resistance is associated with profound changes in cell death response with deletion of multiple apoptotic factors balanced by upregulation of the autophagic pathway and collateral sensitivity to platinum.  相似文献   

19.
BAG-1 is a multi-functional protein that exists in three major isoforms, BAG-1 p50, p46, and p36. A fourth isoform of 29 kDa also exists but its function remains mostly unknown. To further understand the role of this smaller isoform in ovarian cancer cells, the SKOV3 cell line was transfected with a doxycycline-inducible human BAG-1 p29 isoform or control plasmid. Ovexpression of BAG-1 p29 promotes protection from apoptosis in the presence of EGF as shown by decreased cell death measured by XTT assay and caspase-3 activity. Unexpectedly, however, BAG-1 p29 does not associate with the EGF receptor. When BAG-1 p29 transfectants were incubated in hydrogel-coated plates, BAG-1 p29-expressing SKOV3 cells were significantly more resistant to anoikis as compared to controls, and this correlated with decreased activation of caspase-3. The results of this study implicate BAG-1 p29 in the regulation of both the EGF signaling cascade and the apoptotic cascade induced by loss of anchorage.  相似文献   

20.
We report that the energy metabolism shifts to anaerobic glycolysis as an adaptive response to oxidative stress in the primary cultures of skin fibroblasts from patients with MERRF syndrome. In order to unravel the molecular mechanism involved in the alteration of energy metabolism under oxidative stress, we treated normal human skin fibroblasts (CCD-966SK cells) with sub-lethal doses of H2O2. The results showed that several glycolytic enzymes including hexokinase type II (HK II), lactate dehydrogenase (LDH) and glucose transporter 1 (GLUT1) were up-regulated in H2O2-treated normal skin fibroblasts. In addition, the glycolytic flux of skin fibroblasts was increased by H2O2 in a dose-dependent manner through the activation of AMP-activated protein kinase (AMPK) and phosphorylation of its downstream target, phosphofructokinase 2 (PFK2). Moreover, we found that the AMPK-mediated increase of glycolytic flux by H2O2 was accompanied by an increase of intracellular NADPH content. By treatment of the cells with glycolysis inhibitors, an AMPK inhibitor or genetic knockdown of AMPK, respectively, the H2O2-induced increase of NADPH was abrogated leading to the overproduction of intracellular ROS and cell death. Significantly, we showed that phosphorylation levels of AMPK and glycolysis were up-regulated to confer an advantage of survival for MERRF skin fibroblasts. Taken together, our findings suggest that the increased production of NADPH by AMPK-mediated increase of the glycolytic flux contributes to the adaptation of MERRF skin fibroblasts and H2O2-treated normal skin fibroblasts to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号