首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rosenbusch B 《Hereditas》2004,141(2):97-105
Human oocytes failing to fertilize during assisted reproduction are an important source of information for assessing incidence and causal mechanisms of maternal aneuploidy. This review describes the techniques of conventional oocyte chromosome analysis and evaluates the results of 59 studies comprising a total of>10,000 female gametes. The mean rate of aneuploidy (hypohaploidy + hyperhaploidy) amounts to approximately 20%, but this incidence is reduced as soon as possible artifacts introduced by the fixation technique are taken into consideration. It is therefore concluded that a realistic value for numerical abnormalities arising during first meiotic division lies between 12 and 15%. All chromosome groups are affected by aneuploidy but the actually observed frequencies exceed the expected frequencies in groups D, E, and G. Two aneuploidy-causing mechanisms have been identified in human oocytes: nondisjunction, resulting in the loss or gain of whole chromosomes, and predivision, resulting in the loss or gain of single chromatids. A brief analysis including only aneuploid complements with one extra or missing chromosome/chromatid shows a slight increase in predivision (52.9%) compared with nondisjunction (47.1%). Finally, suggestions for future studies are given since, for instance, the presentation of results and the use of cytogenetic nomenclature have not been uniform.  相似文献   

2.
The relationship between advanced maternal age and increased risk of trisomic offspring is well known clinically but not clearly understood at the level of the oocyte. A total of 383 oocytes that failed fertilization from 107 patients undergoing in vitro fertilization were analyzed by FISH using X-, 18-, and 13/21-chromosome probes simultaneously. The corresponding polar bodies were also analyzed in 188 of these oocytes. The chromosomes in the oocyte and first polar body complement each other and provide an internal control to differentiate between aneuploidy and technical errors. Two mechanisms of nondisjunction were determined. First, nondisjunction of bivalent chromosomes resulting in two univalents going to the same pole and, second, nondisjunction by premature chromatid separation (predivision) of univalent chromosomes producing either a balanced (2 + 2) or unbalanced (3 + 1) distribution of chromatids into the first polar body and M-II oocytes. Balanced predivision of chromatids, previously proposed as a major mechanism of aneuploidy, was found to increase significantly with time in culture (P < .005), which suggests that this phenomenon should be interpreted carefully. Unbalanced predivision and classical nondisjunction were unaffected by oocyte aging. In comparing oocytes from women <35 years of age with oocytes from women > or = 40 years of age, a significant increase (P < .001) in nondisjunction of full dyads was found in the oocytes with analyzable polar bodies and no FISH errors. Premature predivision of chromatids was also found to cause nondisjunction, but it did not increase with maternal age.  相似文献   

3.
A model system for increased meiotic nondisjunction in older oocytes   总被引:2,自引:0,他引:2  
For at least 5% of all clinically recognized human pregnancies, meiotic segregation errors give rise to zygotes with the wrong number of chromosomes. Although most aneuploid fetuses perish in utero, trisomy in liveborns is the leading cause of mental retardation. A large percentage of human trisomies originate from segregation errors during female meiosis I; such errors increase in frequency with maternal age. Despite the clinical importance of age-dependent nondisjunction in humans, the underlying mechanisms remain largely unexplained. Efforts to recapitulate age-dependent nondisjunction in a mammalian experimental system have so far been unsuccessful. Here we provide evidence that Drosophila is an excellent model organism for investigating how oocyte aging contributes to meiotic nondisjunction. As in human oocytes, nonexchange homologs and bivalents with a single distal crossover in Drosophila oocytes are most susceptible to spontaneous nondisjunction during meiosis I. We show that in a sensitized genetic background in which sister chromatid cohesion is compromised, nonrecombinant X chromosomes become vulnerable to meiotic nondisjunction as Drosophila oocytes age. Our data indicate that the backup pathway that normally ensures proper segregation of achiasmate chromosomes deteriorates as Drosophila oocytes age and provide an intriguing paradigm for certain classes of age-dependent meiotic nondisjunction in humans.  相似文献   

4.
Xiang Y  Hawley RS 《Genetics》2006,174(1):67-78
Bridges (1916) observed that X chromosome nondisjunction was much more frequent in XXY females than it was in genetically normal XX females. In addition, virtually all cases of X nondisjunction in XXY females were due to XX <--> Y segregational events in oocytes in which the two X chromosomes had failed to undergo crossing over. He referred to these XX <--> Y segregation events as "secondary nondisjunction." Cooper (1948) proposed that secondary nondisjunction results from the formation of an X-Y-X trivalent, such that the Y chromosome directs the segregation of two achiasmate X chromosomes to opposite poles on the first meiotic spindle. Using in situ hybridization to X and YL chromosomal satellite sequences, we demonstrate that XX <--> Y segregations are indeed presaged by physical associations of the X and Y chromosomal heterochromatin. The physical colocalization of the three sex chromosomes is observed in virtually all oocytes in early prophase and maintained at high frequency until midprophase in all genotypes examined. Although these XXY associations are usually dissolved by late prophase in oocytes that undergo X chromosomal crossing over, they are maintained throughout prophase in oocytes with nonexchange X chromosomes. The persistence of such XXY associations in the absence of exchange presumably facilitates the segregation of the two X chromosomes and the Y chromosome to opposite poles on the developing meiotic spindle. Moreover, the observation that XXY pairings are dissolved at the end of pachytene in oocytes that do undergo X chromosomal crossing over demonstrates that exchanges can alter heterochromatic (and thus presumably centromeric) associations during meiotic prophase.  相似文献   

5.
One thousand human sperm and hamster egg haploid karyotypes were analyzed at the pronuclear stage after in vitro penetration. The frequency of abnormalities in human sperm was 8.5%, with 5.2% aneuploidy and 3.3% structural abnormalities. The hamster egg complements had an abnormality rate of 3.8%, with 3.3% aneuploidy and 0.5% structural abnormalities. In both human and hamster complements, chromosome abnormalities were observed in all chromosome groups, demonstrating that all chromosomes are susceptible to nondisjunction, not just acrocentric or small chromosomes. There is an intriguing difference between the frequency of hyperhaploid and hypohaploid complements in human sperm and hamster eggs. In the human complements, 2.4% were hyperhaploid and 2.7% hypohaploid. This is very close to the theoretical 1 to 1 ratio expected from nondisjunction. The hamster egg complements had more hypohaploid (2.2%) than hyperhaploid (0.9%) complements, despite identical treatment. Higher rates of hypohaploidy are generally ascribed to artificial loss of chromosomes, but may in fact reflect a predisposition of oocytes to anaphase lag during meiosis. The frequency of abnormalities (both numerical and structural) is higher in human complements than in hamster. This may reflect an innate propensity for meiotic chromosome abnormalities in humans or may result from greater exposure of humans to mutagenic agents.  相似文献   

6.
The pesticide trichlorfon (TCF) has been implicated in human trisomy 21, and in errors in chromosome segregation at male meiosis II in the mouse. We previously provided evidence that TCF interferes with spindle integrity and cell-cycle control during murine oogenesis. To assess the aneugenic activity of TCF in oogenesis, we presently analysed maturation, spindle assembly, and chromosome constitution in mouse oocytes maturing in vitro in the presence of 50 or 100 microg/ml TCF for 16 h or in pulse-chase experiments. TCF stimulated maturation to meiosis II at 50 microg/ml, but arrested meiosis in some oocytes at 100 microg/ml. TCF at 100 microg/ml was aneugenic causing non-disjunction of homologous chromosomes at meiosis I, a significant increase of the hyperploidy rate at metaphase II, and a significant rise in the numbers of oocytes that contained a 'diploid' set of metaphase II chromosomes (dyads). TCF elevated the rate of precocious chromatid segregation (predivision) at 50 and 100 microg/ml. Pulse-chase experiments with 100 microg/ml TCF present during the first 7 h or the last 9 h of maturation in vitro did not affect meiotic progression and induced intermediate levels of hyperploidy at metaphase II. Exposure to > or =50 microg/ml TCF throughout maturation in vitro induced severe spindle aberrations at metaphase II, and over one-third of the oocytes failed to align all chromosomes at the spindle equator (congression failure). These observations suggest that exposure to high concentrations of TCF induces non-disjunction at meiosis I of oogenesis, while lower doses may preferentially cause errors in chromosome segregation at meiosis II due to disturbances in spindle function, and chromosome congression as well as precocious separation of chromatids prior to anaphase II. The data support evidence from other studies that TCF has to be regarded as a germ cell aneugen.  相似文献   

7.
Female mice of two age groups, 3--4 and 11--14 months old, homozygous for the T(1;13)70H reciprocal mouse translocation were used for cytological observations of bivalents (in primary oocytes) and metaphase II chromosomes (in secondary oocytes). Special attention was given to the behavior of the long (131) and short (113) marker chromosomes. In primary oocytes, univalents were considered "true" or "opposite". The aged females showed an eight-folded increase in "true" univalent frequency for chromosomes 113 over the young ones. A nine-fold rise for nondisjunction with regard to this chromosome was observed. For the other chromosomes, these factors were 2 and 1.7, respectively. The absolute levels of nondisjunction remained low at old age (1.42% for chromosome 113, 1.22% for all other chromosomes). The long marker bivalent 131 was used for chiasma counts. No change in chiasma number with age was observed. It is argued that poorer physiological conditions within the maturing oocytes of older females are the major cause for both the increasing frequencies of "true" and "opposite" univalents and the increased incidence for nondisjunction.  相似文献   

8.
M D Krawchuk  W P Wahls 《Genetics》1999,153(1):49-55
Recent evidence suggests that the position of reciprocal recombination events (crossovers) is important for the segregation of homologous chromosomes during meiosis I and sister chromatids during meiosis II. We developed genetic mapping functions that permit the simultaneous analysis of centromere-proximal crossover recombination and the type of segregation error leading to aneuploidy. The mapping functions were tested in a study of the rec8, rec10, and rec11 mutants of fission yeast. In each mutant we monitored each of the three chromosome pairs. Between 38 and 100% of the chromosome segregation errors in the rec8 mutants were due to meiosis I nondisjunction of homologous chromosomes. The remaining segregation errors were likely the result of precocious separation of sister chromatids, a previously described defect in the rec8 mutants. Between 47 and 100% of segregation errors in the rec10 and rec11 mutants were due to nondisjunction of sister chromatids during meiosis II. In addition, centromere-proximal recombination was reduced as much as 14-fold or more on chromosomes that had experienced nondisjunction. These results demonstrate the utility of the new mapping functions and support models in which sister chromatid cohesion and crossover position are important determinants for proper chromosome segregation in each meiotic division.  相似文献   

9.
The mechanisms of aneuploidy induction in human oogenesis mainly involve nondisjunction arising during the first and second meiotic divisions. Nondisjunction equally affects both whole chromosomes and chromatids, in the latter case it is facilitated by "predivision" or precocious centromere division. Karyotyping and CGH studies show an excess of hypohaploidy, which is confirmed in studies of preimplantation embryos, providing evidence in favour of anaphase lag as a mechanism. Preferential involvement of the smaller autosomes has been clearly shown but the largest chromosomes are also abnormal in many cases. Overall, the rate of chromosomal imbalance in oocytes from women aged between 30 and 35 has been estimated at 11% from recent karyotyping data but accruing CGH results suggest that the true figure should be considerably higher. Clear evidence has been obtained in favour of germinal or gonadal mosaicism as a predisposing factor. Constitutional aneuploidy in embryos is most frequent for chromosomes 22, 16, 21 and 15; least frequently involved are chromosomes 14, X and Y, and 6. However, embryos of women under 37 are far more likely to be affected by mosaic aneuploidy, which is present in over 50% of 3-day-old embryos. There are two main types, diploid/aneuploid and chaotic mosaics. Chaotic mosaics arise independently of maternal age and may be related to centrosome anomalies and hence of male origin. Aneuploid mosaics most commonly arise by chromosome loss, followed by chromosome gain and least frequently by mitotic nondisjunction. All may be related to maternal age as well as to lack of specific gene products in the embryo. Partial aneuploidy as a result of chromosome breakage affects a minimum of 10% of embryos.  相似文献   

10.
Inversion heterozygosity has long been noted for its ability to suppress the transmission of recombinant chromosomes, as well as for altering the frequency and location of recombination events. In our search for meiotic situations with enrichment for nonexchange and/or single distal-exchange chromosome pairs, exchange configurations that are at higher risk for nondisjunction in humans and other organisms, we examined both exchange and segregation patterns in 2728 oocytes from mice heterozygous for paracentric inversions, as well as controls. We found dramatic alterations in exchange position in the heterozygotes, including an increased frequency of distal exchanges for two of the inversions studied. However, nondisjunction was not significantly increased in oocytes heterozygous for any inversion. When data from all inversion heterozygotes were pooled, meiotic nondisjunction was slightly but significantly higher in inversion heterozygotes (1.2%) than in controls (0%), although the frequency was still too low to justify the use of inversion heterozygotes as a model of human nondisjunction.  相似文献   

11.
To correlate the chromosomal constitution of meiotic cells with possible disturbances in spindle function and the etiology of nondisjunction, we examined the spindle apparatus and chromosome behavior in maturing oocytes and analyzed the chromosomal constitution of metaphase II-arrested oocytes of CD/Cremona mice, which are heterozygous for a large number of Robertsonian translocation chromosomes (18 heterobrachial metacentrics in addition to two acrocentric chromosomes 19 and two X chromosomes). Spreading of oocytes during prometaphase 1 revealed that nearly all oocytes of the heterozygotes contained one large ring multivalent, apart from the bivalents of the two acrocentric chromosomes 19 and the X chromosomes, indicating that proper pairing and crossing-over between the homologous chromosome arms of all heterobrachial chromosomes took place during prophase. A large proportion of in vitro-matured oocytes arrested in metaphase II exhibited numerical chromosome aberrations (26.5% hyperploids, 40.8% hypoploids, and 6.1% diploids). In addition, some of the oocytes with euploid chromosome numbers (26.5% of the total examined) appeared to be nullisomic for one chromosome and disomic for another chromosome, so that aneuploidy levels may even be higher than expected on the basis of chromosome counts alone. Although oocytes of the complex heterozygous mice seemed able initially to form a bipolar spindle during first prometaphase, metaphase I spindles were frequently asymmetrical. Chromosomes in the multivalent did not align properly at the equator, centromeres of neighboring chromosomes in the multivalent remained maloriented, and pronounced lagging of chromosomes was observed at telophase I in oocytes obtained from the Robertsonian translocation heterozygotes. Therefore, disturbance in spindle structure and chromosome behavior appear to correlate with the chromosomal constitution in these oocytes and, ultimately, with failures in proper chromosome separation. In particular, reorientation appears to be a rare event, and malorientation of chromosomes may remain uncorrected throughout prometaphase, as we could not find many typical metaphase I stages in heterozygotes. This, in turn, could be the basis for malsegregation at anaphase and may ultimately induce a high rate of nondisjunction and aneuploidy in the oocytes of CD/Cremona mice, leading to total sterility in heterozygous females.  相似文献   

12.
It has been known for more than half a century that the risk of conceiving a child with trisomy increases with advanced maternal age. However, the origin of the high susceptibility to nondisjunction of whole chromosomes and precocious separation of sister chromatids, leading to aneuploidy in aged oocytes and embryos derived from them, cannot be traced back to a single disturbance and mechanism. Instead, analysis of recombination patterns of meiotic chromosomes of spread oocytes from embryonal ovary, and of origins and exchange patterns of extra chromosomes in trisomies, as well as morphological and molecular studies of oocytes and somatic cells from young and aged females, show chromosome-specific risk patterns and cellular aberrations related to the chronological age of the female. In addition, analysis of the function of meiotic- and cell-cycle-regulating genes in oogenesis, and the study of the spindle and chromosomal status of maturing oocytes, suggest that several events contribute synergistically to errors in chromosome segregation in aged oocytes in a chromosome-specific fashion. For instance, loss of cohesion may differentially predispose chromosomes with distal or pericentromeric chiasmata to nondisjunction. Studies on expression in young and aged oocytes from human or model organisms, like the mouse, indicate that the presence and functionality/activity of gene products involved in cell-cycle regulation, spindle formation and organelle integrity may be altered in aged oocytes, thus contributing to a high risk of error in chromosome segregation in meiosis I and II. Genes that are often altered in aged mouse oocytes include MCAK (mitotic-centromere-associated protein), a microtubule depolymerase, and AURKB (Aurora kinase B), a protein of the chromosomal passenger complex that has many targets and can also phosphorylate and regulate MCAK localization and activity. Therefore we explored the role of MCAK in maturing mouse oocytes by immunofluorescence, overexpression of a MCAK-EGFP (enhanced green fluorescent protein) fusion protein, knockdown of MCAK by RNAi (RNA interference) and inhibition of AURKB. The observations suggest that MCAK is involved in spindle regulation, chromosome congression and cell-cycle control, and that reductions in mRNA and protein in a context of permissive SAC (spindle assembly checkpoint) predispose to aneuploidy. Failure to recruit MCAK to centromeres and low expression patterns, as well as disturbances in regulation of enzyme localization and activity, e.g. due to alterations in activity of AURKB, may therefore contribute to maternal age-related rises in aneuploidy in mammalian oocytes.  相似文献   

13.
D. D. Sears  J. H. Hegemann  J. H. Shero    P. Hieter 《Genetics》1995,139(3):1159-1173
We have employed a system that utilizes homologous pairs of human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to assess the specific role (s) of conserved centromere DNA elements (CDEI, CDEII and CDEIII) in meiotic chromosome disjunction fidelity. Thirteen different centromere (CEN) mutations were tested for their effects on meiotic centromere function. YACs containing a wild-type CEN DNA sequence segregate with high fidelity in meiosis I (99% normal segregation) and in meiosis II (96% normal segregation). YACs containing a 31-bp deletion mutation in centromere DNA element II (CDEIIδ31) in either a heterocentric (mutant/wild type), homocentric (mutant/mutant) or monosomic (mutant/--) YAC pair configuration exhibited high levels (16-28%) of precocious sister-chromatid segregation (PSS) and increased levels (1-6%) of nondisjunction meiosis I (NDI). YACs containing this mutation also exhibit high levels (21%) of meiosis II nondisjunction. Interestingly, significant alterations in homolog recombination frequency were observed in the exceptional PSS class of tetrads, suggesting unusual interactions between prematurely separated sister chromatids and their homologous nonsister chromatids. We also have assessed the meiotic segregation effects of rare gene conversion events occurring at sites located immediately adjacent to or distantly from the centromere region. Proximal gene conversion events were associated with extremely high levels (60%) of meiosis I segregation errors (including both PSS and NDI), whereas distal events had no apparent effect. Taken together, our results indicate a critical role for CDEII in meiosis and underscore the importance of maintaining sister-chromatid cohesion for proper recombination in meiotic prophase and for proper disjunction in meiosis I.  相似文献   

14.
Single cell comparative genomic hybridization (CGH) was employed to extensively investigate 24 unfertilized or in vitromatured meiosis II oocytes and their corresponding first polar bodies (PBs), to determine how and whether all 23 chromosomes participate in female meiosis I errors and to accurately estimate the aneuploidy rate in the examined cells. Results were obtained for 15 oocytes and 16 PBs, representing 23 eggs (MII oocyte-PB complexes) donated from 15 patients (average age 32.2 years). Abnormalities were detected in ten eggs, giving an overall aneuploidy rate of 43.5%. In all, fourteen anomalies were scored, with the fertilized oocyte being at risk of monosomy in eight cases and at risk of trisomy in six; chromosomes of various sizes participated. CGH was able to give a comprehensive aneuploidy rate, as both absence of chromosomal material and the presence of extra copies were accurately scored. The aneuploidy mechanisms determined were: classical whole univalent non-disjunction; chromatid predivision prior to anaphase I, leading to metaphase II imbalance. There was also evidence of germinal mosaicism for a trisomic cell line. Three patients appeared to be predisposed to meiosis I errors, based on the presence of either multiple abnormalities in one or more of their examined cells, or of the same type of abnormality in all of their cells. Exclusion of these susceptible patients reduces the aneuploidy rate to 20%. Various hypotheses are put forward to explain these observations in order to stimulate research into the complex nature of female meiotic regulation.  相似文献   

15.
The effects of maternal aging on the configuration of chiasmata, formation of univalents, and segregation of first meiotic (MI) chromosomes were investigated in young (5-8 mo) and old (16-19 mo) Chinese hamsters. Primary oocytes were collected only from mature follicles approximately 10 h before ovulation, and secondary oocytes were obtained from the oviducts 5 h after spontaneous ovulation. The average number of chiasmata per oocyte was significantly smaller in aged hamsters than in the young hamsters (P less than 0.001). Terminal chiasmata were found more frequently in the former group than in the latter one (P less than 0.001). These results coincided well with findings in the mouse. Since the 11 meiotic chromosomes could be divided into four morphologically distinguishable subgroups, it was possible to determine whether the same bivalent forming univalents at MI actually underwent nondisjunction in the following meiotic division. The incidence of both MI oocytes with a univalent pair and aneuploid MII oocytes due to first meiotic nondisjunction was significantly higher in the aged group than in the young group (P less than 0.01) and P less than 0.05, respectively). However, univalents occurred almost exclusively in the smallest metacentric chromosome group (96%), whereas nondisjunction took place nearly equally in each chromosomal subgroup. These results clearly showed that there was no correlation between the univalents seen at MI and nondisjunction during the first meiotic division.  相似文献   

16.
In an attempt to study the mechanisms leading to nondisjunction during meiosis I, Djungarian hamster females were treated with colchicine (3 mg/kg), which binds specifically to tubulin. The number of ovulated oocytes per female was significantly reduced following colchicine treatment (8.2 +/- 5.3, compared to 10.6 +/- 5.9 in controls receiving saline solution only). Application of colchicine rather late during oocyte maturation (ie, 5.5 h after injection of human chorionic gonadotrophin) caused a significant increase in the number of ovulated diploid (34.5%) and hyperhaploid (11.7%) oocytes, compared to the frequencies observed in the saline-treated controls (0.8% and 3.5%, respectively). Specific bivalents (viz, the large meta- and submetacentric chromosomes of groups A, B, and C) were preferentially involved in colchicine-induced nondisjunction. The same pattern of chromosomal malsegregation was previously observed in oocytes from this hamster species following hypergonadotrophic stimulation. Preferential involvement of bivalents in the process of nondisjunction, whether induced by colchicine or hypergonadotrophic stimulation, is explained by an interference with microtubular function affecting those bivalents that are the last to segregate.  相似文献   

17.
In the present study, we developed a fluorescence in situ hybridization (FISH) strategy, which allows a reliable determination of the chromatid number of specific chromosomes in mature human oocytes. 168 unfertilized oocytes were analyzed by dual-color FISH with two direct-labeled locus-specific DNA probes for chromosome 13 and 21. To exclude FISH failures, metaphases with abnormal signal patterns were reanalyzed by multi-locus-FISH (ML-FISH) for chromosome 13 and 21. Following dual-color FISH, abnormal signal patterns were detected in 21 out of 108 metaphases (19.4%). 17 of these metaphases were reanalyzed by ML-FISH. In contrast to the first FISH, seven metaphases showed normal signal patterns after rehybridization, whereas ten metaphases remained abnormal. Out of these real aneuploid metaphases, five showed gain or loss of a single signal (= chromatid), two showed missing double signals (= chromosome) and three showed both. In conclusion, locus-specific FISH probes facilitate differentiation between first meiotic nondisjunction of whole chromosomes and prematurely divided chromatids. Moreover, simultaneous hybridization with a second locus-specific probe on the same chromatid (ML-FISH) helps to differentiate between FISH failures and real meiotic division errors and therefore, allows a more reliable analysis of aneuploidies in human oocytes.  相似文献   

18.
Analysis of sperm aneuploidy in 11 healthy men using two-or three-color FISH permitted to determine the average frequency of disomy for chromosomes 13 and 21 (0.11% and 0.2%, respectively), disomy for chromosome 18 (0.05%) and to reveal gonosomal aneuploidy variants and their frequency. The frequency of XX disomy was 0.04%; XY, 0.17%; YY, 0.06%; and gonosomal nullisomy, 0.29%. We assessed the frequency of meiotic nondisjunction of 13, 21, 18, X, and Y chromosomes and the frequency of XX, XY, and YY diploid spermatozoa. The XY variant prevailed in gonosomal aneuploidy and diploidy and was associated with abnormal chromosomal segregation in meiotic anaphase I. The contribution of human sperm chromosomal imbalance to early embryonic lethality and to some forms of chromosomal abnormalities in the off-spring is discussed.  相似文献   

19.
The human sperm/hamster egg fusion technique has been used to analyse 6,821 human sperm chromosome complements from 98 men to determine if all chromosomes are equally likely to be involved in aneuploid events or if some chromosomes are particularly susceptible to nondisjunction. The frequency of hypohaploidy and hyperhaploidy was compared among different chromosome groups and individual chromosomes. In general, hypohaploid sperm complements were more frequent than hyperhaploid complements. The distribution of chromosome loss in the hypohaploid complements indicated that significantly fewer of the large chromosomes and significantly more of the small chromosomes were lost, suggesting that technical loss predominantly affects small chromosomes. Among the autosomes, the observed frequency of hyperhaploid sperm equalled the expected frequency (assuming an equal frequency of nondisjunction for all chromosomes) for all chromosome groups. Among individual autosomes, only chromosome 9 showed an increased frequency of hyperhaploidy. The sex chromosomes also showed a significant increase in the frequency of hyperhaploidy. These results are consistent with studies of spontaneous abortions and liveborns demonstrating that aneuploidy for the sex chromosomes is caused by paternal meiotic error more commonly than aneuploidy for the autosomes.  相似文献   

20.
The effect of maternal age on the incidence of chromosomal abnormalities was investigated on a large sample of 3,042 in vitro unfertilized human oocytes II obtained from 792 women aged 19-46 years and participating in an in vitro fertilization program for various indications. The chromosomal analysis combined a gradual fixation of oocytes and an adapted R-banding technique. A total of 1,397 interpretable karyotypes were obtained. Various types of numerical aberration were observed, involving conventional chromosome nondisjunction (3.5%), single-chromatid nondisjunction (5.9%), complex (0.8%) or extreme aneuploidy (0.5%), diploidy (5.4%), and set of single chromatids (3.8%). No significant difference was found in the mean age of women according to the various types of chromosomal abnormalities. A positive relationship was found between maternal age and the global rate of aneuploidy, in agreement with the findings of epidemiological studies. The incidence of both whole-chromosome nondisjunction and precocious chromatid separation were correlated to maternal aging but the most significant correlation was found between maternal aging and single-chromatid nondisjunction. The rate of diploidy was also correlated to a slight extent to maternal aging, whereas no correlation was found between maternal age and the rate of single-chromatid sets. These data reveal that single-chromatid malsegregation is an essential factor in the age-dependent occurrence of nondisjunction in human oocytes. Disturbance in sister-chromatid cohesion might be a causal mechanism predisposing to premature chromatid separation and subsequently to nondisjunction in female meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号