首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant tissue inhibitor of metalloproteinases (TIMP-1) and a truncated version containing only the three N-terminal loops, delta 127-184TIMP, have been expressed in myeloma cells and purified by affinity chromatography and gel filtration. delta 127-184TIMP was found to exist as two main glycosylation variants of molecular mass 24 kD and 19.5 kDa and an unglycosylated form of 13 kDa. All forms of the truncated inhibitor were able to inhibit and form complexes with active forms of the matrix metalloproteinases, indicating that the major structural features for specific interaction with these enzymes resides in these three loops. Stable binding of delta 127-184TIMP to pro 95-kDa gelatinase was not demonstrable under the conditions for binding of full-length TIMP-1.  相似文献   

2.
Human rheumatoid synovial cells in culture secrete both 72-kDa progelatinase and a complex consisting of 72-kDa progelatinase and a 24-kDa inhibitor of metalloproteinases, TIMP-2. In addition, the culture medium contains TIMP-1, the classical inhibitor of metalloproteinases, with a molecular mass of 30 kDa. TIMP-1 does not form a complex with free 72-kDa progelatinase. Free progelatinase and progelatinase complexed with TIMP-2 can be activated with the organomercury compound p-aminophenylmercury acetate. The activated complex shows less than 10% the enzyme activity of activated free gelatinase. The progelatinase-TIMP-2 complex could be shown to be an inhibitor for other metalloproteinases, such as gelatinase and collagenase secreted by human rheumatoid synovia fibroblasts, as well as for the corresponding enzymes from human neutrophils.  相似文献   

3.
Transformed human fibroblasts secrete two structurally and functionally related inhibitors of matrix metalloproteinases, tissue inhibitor of metalloproteinases (TIMP) 1 and 2. In assays measuring the relative inhibitory capability of TIMP-1 and TIMP-2 against autoactivated 72-kDa gelatinase, which consists of two major active peptides and several inactive fragments, TIMP-2 was more effective than TIMP-1. The isolated 42.5-kDa active fragment that formed as a result of the autoactivation of 72-kDa gelatinase showed the greatest preference for TIMP-2; at half-maximal inhibition, TIMP-2 was greater than 10-fold more effective than TIMP-1. TIMP-2 was also greater than 2-fold more effective than TIMP-1 at inhibiting 72-kDa gelatinase-TIMP-2 complexes activated with 4-aminophenylmercuric acetate, and greater than 7-fold more effective than TIMP-1 at inhibiting 92-kDa gelatinase activated with 4-aminophenylmercuric acetate. Furthermore, these active gelatinases preferentially bound 125I-TIMP-2 when incubated with equal amounts of radiolabeled TIMP-1 and TIMP-2. The ratios of 125I-TIMP-2/125I-TIMP-1 binding to 92-kDa gelatinase, autoactivated 72-kDa gelatinase, and 42.5-kDa fragment were 4.4, 10, and 33, respectively. On the other hand, interstitial collagenase was inhibited by TIMP-1 greater than 2-fold more effectively than TIMP-2 in assays measuring cleavage of loose collagen fibrils.  相似文献   

4.
We have identified a binding site for tissue inhibitors of metalloproteinases 2 (TIMP-2) on human 72-kDa gelatinase that is distinct from the active site. 72-kDa progelatinase is found in a complex with TIMP-2 in the medium of cultured cells and can be activated with organomercurial compounds to yield a gelatinolytic proteinase that remains bound to TIMP-2. Removal of TIMP-2 from 72-kDa progelatinase by reverse-phase high performance liquid chromatography, followed by reconstitution of the progelatinase in neutral pH buffer, results in autocatalytic activation. When samples of autoactivated gelatinase were blotted onto nitrocellulose, then probed with 125I-TIMP-2, we found a 29-kDa peptide that was capable of binding TIMP-2. We isolated this fragment and identified it as the region of gelatinase from amino acid 414 to the carboxyl terminus in the primary amino acid sequence of progelatinase. This portion of the molecule does not contain the putative zinc- or gelatin-binding sites and is proteolytically inactive. Incubation of 125I-TIMP-2 with 72-kDa progelatinase-TIMP-2 complexes resulted in a concentration-dependent exchange of labeled TIMP-2 with unlabeled TIMP-2, in both the presence and absence of the metalloproteinase inhibitor 1,10-phenanthroline. Saturation binding kinetics for the active site of 72-kDa gelatinase were measured in pools of the 43-kDa active fragment that results from the autoactivation of 72-kDa progelatinase; this fragment has no carboxyl-terminal TIMP-2 binding capability. Binding of 125I-TIMP-2 to the active site was completely inhibited by 1,10-phenanthroline. Binding kinetics for the putative stabilization site were determined with isolated 72-kDa progelatinase. In the presence of 1,10-phenanthroline, 72-kDa progelatinase bound 125I-TIMP-2 but not 125I-TIMP-1. Scatchard analysis yielded an approximate dissociation constant (Kd) of 0.72 nM for the active site and 0.42 nM for the stabilization site.  相似文献   

5.
On the cell surface, the 59-kDa membrane type 1-matrix metalloproteinase (MT1-MMP) activates the 72-kDa progelatinase A (MMP-2) after binding the tissue inhibitor of metalloproteinases (TIMP)-2. A 44-kDa remnant of MT1-MMP, with an N terminus at Gly(285), is also present on the cell after autolytic shedding of the catalytic domain from the hemopexin carboxyl (C) domain, but its role in gelatinase A activation is unknown. We investigated intermolecular interactions in the gelatinase A activation complex using recombinant proteins, domains, and peptides, yeast two-hybrid analysis, solid- and solution-phase assays, cell culture, and immunocytochemistry. A strong interaction between the TIMP-2 C domain (Glu(153)-Pro(221)) and the gelatinase A hemopexin C domain (Gly(446)-Cys(660)) was demonstrated by the yeast two-hybrid system. Epitope masking studies showed that the anionic TIMP-2 C tail lost immunoreactivity after binding, indicating that the tail was buried in the complex. Using recombinant MT1-MMP hemopexin C domain (Gly(285)-Cys(508)), no direct role for the 44-kDa form of MT1-MMP in cell surface activation of progelatinase A was found. Exogenous hemopexin C domain of gelatinase A, but not that of MT1-MMP, blocked the cleavage of the 68-kDa gelatinase A activation intermediate to the fully active 66-kDa enzyme by concanavalin A-stimulated cells. The MT1-MMP hemopexin C domain did not form homodimers nor did it bind the gelatinase A hemopexin C domain, the C tail of TIMP-2, or full-length TIMP-2. Hence, the ectodomain of the remnant 44-kDa form of MT1-MMP appears to play little if any role in the activation of gelatinase A favoring the hypothesis that it accumulates on the cell surface as an inactive, stable degradation product.  相似文献   

6.
Matrix metalloproteinase 9 (MMP-9) has been purified as an inactive zymogen of M(r) 92,000 (proMMP-9) from the culture medium of HT 1080 human fibrosarcoma cells. The NH2-terminal sequence of proMMP-9 is Ala-Pro-Arg-Gln-Arg-Gln-Ser-Thr-Leu-Val-Leu-Phe-Pro, which is identical to that of the 92-kDa type IV collagenase/gelatinase. The zymogen can be activated by 4-aminophenylmercuric acetate, yielding an intermediate form of M(r) 83,000 and an active species of M(r) 67,000, the second of which has a new NH2 terminus of Met-Arg-Thr-Pro-Arg-(Cys)-Gly-Val-Pro-Asp-Leu-Gly-Arg-Phe-Gln-Thr- Phe-Glu. Immunoblot analyses demonstrate that this activation process is achieved by sequential processing of both NH2- and COOH-terminal peptides. TIMP-1 complexed with proMMP-9 inhibits the conversion of the intermediate form to the active species of M(r) 67,000. The proenzyme is fully activated by cathepsin G, trypsin, alpha-chymotrypsin, and MMP-3 (stromelysin 1) but not by plasmin, leukocyte elastase, plasma kallikrein, thrombin, or MMP-1 (tissue collagenase). During the activation by MMP-3, proMMP-9 is converted to an active species of M(r) 64,000 that lacks both NH2- and COOH-terminal peptides. In addition, HOCl partially activates the zymogen by reacting with an intermediate species of M(r) 83,000. The enzyme degrades type I gelatin rapidly and also cleaves native collagens including alpha 2 chain of type I collagen, collagen types III, IV, and V at undenaturing temperatures. These results indicate that MMP-9 has different activation mechanisms and substrate specificity from those of MMP-2 (72-kDa gelatinase/type IV collagenase).  相似文献   

7.
To study the activation of human 72-kDa gelatinase, and its relation to tissue inhibitor of metalloproteinases 2 (TIMP-2), we purified human 72-kDa progelatinase both as a complex with TIMP-2 and as a free proteinase. Activation of progelatinase-TIMP-2 complexes with 4-aminophenylmercuric acetate yielded gelatinolytically active enzyme migrating at 62 kDa. TIMP-2 remained bound to the active enzyme. Removal of TIMP-2 from progelatinase by reverse-phase high performance liquid chromatography in the presence of trifluoroacetic acid, followed by complete dialysis in neutral pH buffer, resulted in multiple fragments. These fragments were formed as a result of the cleavage of 72-kDa progelatinase at several locations. Cleavage at the amino terminus was restricted to the removal of the propeptide, except in the case of degradation leading to inactive fragments. Two active species autocatalytically evolved upon removal of TIMP-2 from progelatinase. The 62 kDa-activated gelatinase lacked the amino-terminal propeptide, which is known to be removed upon treatment with 4-aminophenylmercuric acetate. In addition, an active 42.5-kDa fragment lacking both the propeptide and a portion of the carboxyl terminus was formed. This low-molecular-weight active form of 72-kDa progelatinase retained its ability to bind and degrade gelatin. Self-activation and degradation of 72-kDa progelatinase can be prevented by agents that inhibit metalloproteinases, including 1,10-phenanthroline. Evidence presented here suggests that TIMP-2 binds to a stabilization site that is independent of the active site. This stabilization site does not bind TIMP-1 (TIMP). Occupation of this site by TIMP-2 prevents autocatalytic activation and degradation but does not prevent gelatinolysis by the enzyme-inhibitor complex.  相似文献   

8.
Activation of human monocytes results in the production of interstitial collagenase through a prostaglandin E2 (PGE2)-cAMP-dependent pathway. Inasmuch as interleukin 4 (IL-4) has been shown to inhibit PGE2 synthesis by monocytes, we examined the effect of IL-4 on the production of human monocyte interstitial collagenase. Additionally, we also assessed the effect of IL-4 on the production of 92-kDa type IV collagenase/gelatinase and tissue inhibitor of metalloproteinase-1 (TIMP-1) by monocytes. The inhibition of PGE2 synthesis by IL-4 resulted in decreased interstitial collagenase protein and activity that could be restored by exogenous PGE2 or dibutyryl cyclic AMP (Bt2cAMP). IL-4 also suppressed ConA-stimulated 92-kDa type IV collagenase/gelatinase protein and zymogram enzyme activity that could be reversed by exogenous PGE2 or Bt2cAMP. Moreover, indomethacin suppressed the ConA-induced production of 92-kDa type IV collagenase/gelatinase. These data demonstrate that, like monocyte interstitial collagenase, the conA-inducible monocyte 92-kDa type IV collagenase/gelatinase is regulated through a PGE2-mediated cAMP-dependent pathway. In contrast to ConA stimulation, unstimulated monocytes released low levels of 92-kDa type IV collagenase/gelatinase that were not affected by IL-4, PGE2, or Bt2cAMP, indicating that basal production of this enzyme is PGE2-cAMP independent. IL-4 inhibition of both collagenases was not a result of increased TIMP expression since Western analysis of 28.5-kDa TIMP-1 revealed that IL-4 did not alter the increased TIMP-1 protein in response to ConA. These data indicate that IL-4 may function in natural host regulation of connective tissue damage by monocytes.  相似文献   

9.
We have previously indicated that bovine pulmonary artery smooth muscle plasma membrane possesses a complex of 72-kDa gelatinase and TIMP-2 (MMP-2/TIMP-2 complex) [Mol. Cell. Biochem. 258 (2004) 73]. In this paper, we described isolation of MMP-2 from the MMP-2/TIMP-2 complex, characterizations of the isolated MMP-2 and also the complex. MMP-2/TIMP-2 complex was purified from bovine pulmonary vascular smooth muscle plasma membrane using a combination of purification steps. Heparin-sepharose (100 mM NaCl eluate)-purified preparation contained the MMP-2/TIMP-2 complex. The MMP-2/TIMP-2 complex, which was electrophoresed under reducing condition on the SDS-PAGE and immunobloted with a mixture of polyclonal MMP-2 and TIMP-2 antibodies, revealed two separate immunoreactive bands at their respective electrophoretic migration. Continuous elution electrophoresis of the complex resulted to MMP-2 free of any detectable TIMP-2. The homogeneity of the isolated MMP-2 and the complex was demonstrated by SDS-PAGE under nonreducing condition and also by nondenaturing native-PAGE. The purified TIMP-2 free enzyme electrophoresed as a single band of 72-kDa, which could be activated rapidly and fully by aminophenylmercuric acetate (APMA) with the formation of 62-kDa and 45-kDa active species like native MMP-2 purified from the same source (bovine pulmonary artery smooth muscle). Identical treatment of the MMP-2/TIMP-2 complex with APMA resulted to significantly slower and partial conversion of the active species. Addition of pure TIMP-2 to the TIMP-2 free MMP-2 formed a complex with the progelatinase and prevented the rapid autolytic conversion induced by APMA. Immunoblot study with polyclonal MMP-2 antibody suggested that the isolated 72-kDa gelatinase is the MMP-2. We have also presented additional data indicating that the isolated preparation of 72-kDa gelatinase exhibited properties that are identical with MMP-2 obtained from different sources.  相似文献   

10.
Two kinds of gelatinases (or type IV collagenases), 90-kDa and 64-kDa gelatinases, were purified in a tissue inhibitor of metalloproteinases (TIMP)- or TIMP-2-free form from the serum-free conditioned medium of human schwannoma YST-3 cells, and their activities on extracellular matrix proteins were compared. Sequential chromatographies on a gelatin-Sepharose column, an LCA-agarose column, and a gel filtration column in the presence of 5 M urea yielded 600 micrograms of the 64-kDa enzyme and 45 micrograms of the 90-kDa enzyme from 2.8 liters of the conditioned medium. The purified enzymes showed high gelatinolytic activities without activation by p-aminophenyl mercuric acetate (APMA), indicating that 5 M urea used in the final chromatography not only dissociated the inhibitors from the progelatinases but also activated the proenzymes. The inhibitor-free gelatinases showed a much higher activity than the APMA-activated inhibitor-bound enzymes. The specific activity of the 90-kDa enzyme was nearly 25 times higher than that of the 64-kDa enzyme. The 90-kDa gelatinase hydrolyzed type I collagen as well as native and pepsin-treated type IV collagens at 30 degrees C, while at 37 degrees C it potently hydrolyzed types I, III, and IV collagens but not fibronectin or laminin. The 64-kDa gelatinase showed a similar substrate specificity to that of the 90-kDa enzyme, except that it did not hydrolyze type I collagen and native type IV collagen at 30 degrees C.  相似文献   

11.
Human neutrophils were found to release a 91-kDa gelatinase that is serologically related to tumor-derived gelatinolytic enzymes, as evidenced by immunoprecipitation. In order to identify the neutrophil gelatinase, the activity in conditioned medium from human neutrophil suspensions was purified by affinity chromatography on a gelatin substrate. The 91-kDa active enzyme was further separated from other stainable protein bands by classical SDS PAGE and blotting to a solid support. Amino-terminal sequence analysis of blotted proteins showed that the 91-kDa enzyme is a truncated form of tumor-derived 92-kDa gelatinase (type IV collagenase), lacking eight residues at the NH2-terminus. Sequence analysis of enzymatically inactive cleavage products of this neutrophil gelatinase demonstrated that the gelatin-binding part of the molecule is restricted to the amino-terminal third. Exocytosis of gelatinase-containing granules from neutrophils occurred spontaneously within 6 h after neutrophil plating. When the cells were triggered with the phorbol ester phorbol 12-myristate 13-acetate, a strong secretagogue, rapid gelatinase release was observed. When granulocytes were stimulated with the neutrophil-activating peptide interleukin-8, maximal exocytosis occurred within 1 h. The almost immediate release of neutrophil gelatinase after stimulation of the cells with a chemotactic factor might play a key role in remodeling of the extracellular matrix during granulocyte movement in response to chemotactic stimuli.  相似文献   

12.
Human aldose reductase and aldehyde reductase are members of the aldo-keto reductase superfamily that share three domains of homology and a nonhomologous COOH-terminal region. The two enzymes catalyze the NADPH-dependent reduction of a wide variety of carbonyl compounds. To probe the function of the domains and investigate the basis for substrate specificity, we interchanged cDNA fragments encoding the NH2-terminal domains of aldose and aldehyde reductase. A chimeric enzyme (CH1, 317 residues) was constructed in which the first 71 residues of aldose reductase were replaced with first 73 residues of aldehyde reductase. Catalytic effectiveness (kcat/Km) of CH1 for the reduction of various substrates remained virtually identical to wild-type aldose reductase, changing a maximal 4-fold. Deletion of the 13-residue COOH-terminal end of aldose reductase, yielded a mutant enzyme (AR delta 303-315) with markedly decreased catalytic effectiveness for uncharged substrates ranging from 80- to more than 600-fold (average 300-fold). The KmNADPH of CH1 and AR delta 303-315 were nearly identical to that of the wild-type enzyme indicating that cofactor binding is unaffected. The truncated AR delta 303-315 displayed a NADPH/D isotope effect in kcat and an increased D(kcat/Km) value for DL-glyceraldehyde, suggesting that hydride transfer has become partially rate-limiting for the overall reaction. We conclude that the COOH-terminal domain of aldose reductase is crucial to the proper orientation of substrates in the active site.  相似文献   

13.
We compared the association constants of tissue inhibitor of metalloproteinases (TIMP)-3 with various matrix metalloproteinases with those for TIMP-1 and TIMP-2 using a continuous assay. TIMP-3 behaved more like TIMP-2 than TIMP-1, showing rapid association with gelatinases A and B. Experiments with the N-terminal domain of gelatinase A, the isolated C-terminal domain, or an inactive progelatinase A mutant showed that the hemopexin domain of gelatinase A makes an important contribution to the interaction with TIMP-3. The exchange of portions of the gelatinase A hemopexin domain with that of stromelysin revealed that residues 568-631 of gelatinase A were required for rapid association with TIMP-3. The N-terminal domain of gelatinase B alone also showed slower association with TIMP-3, again implying significant C-domain interactions. The isolation of complexes between TIMP-3 and progelatinases A and B on gelatin-agarose demonstrated that TIMP-3 binds to both proenzymes. We analyzed the effect of various polyanions on the inhibitory activity of TIMP-3 in our soluble assay. The association rate was increased by dextran sulfate, heparin, and heparan sulfate, but not by dermatan sulfate or hyaluronic acid. Because TIMP-3 is sequestered in the extracellular matrix, the presence of certain heparan sulfate proteoglycans could enhance its inhibitory capacity.  相似文献   

14.
We have isolated a novel 75-kDa gelatinase from a chicken macrophage cell line, HD11. Biochemical and immunological characterization of the purified enzyme demonstrated that it is distinct from the chicken 72-kDa gelatinase A (MMP-2). The enzyme is capable of specific gelatin binding and rapid gelatin cleavage. Incubation with an organomercurial compound (p-aminophenylmercuric acetate) induces proteolytic processing and activation of this enzyme, and the resultant gelatinolytic activity is sensitive to both zinc chelators and tissue inhibitors of metalloproteinases. A full-length cDNA for the enzyme has been cloned, and sequence analysis demonstrated that the enzyme possesses the characteristic multidomain structure of an MMP gelatinase including a cysteine switch prodomain, three fibronectin type II repeats, a catalytic zinc binding region, and a hemopexin-like domain. The 75-kDa gelatinase is produced by phorbol ester-treated chicken bone marrow cells, monocytes, and polymorphonuclear leukocytes, cell types that charac- teristically produce the 92-kDa mammalian gelatinase B (MMP-9). The absence of a 90-110-kDa gelatinase in these cell types indicates that the 75-kDa gelatinase is likely the avian counterpart of gelatinase B. However, the protein is only 59% identical to human gelatinase B, whereas all previously cloned chicken MMP homologues are 75-90% identical to their human counterparts. In addition, the new 75-kDa chicken gelatinase lacks the type V collagen domain that is found in all mammalian gelatinase Bs. Furthermore, the secreted enzyme appears structurally distinct from known gelatinase Bs and the activated enzyme can cleave fibronectin, which is not a substrate for mammalian gelatinase B. Thus the results of this study indicate that a second MMP gelatinase exists in chickens, and although it is MMP-9/gelatinase B-like in its overall domain structure and expression pattern, it appears to be biochemically divergent from mammalian gelatinase B.  相似文献   

15.
Carboxypeptidase H is an important enzyme in the biosynthesis of many peptide hormones. Development of a rapid isolation procedure led to the purification of two soluble forms from acidic extracts of bovine pituitary glands. These two forms differed in apparent molecular size (56 and 53 kDa). Both forms were found in the anterior lobe while only the 53-kDa form was found in posterior lobe. Digestion with N-glycosidase F demonstrated that these two forms are not due to alternative glycosylation of a common polypeptide core. Both forms bind antibodies raised against a COOH-terminal peptide of the full-length protein showing that the difference between them is not due to proteolysis at the COOH terminus. These results also argue against the idea that proteolysis of COOH-terminal domains converts the membrane-associated form of this protein into a soluble form. NH2-terminal sequence analysis demonstrated different NH2 termini. The NH2-terminal sequence of the 56-kDa form begins at the site predicted for signal peptide cleavage. Ion-exchange chromatography resolved the 56-kDa form from the 53-kDa form. The two forms were catalytically active with very similar properties. These results show that bovine carboxypeptidase H can be posttranslationally processed at alternative sites and provide evidence against the idea of a prosequence that must be removed before enzyme activity can be expressed.  相似文献   

16.
Two protein inhibitors of metalloproteinases (TIMP) were isolated from medium conditioned by the clonal rat osteosarcoma line UMR 106-01. Initial purification of both a 30-kDa inhibitor and a 20-kDa inhibitor was accomplished using heparin-Sepharose chromatography with dextran sulfate elution followed by DEAE-Sepharose and CM-Sepharose chromatography. Purification of the 20-kDa inhibitor to homogeneity was completed with reverse-phase high-performance liquid chromatography. The 20-kDa inhibitor was identified as rat TIMP-2. The 30-kDa inhibitor, although not purified to homogeneity, was identified as rat TIMP-1. Amino terminal amino acid sequence analysis of the 30-kDa inhibitor demonstrated 86% identity to human TIMP-1 for the first 22 amino acids while the sequence of the 20-kDa inhibitor was identical to that of human TIMP-2 for the first 22 residues. Treatment with peptide:N-glycosidase F indicated that the 30-kDa rat inhibitor is glycosylated while the 20-kDa inhibitor is apparently unglycosylated. Inhibition of both rat and human interstitial collagenase by rat TIMP-2 was stoichiometric, with a 1:1 molar ratio required for complete inhibition. Exposure of UMR 106-01 cells to 10(-7) M parathyroid hormone resulted in approximately a 40% increase in total inhibitor production over basal levels.  相似文献   

17.
We report the electrophoretic purification and characterization of the 21-kDa protein, an extracellular matrix component synthesized during the early stages of transformation of chicken embryo fibroblasts infected with Rous sarcoma virus (Blenis, J., and Hawkes, S. P. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 770-774; Blenis, J., and Hawkes, S. P. (1984) J. Biol. Chem. 259, 11563-11570). The NH2-terminal amino acid sequence of the protein is greater than 60% identical to a consensus sequence of mammalian tissue inhibitor of metalloproteinases (TIMP). It shares several biochemical properties with other metalloproteinase inhibitors, including evidence of intrachain disulfide bonds and resistance to cleavage by trypsin. An electrophoretic assay employing a metal ion-dependent gelatinase from conditioned cell culture medium demonstrates inhibitor activity for purified 21-kDa protein. The 21-kDa protein is the major inhibitor in the extracellular matrix and appears unique in solubility properties among inhibitors with a TIMP-like sequence. Statistical analysis of amino acid composition data for these inhibitors defines two distinct groups (TIMP and TIMP-2) and supports a close relationship for the 21-kDa protein with the TIMP group. However, the apparent size and lack of glycosylation align it more closely with the TIMP-2 group of proteins. Therefore, it is possible that the 21-kDa protein is a variant of TIMP or, alternatively, represents a third protein within the metalloproteinase inhibitor family. This report provides the first evidence that avian metalloproteinase inhibitors are similar in sequence to their mammalian counterparts.  相似文献   

18.
Human topoisomerase I is composed of four major domains: the highly charged NH(2)-terminal region, the conserved core domain, the positively charged linker domain, and the highly conserved COOH-terminal domain. Near complete enzyme activity can be reconstituted by combining recombinant polypeptides that approximate the core and COOH-terminal domains, although DNA binding is reduced somewhat for the reconstituted enzyme (Stewart, L., Ireton, G. C., and Champoux, J. J. (1997) J. Mol. Biol. 269, 355-372). A reconstituted enzyme comprising the core domain plus a COOH-terminal fragment containing the complete linker region exhibits the same biochemical properties as a reconstituted enzyme lacking the linker altogether, and thus detachment of the linker from the core domain renders the linker non-functional. The rate of religation by the reconstituted enzyme is increased relative to the forms of the enzyme containing the linker indicating that in the intact enzyme the linker slows religation. Relaxation of plasmid DNA by full-length human topoisomerase I or a 70-kDa form of the enzyme that is missing only the non-essential NH(2)-terminal domain (topo70) is inhibited approximately 16-fold by the anticancer compound, camptothecin, whereas the reconstituted enzyme is nearly resistant to the inhibitory effects of the drug despite similar affinities for the drug by the two forms of the enzyme. Based on these results and in light of the crystal structure of human topoisomerase I, we propose that the linker plays a role in hindering supercoil relaxation during the normal relaxation reaction and that camptothecin inhibition of DNA relaxation depends on a direct effect of the drug on DNA rotation that is also dependent on the linker.  相似文献   

19.
20.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is supposed to play a regulatory role in the cell-mediated activation of progelatinase A. To investigate the mechanism of the regulation, we prepared and characterized a chemically modified TIMP-2, and examined its effects on the activation of progelatinase A. We found that treatment of TIMP-2 with cyanate ion led to loss of inhibitory activity toward matrilysin or gelatinase A. Structural and functional analyses of the modified TIMP-2 showed that carbamylation of the alpha-amino group of the NH2-terminal Cys1 of TIMP-2 led to complete loss of the inhibitory activity. When the reactive-site modified TIMP-2 was added to culture medium of concanavalin A-stimulated HT1080 cells, the conversion of endogenous progelatinase A to the intermediate form was partially inhibited, whereas that of the intermediate form to the mature one was strongly inhibited. The reactive site-modified TIMP-2 also prevented an accumulation of active gelatinase A on the cell surface. We speculate that occupation of the hemopexin-like domain of gelatinase A by the reactive site-modified TIMP-2 makes it unable for gelatinase A to be retained on the cell surface, thus preventing the autocatalytic conversion of the intermediate form of gelatinase A to its mature form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号