首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Platelet factor 4 (PF-4) is a platelet-derived alpha-chemokine that binds to and activates human neutrophils to undergo specific functions like exocytosis or adhesion. PF-4 binding has been shown to be independent of interleukin-8 receptors and could be inhibited by soluble chondroitin sulfate type glycosaminoglycans or by pretreatment of cells with chondroitinase ABC. Here we present evidence that surface-expressed neutrophil glycosaminoglycans are of chondroitin sulfate type and that this species binds to the tetrameric form of PF-4. The glycosaminoglycans consist of a single type of chain with an average molecular mass of approximately 23 kDa and are composed of approximately 85-90% chondroitin 4-sulfate disaccharide units type CSA (-->4GlcAbeta1-->3GalNAc(4-O-sulfate)beta1-->) and of approximately 10-15% di-O-sulfated disaccharide units. A major part of these di-O-sulfated disaccharide units are CSE units (-->4GlcAbeta1-->3GalNAc(4,6-O-sulfate)beta1-->). Binding studies revealed that the interaction of chondroitin sulfate with PF-4 required at least 20 monosaccharide units for significant binding. The di-O-sulfated disaccharide units in neutrophil glycosaminoglycans clearly promoted the affinity to PF-4, which showed a Kd approximately 0.8 microM, as the affinities of bovine cartilage chondroitin sulfate A, porcine skin dermatan sulfate, or bovine cartilage chondroitin sulfate C, all consisting exclusively of monosulfated disaccharide units, were found to be 3-5-fold lower. Taken together, our data indicate that chondroitin sulfate chains function as physiologically relevant binding sites for PF-4 on neutrophils and that the affinity of these chains for PF-4 is controlled by their degree of sulfation.  相似文献   

2.
The interference of the heparin-neutralizing plasma component S protein (vitronectin) (Mr = 78,000) with heparin-catalyzed inhibition of coagulation factor Xa by antithrombin III was investigated in plasma and in a purified system. In plasma, S protein effectively counteracted the anticoagulant activity of heparin, since factor Xa inhibition was markedly reduced in comparison to heparinized plasma deficient in S protein. Using purified components in the presence of heparin, S protein induced a concentration-dependent reduction of the inhibition rate of factor Xa by antithrombin III. This resulted in a decrease of the apparent pseudo-first order rate constant by more than 10-fold at a physiological ratio of antithrombin III to S protein. S protein not only counteracted the anticoagulant activity of commercial heparin but also of low molecular weight forms of heparin (mean Mr of 4,500). The heparin-neutralizing activity of S protein was found to be mainly expressed in the range 0.2-10 micrograms/ml of high Mr as well as low Mr heparin. S protein and high affinity heparin reacted with apparent 1:1 stoichiometry to form a complex with a dissociation constant KD = 1 X 10(-8) M as determined by a functional assay. As deduced from dot-blot analysis, direct interaction of radiolabeled heparin with S protein revealed a dissociation constant KD = 4 X 10(-8) M. Heparin binding as well as heparin neutralization by S protein increased significantly when reduced/carboxymethylated or guanidine-treated S protein was employed indicating the existence of a partly buried heparin-binding domain in native S protein. Radiolabeled heparin bound to the native protein molecule as well as to a BrCN fragment (Mr = 12,000) containing the heparin-binding domain as demonstrated by direct binding on nitrocellulose replicas of sodium dodecyl sulfate-polyacrylamide gels. Kinetic analysis revealed that the heparin neutralization activity of S protein in the inhibition of factor Xa by antithrombin III could be mimicked by a synthetic tridecapeptide from the amino-terminal portion of the heparin-binding domain. These data provide evidence that the heparin-binding domain of S protein appears to be unique in binding to heparin and thereby neutralizing its anticoagulant activity in the inhibition of coagulation factors by antithrombin III. The induction of heparin binding and neutralization may be considered a possible physiological mechanism initiated by conformational alteration of the S protein molecule.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The binding of the glycosaminoglycans (GAG) chondroitin sulfate and heparin and the homologous molecule dextran sulfate to multilamellar dimyristoyl phosphatidylcholine (DMPC), dilaureyl phosphatidylcholine (DLPC) and egg lecithin liposomes was investigated by microelectrophoresis measurements. Drastic changes of the zeta potential of the liposomes to negative values indicate the binding of the highly anionic macromolecules. Binding depends strongly on Ca2+ and NaCl concentrations in the medium and does not occur in the absence of Ca2+. The adsorption is saturated at concentrations of about 0.1 mg/ml chondroitin sulfate and heparin and 0.01 mg/ml dextran sulfate. In the gel state of the phospholipid bilayer more GAG can associate with the surface compared to the fluid state.  相似文献   

4.
Vitronectin (VN) is an adhesive glycoprotein with roles in the complement, coagulation, and immune systems. Many of the functions of VN are mediated by a glycosaminoglycan binding site, near its carboxyl-terminal end. In this paper, we show that the highly sulfated glycosaminoglycans (GAGs), dextran sulfate, pentosan polysulfate, and fucoidan effectively augment [14C]putrescine incorporation into VN and cross-linking of VN into high molecular multimers by guinea pig liver transglutaminase (TG). Other GAGs including heparin, low molecular weight heparin, dermatan sulfate, keratan sulfate, and the nonsulfated dextrans were ineffective in accelerating these reactions. Dextran sulfate of average molecular mass 500 kDa was more effective than dextran sulfate of average molecular mass 5 kDa, supporting a template mechanism of action of the GAGs, in which VN molecules align on the GAG in a conformation suitable for cross-linking. The VN multimers catalyzed by TG retained functional activity in binding [3H]heparin, platelets, and plasminogen activator inhibitor type-1 (PAI-1). [3H]Heparin bound selectively to the 65-kDa monomeric band of VN and to the multimers derived from this band. PAI-1, however, bound equally to both the 75- and 65-kDa monomeric forms of VN, suggesting that the PAI-1 binding site on VN is distinct from the GAG binding site. The interaction of GAGs with the TG-catalyzed cross-linking of VN may facilitate studies of VN structure-function relationships.  相似文献   

5.
S protein, a major inhibitor of the assembly of the membrane attack complex of complement, has recently been shown to be identical to the serum spreading factor vitronectin. It also neutralizes the anticoagulant activities of heparin. We have studied the structural requirements for the heparin neutralizing properties of S protein/vitronectin using heparin, heparan sulfate, and heparin oligosaccharides with well defined anticoagulant specificities. The abilities of heparin fractions, Mr 7,800-18,800, with high affinity for antithrombin, and of the International Heparin Standard, to accelerate the inactivation of thrombin and Factor Xa by antithrombin were readily neutralized by S protein/vitronectin. Binding and neutralization of heparin by S protein/vitronectin was inhibited by heparin with low affinity for antithrombin, indicating that S protein/vitronectin can interact with a region on the heparin chain that might serve as a proteinase binding site. S protein/vitronectin efficiently neutralized oligosaccharides of Mr 2,400-7,200, unlike the two other physiologically occurring heparin neutralizing proteins histidine-rich glycoprotein and platelet factor 4. Furthermore, S protein/vitronectin neutralized the anti-Factor Xa activity of a synthetic pentasaccharide comprising the antithrombin-binding sequence of heparin. High molar excess of a synthetic tridecapeptide corresponding to part (amino acids 374-359) of the proposed glycosaminoglycan binding domain of S protein/vitronectin neutralized high affinity heparin and some oligosaccharides, but failed to neutralize the synthetic antithrombin-binding pentasaccharide. Like platelet factor 4, but unlike histidine-rich glycoprotein, S protein/vitronectin readily neutralized the anticoagulant activities of heparan sulfate of Mr approximately 20,000. These findings suggest that S protein/vitronectin may interact through its glycosaminoglycan binding domain(s) with various functional domains of the heparin (heparan sulfate) molecule, including the antithrombin-binding pentasaccharide sequence. Furthermore, the results suggest that S protein/vitronectin may be a physiologically important modulator of the anticoagulant activity of heparin-like material on or near the vascular endothelium.  相似文献   

6.
Calcitonin receptors of human osteoclastoma   总被引:2,自引:0,他引:2  
Osteoclast-rich cultures were prepared by disaggregation of osteoclastomas (giant cell tumour of bone) and settlement onto glass or plastic surfaces. Autoradiography using [125I]-salmon calcitonin ([125I]-sCT) revealed specific binding only to multinucleate giant cells (osteoclasts) and a minor population of mononuclear cells. [125I]-sCT competitive binding studies indicated a Kd of 5 x 10(-10) M and receptor number of approximately 1 million sites/osteoclast. sCT treatment resulted in a dose-dependent rise in cAMP (EC50 10(-10) M). Homogenates of an osteoclastoma also demonstrated specific binding of [125I]-sCT. Chemical cross-linking of a labelled synthetic sCT derivative. [125I]-[Arg11,18,Lys14]-sCT, using disuccinimidyl suberate, resulted in labelling of a receptor component of approximate Mr 85-90,000. The multinucleate giant cells (osteoclasts) of human osteoclastomas possess large number of CT receptors which exhibit the same binding kinetics and apparent Mr as those of other CT target cells.  相似文献   

7.
A new water-soluble color reagent, 4-N,N-dimethylaminoazobenzene-4'-isothiocyano-2'-sulfonic acid (S-DABITC), was used to identify lysine residues of antithrombin III which participate in the binding of heparin. Antithrombin, modified with S-DABITC in the presence and absence of low molecular weight heparin (Mr 5000) was reduced, carboxymethylated, and digested with trypsin. The digest was analyzed by high-performance liquid chromatography and monitored at 465 nm. In the absence of heparin, four major colored peptides (T1, T2, T3, and T4) were identified. When antithrombin was preincubated with heparin (2-fold by weight), followed by S-DABITC modification, the recovery of peptide T4 remained unchanged, but the recoveries of T1, T2, and T3 were reduced by 93, 86, and 98%, respectively. In addition, a new colored peptide, TA, appeared. Amino acid sequencing of peptides T1, T2, T3, and TA localized S-DABITC modification sites as Lys-136, Lys-125, Lys-107, and Lys-236, respectively. Thus, binding of heparin to human antithrombin diminished S-DABITC modification at Lys-107, Lys-125, and Lys-136, but at the same time enhanced S-DABITC modification at Lys-236. This phenomenon was further characterized by varying the molar ratio of heparin/antithrombin (from 0.04 to 20). The shielding of Lys-125 and Lys-136 was inversely proportional to the activation of Lys-236. At a heparin/antithrombin molar ratio of 1, the extent of shielding of Lys-125 and Lys-136 and the unmasking of Lys-236 were 25-33%. This shielding-unmasking effect correlated with enhanced antithrombin inhibition of thrombin. We conclude that Lys-107, Lys-125, and Lys-136 are situated within the heparin-binding site of human antithrombin and that binding of heparin to antithrombin causes a conformational change of antithrombin that leads to the exposure of Lys-236 for S-DABITC modification.  相似文献   

8.
The binding of selenoprotein P to glycosaminoglycans using heparin as a model compound was studied by surface plasmon resonance. It was found that heparin contains two binding sites for selenoprotein P, a high-affinity, low-capacity site (Kd approximately 1 nM) and a low-affinity, high-capacity site (Kd approximately 140 nM). Binding at both sites is sensitive to pH and ionic strength, and the high-affinity site is abolished by histidine carbethoxylation with diethylpyrocarbonate. The pH and salt dependence of binding suggests electrostatic interactions with heparin. The concentrations of selenoprotein P in plasma (approximately 50 nM) are sufficiently high to facilitate binding of selenoprotein P to proteoglycans on the vascular endothelium, and this may contribute to the formation of a protective barrier against oxidants such as peroxynitrite or hydroperoxides.  相似文献   

9.
Heparin and heparin oligosaccharides prepared by nitrous acid depolymerization were fractionated by affinity chromatography on immobilized antithrombin and by gel chromatography. The anticoagulant activities of high affinity heparin of Mr greater than or equal to 7,800 could be readily neutralized by the plasma protein histidine-rich glycoprotein (see also Lijnen, H.R., Hoylaerts, M., and Collen, D. (1983) J. Biol. Chem. 258, 3803-3808), whereas oligosaccharides falling below 18 saccharide units (Mr 5,400) became increasingly resistant to neutralization. An octasaccharide with characteristic marked ability to accelerate the inactivation of Factor Xa by antithrombin retained greater than 50% of its activity even at a histidine-rich glycoprotein/oligosaccharide molar ratio of 500:1. Histidine-rich glycoprotein, like the platelet-derived heparin neutralizing protein platelet factor 4 (Lane, D.A., Denton, J., Flynn, A.M., Thunberg, L. and Lindahl, U. (1984) Biochem J. 218, 725-732), therefore requires interaction with saccharide sequences in addition to the antithrombin-binding pentasaccharide of heparin in order to efficiently express its antiheparin activity. Heparan sulfate isolated from pig intestinal mucosa (HS I, Mr approximately 20,000) and from human aorta (HS II, Mr approximately 40,000) exhibited anti-Factor Xa activities of 180 and 20 units/micromol [corrected], respectively. A fraction corresponding to about 5% of HS I bound with high affinity to immobilized antithrombin and contained all of the anticoagulant activity of the starting material. While these heparan sulfates were readily neutralized by platelet factor 4, they were relatively resistant to neutralization by histidine-rich glycoprotein, although complete neutralization could be attained in the presence of molar excess of this protein. These findings may be of importance in relation (a) to the functional role of endogenous anticoagulant polysaccharides at the vascular wall and (b) to clinical situations in which heparin or heparin-related compounds are administered as exogenous anticoagulants.  相似文献   

10.
Intravenous heparin has previously been shown to release the high-heparin-affinity fraction C of extracellular-superoxide dismutase (EC-SOD, EC 1.15.1.1) to plasma in man and other mammals. This paper reports on further studies of the phenomena in the pig. A dose-response curve of the effect of heparin revealed that 1000 IU/kg body weight is needed for maximal release of EC-SOD C. This dose is an order of magnitude larger than that needed for the maximal release to plasma of factors such as lipoprotein lipase, hepatic lipase, and diamine oxidase, which are distributed between plasma and endothelium similarly to EC-SOD C. Thus EC-SOD C appears to have an unusually high affinity for endothelial cell-surface sulfated glycosaminoglycans relative to the affinity for heparin. There was no significant difference in releasing potency between unfractionated heparin and heparin subfractions with high or low affinity for antithrombin III. The heparin structure conferring high-affinity binding to antithrombin III is thus not specifically involved in binding to EC-SOD C. The non-biosynthetic compound dextran sulfate 5000 was an order of magnitude more efficient than heparin. Protamine displayed dual effects. Given alone in high dose it released EC-SOD to plasma, probably due to binding to endothelial cell-surface sulfated glycosaminoglycans displacing fraction C of the enzyme. When given after heparin, in a dose just below that expected to neutralize the heparin, protamine reversed the heparin-induced EC-SOD release.  相似文献   

11.
Multiple complexes of thrombin and heparin   总被引:2,自引:0,他引:2  
Fluorescence polarization has been used to study the interaction of thrombin and heparin, and the catalysis by heparin of the combination of thrombin and antithrombin. At low ionic strength (20 mM Tris, pH 7.4), the addition of heparins of known molecular weights to thrombin led to the formation of large complexes (defined as 'complex 1'). Further addition of heparin led to a rearrangement of these large complexes to form smaller complexes (defined as 'complex 2'). The molar ratio of thrombin to heparin in complex 1 increased with increasing heparin molecular weight, and corresponded to one thrombin molecule for every heparin segment of Mr 3000. The stoichiometry of complex 2 was 1 heparin to 1 thrombin, irrespective of the heparin molecular weight. At higher ionic strength (150 mM NaCl) some complex 1 was still formed. However, by reversing the titration and adding thrombin to fluorescein-heparin the dissociation constant for complex 2 was estimated to be 1-3 microM and independent of the heparin molecular weight. The complex formed between thrombin and heparin, to which antithrombin was attached, has a dissociation constant of 1-2 microM, again irrespective of the heparin molecular weight. In the heparin-catalysed thrombin-antithrombin reaction, an increase in the size of heparin leads to a lowering of the observed Km for thrombin. A possible explanation is that thrombin, after initial binding to the heparin, moves rapidly to the site where it combines with antithrombin.  相似文献   

12.
Binding and endocytosis of heparin by human endothelial cells in culture   总被引:8,自引:0,他引:8  
Binding of heparin and low molecular weight heparin fragments (CY 222, Mr range 1500-8000) to human vascular endothelial cells was studied. Primary culture of human umbilical vein endothelial cells and either 125I or 3H-labeled heparin or [125I]CY 222 were used. Slow, saturable and specific binding was found. No other tested glycosaminoglycan, excepting a highly sulfated heparan fraction, was able to compete for heparin binding. Two groups of binding sites for [3H]heparin could be distinguished: one with high affinity (Kd = 0.12 microM) and another with lower affinity (Kd = 1.37 microM) and a relative large capacity of binding (1.16 X 10(7) molecules/cell) was calculated. The Kd for unlabeled heparin, as calculated from competition experiments, was 0.23 microM. Much lower affinity was calculated for unlabeled low molecular weight heparin fragments CY 222 (Kd = 4.3 microM) from competition experiments with [125I]CY 222. The binding reversibility was only partial for unfractionated heparin. Even by chasing with unlabeled compound, a fraction of 25-30% was not dissociable from endothelial cells. This fraction was much lower if incubation was carried out at 4 degrees C. The addition of basic proteins (histones) to the incubation medium greatly enhanced the undissociable binding at 37 degrees C, but not at 4 degrees C. The undissociable fraction of heparin was not available to degradation by purified microbial heparinase. These results suggest that a fraction of bound heparin is internalized by the vascular endothelium.  相似文献   

13.
Protein C inhibitor (PCI), also known as plasminogen activator inhibitor 3, inhibits a variety of serine proteases by forming sodium dodecyl sulfate-stable 1:1 complexes. In purified systems PCI is only a weak inhibitor of urokinase. Nevertheless, complexes between PCI and urokinase are found in appreciable amounts in native human urine. Since PCI activity is stimulated by heparin and other glycosaminoglycans, we investigated the presence of stimulating glycosaminoglycans on cells lining the urinary tract. We chose the epithelial kidney tumor cell line TCL-598 as a model and isolated metabolically labeled glycosaminoglycans. TCL-598 incorporated [35S] sulfate into high Mr components (Mr greater than 200,000 and approximately 75,000) as judged from sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of cell extracts; the Mr greater than 200,000 component bound specifically to PCI-Sepharose 4B and was eluted either with heparin (5 mg/ml) or with NaCl (2.0 M). Treatment of this PCI-binding material with chondroitinase ABC, but not with chondritinase AC or heparitinase, abolished binding to PCI-Sepharose, confirming the glycosaminoglycan nature of this material and suggesting the involvement of dermatan sulfate in binding. These glycosaminoglycans eluted from PCI-Sepharose stimulated urokinase inhibition by PCI in a dose-dependent way and enhanced complex formation of 125I-urokinase and PCI as did in control experiments dermatan sulfate from porcine skin and from bovine mucosa. Our results suggest that PCI activity might be regulated also in vivo by the presence or absence of stimulating glycosaminoglycans; dermatan sulfate-containing glycosaminoglycans associated with kidney cells might be responsible for stimulation of the urokinase inhibitory activity of PCI in the urinary tract; the type of glucosaminoclycans might furthermore regulate enzyme specificity of PCI.  相似文献   

14.
Interaction of heparin with annexin V   总被引:5,自引:0,他引:5  
The energetics and kinetics of the interaction of heparin with the Ca2+ and phospholipid binding protein annexin V, was examined and the minimum oligosaccharide sequence within heparin that binds annexin V was identified. Affinity chromatography studies confirmed the Ca2+ dependence of this binding interaction. Analysis of the data obtained from surface plasmon resonance afforded a Kd of approximately 21 nM for the interaction of annexin V with end-chain immobilized heparin and a Kd of approximately 49 nM for the interaction with end-chain immobilized heparan sulfate. Isothermal titration calorimetry showed the minimum annexin V binding oligosaccharide sequence within heparin corresponds to an octasaccharide sequence. The Kd of a heparin octasaccharide binding to annexin V was approximately 1 microM with a binding stoichiometry of 1:1.  相似文献   

15.
Herpes simplex virus type 2 (HSV-2) interacts with cell surface glycosaminoglycans during virus attachment. Glycoprotein B of HSV-2 can potentially mediate the interaction between the virion and cell surface glycosaminoglycans. To determine the specificity, kinetics, and affinity of these interactions, we used plasmon resonance-based biosensor technology to measure HSV-2 glycoprotein binding to glycosaminoglycans in real time. The recombinant soluble ectodomain of HSV-2 gB (gB2) but not the soluble ectodomain of HSV-2 gD bound readily to biosensor surfaces coated with heparin. The affinity constants (Kds) were determined for gB2 (Kd = 7.7 x 10(-7) M) and for gB2 deltaTM (Kd = 9.9 x 10(-7) M), a recombinant soluble form of HSV-2 gB in which only its transmembrane domain has been deleted. gB2 binding to the heparin surface was competitively inhibited by low concentrations of heparin (50% effective dose [ED50] = 0.08 microg/ml). Heparan sulfate and dermatan sulfate glycosaminoglycans have each been suggested as cell surface receptors for HSV. Our biosensor analyses showed that both heparan sulfate and dermatan sulfate inhibited gB2 binding (ED50 = 1 to 5 microg/ml), indicating that gB2 interacts with both heparin-like and dermatan sulfate glycosaminoglycans. Chondroitin sulfate A, in contrast, inhibited gB2 binding to heparin only at high levels (ED50 = 65 microg/ml). The affinity and specificity of gB2 binding to glycosaminoglycans demonstrated in these studies support its role in the initial binding of HSV-2 to cells bearing heparan sulfate or dermatan sulfate glycosaminoglycans.  相似文献   

16.
The predominant [3H]diisopropyl fluorophosphate (DFP)-binding proteins that are released from the secretory granules of activated mouse bone marrow-derived mast cells (BMMC) are demonstrated to have an isoelectric point of approximately 9.1 and to be complexed to proteoglycans. Upon Sepharose CL-2B chromatography of the supernatants of calcium ionophore-activated BMMC, 67-78% of the total exocytosed [3H]DFP-binding proteins co-eluted in the excluded volume of the column as a greater than 1 X 10(7) Mr complex bound to 4-7% of the total exocytosed proteoglycans. The remainder of the exocytosed proteoglycans, which filtered in the included volume of the gel filtration column with a Kav of 0.66, contained chondroitin sulfate E glycosaminoglycans. After dissociation of the large Mr complexes of [3H]DFP-binding proteins-proteoglycans with 5 M NaCl and removal of the proteins via phenyl-Sepharose chromatography, the proteoglycans filtered from the Sepharose CL-2B column as a single peak with a Kav of 0.66. The susceptibility of 24-59% and 36-76% of the glycosaminoglycans in the large Mr complex to degradation by nitrous acid and chondroitinase ABC, respectively, indicated the presence of proteoglycans that contained heparin and chondroitin sulfate glycosaminoglycans. Disaccharide analysis revealed that the chondroitin sulfate in the high Mr complex was chondroitin sulfate E. Following chondroitinase ABC treatment of the large Mr complex, the residual heparin proteoglycans filtered on Sepharose CL-4B under dissociative conditions with the same Kav as the original, untreated proteoglycans. Thus, the protein-proteoglycan complexes that are exocytosed from activated mouse BMMC contain approximately equal amounts of proteoglycans of comparable size that bear either predominantly heparin or predominantly chondroitin sulfate E glycosaminoglycans. The demonstration of these secreted complexes indicates that the intragranular protease-resistant heparin and chondroitin sulfate E proteoglycans in the T cell factor-dependent BMMC bind serine proteases throughout the activation-secretion response.  相似文献   

17.
Binding of calcium to glycosaminoglycans: an equilibrium dialysis study   总被引:2,自引:0,他引:2  
Binding of calcium to the glycosaminoglycans (GAGs) heparin, chondroitin sulfate (CS), keratan sulfate (KS), and hyaluronic acid (HA) has been studied by equilibrium dialysis using exclusion of sulfate to correct for Gibbs-Donnan effects. Calcium binding occurs to all of these GAG species, suggesting that both sulfate and carboxylate groups are involved in cation binding. For all GAGs, the binding stoichiometry is consistent with a calcium-binding "site" consisting of two anionic groups. The order of calcium binding affinities is heparin greater than CS greater than KS greater than HA, and is critically dependent upon charge density; heparin binds calcium with 10-fold higher affinity than CS. The mode of calcium binding to GAGs is consistent with a recently proposed mechanism of growth plate calcification which states that cartilage proteoglycan functions as a reservoir of calcium for calcification of epiphyseal cartilage.  相似文献   

18.
This study characterizes the physical-chemical interactions of heparin with human plasma low-density lipoproteins (LDL). A high reactive heparin (HRH) specific for the surface determinants of LDL was isolated by chromatography of commercial bovine lung heparin on LDL immobilized to AffiGel-10. HRH was derivatized with fluoresceinamine and repurified by affinity chromatography, and its interaction with LDL in solution was monitored by steady-state fluorescence polarization. Binding of LDL to fluoresceinamine-labeled HRH (FL . HRH) was saturable, reversible, and specific; HRH stoichiometrically displaced FL . HRH from the soluble complex, and acetylation of lysine residues on LDL blocked heparin binding. Titration of FL.HRH with excess LDL yielded soluble complexes with two LDL molecules per heparin chain (Mr 13,000) characterized by an apparent Kd of 1 microM. Titration of LDL with excess HRH resulted in two classes of heparin binding with two and five heparin molecules bound per LDL and apparent Kd values of 1 and 10 microM, respectively. At physiological pH and ionic strength, the soluble HRH-LDL complexes were maximally precipitated with 20-50 mM Ca2+. Insoluble complexes contained 2-10 HRH molecules per LDL with the final product stoichiometry dependent on the ratio of the reactants. The affinity of HRH for LDL in the insoluble complexes was estimated between 1 and 10 microM. Insoluble LDL-heparin complexes were readily dissociated with 1.0 M NaCl, and their formation was prevented by acetylation of the lysine residues on LDL.  相似文献   

19.
The calcium-dependent polymerization of human serum amyloid P component (SAP) was spectrophotometrically monitored in 0.15 M NaCl at pH 7.5. The rate of the polymerization depended on the concentrations of SAP and Ca2+. It was shown for the first time that the calcium-dependent polymerization of SAP was inhibited by some sulfated polysaccharides. Most potent inhibitors were heparin and high molecular weight dextran sulfate of Mr 1.0.10(6). The inhibitory activity of glycosaminoglycans is accordant to their binding affinity for SAP, which was reported previously (Hamazaki, H. (1987) J. Biol. Chem. 262, 1456-1460). The polymerized SAP was reversibly dissociated by heparin and high molecular weight dextran sulfate. The results suggest that heparin and high molecular weight dextran sulfate may be a useful dissociating agent of polymerized SAP in amyloid deposits.  相似文献   

20.
Thrombin (T) inactivation by the serpin, heparin cofactor II (HCII), is accelerated by the glycosaminoglycans (GAGs) dermatan sulfate (DS) and heparin (H). Equilibrium binding and thrombin inactivation kinetics at pH 7.8 and ionic strength (I) 0.125 m demonstrated that DS and heparin bound much tighter to thrombin (K(T(DS)) 1-5.8 microm; K(T(H)) 0.02-0.2 microm) than to HCII (K(HCII(DS)) 236-291 microm; K(HCII(H)) 25-35 microm), favoring formation of T.GAG over HCII.GAG complexes as intermediates for T.GAG.HCII complex assembly. At [GAG] < K(HCII(GAG)) the GAG and HCII concentration dependences of the first-order inactivation rate constants (k(app)) were hyperbolic, reflecting saturation of T.GAG complex and formation of the T.GAG.HCII complex from T.GAG and free HCII, respectively. At [GAG] > K(HCII(GAG)), HCII.GAG complex formation caused a decrease in k(app). The bell-shaped logarithmic GAG dependences fit an obligatory template mechanism in which free HCII binds GAG in the T.GAG complex. DS and heparin bound fluorescently labeled meizothrombin(des-fragment 1) (MzT(-F1)) with K(MzT(-F1)(GAG)) 10 and 20 microm, respectively, demonstrating a binding site outside of exosite II. Exosite II ligands did not attenuate the DS-accelerated thrombin inactivation markedly, but DS displaced thrombin from heparin-Sepharose, suggesting that DS and heparin share a restricted binding site in or nearby exosite II, in addition to binding outside exosite II. Both T.DS and MzT(-F1).DS interactions were saturable at DS concentrations substantially below K(HCII(DS)), consistent with DS bridging T.DS and free HCII. The results suggest that GAG template action facilitates ternary complex formation and accommodates HCII binding to GAG and thrombin exosite I in the ternary complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号