首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electric fields play an important role in the physiological function of macromolecules. Much is known about the role that electric fields play in biological systems, but membrane molecule structure and orientation induced by electric fields remain essentially unknown. In this paper, we present a polarized attenuated total reflection (ATR) experiment we designed to study the effect of electric fields on membrane molecule structure and orientation by Fourier-transform infrared (FTIR) spectroscopy. Two germanium crystals used as the internal reflection element for ATR-FTIR experiments were coated with a thin layer of polystyrene as insulator and used as electrodes to apply an electric field on an oriented stack of membranes made of dioleylphosphatidylcholine (DOPC) and melittin. This experimental set up allowed us for the first time to show fully reversible orientational changes in the lipid headgroups specifically induced by the electric potential difference.  相似文献   

2.
The helix tilt and rotational orientation of the transmembrane segment of M2, a 97-residue protein from the Influenza A virus that forms H(+)-selective ion channels, have been determined by attenuated total reflection site-specific infrared dichroism using a novel labeling approach. Triple C-deuteration of the methyl group of alanine in the transmembrane domain of M2 was used, as such modification shifts the asymmetric and symmetric stretching vibrations of the methyl group to a transparent region of the infrared spectrum. Structural information can then be obtained from the dichroic ratios corresponding to these two vibrations. Two consecutive alanine residues were labeled to enhance signal intensity. The results obtained herein are entirely consistent with previous site-specific infrared dichroism and solid-state nuclear magnetic resonance experiments, validating C-deuterated alanine as an infrared structural probe that can be used in membrane proteins. This new label adds to the previously reported (13)C [double bond] (18)O and C-deuterated glycine as a tool to analyze the structure of simple transmembrane segments and will also increase the feasibility of the study of polytopic membrane proteins with site-specific infrared dichroism.  相似文献   

3.
The secondary structure of the apo B-100 protein present in human low density lipoprotein has been investigated by transmission and attenuated total reflection infrared spectroscopy. The amount of beta-sheet (41%) is significantly higher than that determined by CD spectroscopy in the present study (12%) and elsewhere (15-16%). The high percentage of beta-sheet structure in apo B-100 supports the importance of such segments in maintaining the lipid-protein assembly in LDL. Polarized infrared spectroscopy indicates that the beta-sheet component of apo B-100 adopts a preferential orientation with respect to the phospholipid monolayer surrounding the LDL, whereas no such orientation is observed for the other secondary structure components.  相似文献   

4.
ErbB-2 is a member of the family of epidermal growth factor receptors, which shows an oncogenic mutation in the rat gene neu, Val664Glu in the transmembrane domain that causes permanent dimerisation and subsequently leads to uncontrollable cell division and tumour formation. We have obtained the alpha-helical structure of the mutant transmembrane domain dimer experimentally with site-specific infrared dichroism (SSID) based on six transmembrane peptides with 13C18O carbonyl group-labelled residues. The derived orientational data indicate a local helix tilt ranging from 28(+/-6) degrees to 22(+/-4) degrees. Altogether using orientational constraints from SSID and experimental alpha-helical constraints while performing a systematic conformational search including molecular dynamics simulation in a lipid bilayer, we have obtained a unique experimentally defined atomic structure. The resulting structure consists of a right handed alpha-helical bundle with the residues Ile659, Val663, Leu667, Ile671, Val674 and Leu679 in the dimerisation interface. The right-handed bundle is in contrast to the left-handed structures obtained in previous modelling efforts. In order to facilitate tight helical packing, the spacious Glu664 residues do not interact directly but with water molecules that enter the bilayer.  相似文献   

5.
The Na+/K+-ATPase uses energy from the hydrolysis of ATP to pump Na+ ions out of and K+ ions into the cell. ATP-induced conformational changes in the protein have been examined in the Na+/K+-ATPase isolated from duck supraorbital salt glands using Fourier transform infrared spectroscopy. Both standard transmission and attenuated total internal reflection sample geometries have been employed. Under transmission conditions, enzyme at 75 mg/ml was incubated with dimethoxybenzoin-caged ATP. ATP was released by flashing with a UV laser pulse at 355 nm, which resulted in a large change in the amide I band. The absorbance at 1659 cm(-1) decreased with a concomitant increase in the absorbance at 1620 cm(-1). These changes are consistent with a partial conversion of protein secondary structure from alpha-helix to beta-sheet. The changes were approximately 8% of the total absorbance, much larger than those seen with other P-type ATPases. Using attenuated total internal reflection Fourier transform infrared spectroscopy, the decrease in absorbance at approximately 1650 cm(-1) was titrated with ATP, and the titration midpoint K0.5 was determined under different ionic conditions. In the presence of metal ions (Na+, Na+ and K+, or Mg2+), K0.5 was on the order of a few microM. In the absence of these ions, K0.5 was an order of magnitude lower (0.1 microM), indicating a higher apparent affinity. This effect suggests that the equilibrium for the ATP-induced conformational changes is dependent on the presence of metal ions.  相似文献   

6.
The small hydrophobic (SH) protein from the human respiratory syncytial virus (hRSV) is a glycoprotein of approximately 64 amino acids with one putative alpha-helical transmembrane domain. Although SH protein is important for viral infectivity, its exact role during viral infection is not clear. Herein, we have studied the secondary structure, orientation, and oligomerization of the transmembrane domain of SH (SH-TM) in the presence of lipid bilayers. Only one oligomer, a pentamer, was observed in PFO-PAGE. Using polarized attenuated total reflection-Fourier transform infrared (PATR-FTIR) spectroscopy, we show that the SH-TM is alpha-helical. The rotational orientation of SH-TM was determined by site-specific infrared dichroism (SSID) at two consecutive isotopically labeled residues. This orientation is consistent with that of an evolutionary conserved pentameric model obtained from a global search protocol using 13 homologous sequences of RSV. Conductance studies of SH-TM indicate ion channel activity, which is cation selective, and inactive below the predicted pK(a) of histidine. Thus, our results provide experimental evidence that the transmembrane domain of SH protein forms pentameric alpha-helical bundles that form cation-selective ion channels in planar lipid bilayers. We provide a model for this pore, which should be useful in mutagenesis studies to elucidate its role during the virus cycle.  相似文献   

7.
The outer-membrane proteins OmpA and FhuA of Escherichia coli are monomeric beta-barrels of widely differing size. Polarized attenuated total reflection infrared spectroscopy has been used to determine the orientation of the beta-barrels in phosphatidylcholine host matrices of different lipid chain lengths. The linear dichroism of the amide I band from OmpA and FhuA in hydrated membranes generally increases with increasing chain length from diC(12:0) to diC(17:0) phosphatidylcholine, in both the fluid and gel phases. Measurements of the amide I and amide II dichroism from dry samples are used to deduce the strand tilt (beta = 46 degrees for OmpA and beta = 44.5 degrees for FhuA). These values are then used to deduce the order parameters, P(2)(cos alpha), of the beta-barrels from the amide I dichroic ratios of the hydrated membranes. The orientational ordering of the beta-barrels and their assembly in the membrane are discussed in terms of hydrophobic matching with the lipid chains.  相似文献   

8.
Porin from Escherichia coli outer membranes has been analysed by high angle diffuse X-ray diffraction, and by attenuated total reflection infrared spectroscopy. These methods demonstrate independently that the majority of the polypeptide backbone is arranged in anti-parallel beta-pleated sheet structure. The average length of the beta-strands, which are oriented nearly normal to the membrane plane, is estimated to be 10-12 residues, independent of the method used. Although the details of strand arrangement (beta-barrels or stacked sheets) are not as yet known, porin represents the first transmembrane protein for which beta-structure has been established unequivocally.  相似文献   

9.
Fourier transform infrared spectroscopy (FTIR) was used to study the secondary structure of peptides which imitate the amino acid sequences of the C-terminal domain of the pro-apoptotic protein Bax (Bax-C) when incorporated into different lipid vesicles with or without negatively charged phospholipids. The infrared spectroscopy results showed that while the beta-sheet components are predominant in the membrane-free Bax-C secondary structure as well as in the presence of phosphatidylcholine vesicles, the peptide changes its secondary structure in the presence of negatively charged membranes, including phospholipids such as phosphatidylglycerol or phosphatidylinositol, depending on both the lipid composition and their molar ratio. The negative charges in the model membrane surface caused a marked change from beta-sheet to alpha-helix structure. Moreover, using attenuated total reflection infrared spectroscopy (ATR-FTIR), we investigated the orientation of Bax-C alpha-helical structures with respect to the normal to the internal reflection element. The orientation of Bax-C in membranes was also affected by negatively charged lipids, the presence of phosphatidylglycerol reduced the angle it forms with the normal to the germanium plate from 45 degrees in phosphatidylcholine to 27 degrees in phosphatidylglycerol vesicles. These results highlight the importance of lipid-protein interaction for the correct folding of membrane proteins and they suggest that the C-terminal domain of Bax will only span membranes with a net negative charge in their surface.  相似文献   

10.
Reflected differential interference contrast microscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to obtain complementary data on the structural and chemical properties of a biofilm. This information was obtained nondestructively, quasisimultaneously, and in real time, thereby permitting the verification of time-dependent relationships between the biofilm's population structure, distribution, and interfacial chemistry. The approach offers opportunities to examine these relationships on a variety of substrata in the presence of a bulk aqueous phase under controlled hydrodynamic conditions.  相似文献   

11.
12.
Quantitation of secondary structure in ATR infrared spectroscopy   总被引:2,自引:1,他引:1       下载免费PDF全文
D Marsh 《Biophysical journal》1999,77(5):2630-2637
Polarized attenuated total reflection infrared spectroscopy of aligned membranes provides essential information on the secondary structure content and orientation of the associated membrane proteins. Quantitation of the relative content of different secondary structures, however, requires allowance for geometric relations of the electric field components (E(x), E(y), E(z)) of the evanescent wave, and of the components of the infrared transition moments, in combining absorbances (A() and A( perpendicular)) measured with radiation polarized parallel with and perpendicular to, respectively, the plane of incidence. This has hitherto not been done. The appropriate combination for exact evaluation of relative integrated absorbances is A() + (2E(z)(2)/E(y)(2) - E(x)(2)/E(y)(2))A( perpendicular), where z is the axis of ordering that is normal to the membrane plane, and the x-axis lies in the membrane plane within the plane of incidence. This combination can take values in the range approximately from A() - 0.4A( perpendicular) to A() + 2.7A( perpendicular), depending on experimental conditions and the attenuated total reflection crystal used. With unpolarized radiation, this correction is not possible. Similar considerations apply to the dichroic ratios of multicomponent bands, which are also treated.  相似文献   

13.
Within the framework of process analytical technology, infrared spectroscopy (IR) has been used for characterization of biopharmaceutical production processes. Although noninvasive attenuated total reflection (ATR) spectroscopy can be regarded as gold standard within IR‐based process analytics, simpler and more cost‐effective mid‐infrared (MIR) instruments might improve acceptability of this technique for high‐level monitoring of small scale experiments as well as for academia where financial restraints impede the use of costly equipment. A simple and straightforward at‐line mid‐IR instrument was used to monitor cell viability parameters, activity of lactate dehydrogenase (LDH), amount of secreted antibody, and concentration of glutamate and lactate in a Chinese hamster ovary cell culture process, applying multivariate prediction models, including only 25–28 calibration samples per model. Glutamate amount could be predicted with high accuracy (R2 0.91 for independent test‐set) while antibody concentration achieved good prediction for concentrations >0.4 mg L?1. Prediction of LDH activity was accurate except for the low activity regime. The model for lactate monitoring was only moderately good and requires improvements. Relative cell viability between 20 and 95% could be predicted with low error (8.82%) in comparison to reference methods. An initial model for determining the number of nonviable cells displayed only acceptable accuracy and requires further improvement. In contrast, monitoring of viable cell number showed better accuracy than previously published ATR‐based results. These results prove the principal suitability of less sophisticated MIR instruments to monitor multiple parameters in biopharmaceutical production with relatively low investments and rather fast calibration procedures. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:578–584, 2015  相似文献   

14.
Vibrational spectroscopy has long been used in bacterial identification with different levels of taxonomic discrimination but its true potential for intra‐species differentiation remains poorly explored. Herein, both transmission Fourier‐transform infrared (FTIR) and attenuated total reflectance (ATR)‐FTIR spectroscopy are used to analyse E. coli strains that differ solely in their porin expression profile. In this previously unreported approach, the applicability of both FTIR‐spectroscopy techniques is compared with the same collection of unique strains. ATR‐FTIR spectroscopy proved to reliably distinguish between several E. coli porin mutants with an accuracy not replicated by FTIR in transmission mode (using previously optimized procedures). Further studies should allow the identification of the individual contribution of the single porin channel to the overall bacterial infrared spectrum and of molecular predictive patterns of porin alterations. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
A detailed analysis of the structure of an 18-residue peptide AQSLLVPSIIFILAYSLK [M6(252-269, C252A)] in 1,2-dimyristoyl-sn-glycero-phosphocholine bilayers was carried out using solid state NMR and attenuated total reflection Fourier transform infrared spectroscopy. The peptide corresponds to a portion of the 6th transmembrane domain of the alpha-factor receptor of Saccharomyces cerevisiae. Ten homologs of M6(252-269, C252A) were synthesized in which individual residues were labeled with (15)N. One- and two-dimensional solid state NMR experiments were used to determine the chemical shifts and (1)H-(15)N dipolar coupling constants for the (15)N-labeled peptides in oriented dimyristoylphosphatidylcholine bilayers on stacked glass plates. These parameters were used to calculate the structure and orientation of M6(252-269, C252A) in the bilayers. The results indicate that the carboxyl terminal residues (9-14) are alpha-helical and oriented with an angle of about 8 degrees with respect to the bilayer normal. Independently, an attenuated total reflection Fourier transform infrared spectroscopy analysis on M6(252-269, C252A) in a 1,2-dimyristoyl-sn-glycero-phosphocholine bilayer concluded that the helix tilt angle was about 12.5 degrees. The results on the structure of M6(252-269, C252A) in bilayers are in good agreement with the structure determined in trifluoroethanol/water solutions (B. Arshava et al. Biopolymers, 1998, Vol. 46, pp. 343-357). The present study shows that solid state NMR spectroscopy can provide high resolution information on the structure of transmembrane domains of a G protein-coupled receptor.  相似文献   

16.
The mechanism of the interaction between bovine serum albumin (BSA) and desvenlafaxine was studied using fluorescence, ultraviolet absorption, 3‐dimensional fluorescence spectroscopy, circular dichroism, synchronous fluorescence spectroscopy, cyclic voltametry, differential scanning calorimetry, and attenuated total reflection–Fourier transform infrared spectroscopic techniques under physiological condition at pH 7.4. Stern‐Volmer calculations authenticate the fluorescence of BSA that was quenched by desvenlafaxine in a collision quenching mode. The fluorescence quenching method was used to evaluate number of binding sites “n” and binding constant K A that were measured, and various thermodynamic parameters were evaluated at different temperatures by using the van't Hoff equation and differential scanning calorimetry technique, which indicated a spontaneous and hydrophobic interaction between BSA and desvenlafaxine. According to the Förster theory we calculate the distance between the donor, BSA and acceptor, desvenlafaxine molecules. Furthermore, circular dichroism and attenuated total reflection–Fourier transform infrared spectroscopy indicate nominal changes in the secondary structure of the protein.  相似文献   

17.
The secondary structure of the purified 70-kDa protein Na+/Ca2+ exchanger, functionally reconstituted into asolectin lipid vesicles, was examined by Fourier transform infrared attenuated total reflection spectroscopy. Fourier transform infrared attenuated total reflection spectroscopy provided evidence that the protein is composed of 44% alpha-helices, 25% beta-sheets, 16% beta-turns, and 15% random structures, notably the proportion of alpha-helices is greater than that corresponding to the transmembrane domains predicted by exchanger hydropathy profile. Polarized infrared spectroscopy showed that the orientation of helices is almost perpendicular to the membrane. Tertiary structure modifications, induced by addition of Ca2+, were evaluated by deuterium/hydrogen exchange kinetic measurements for the reconstituted exchanger. This approach was previously proven as a useful tool for detection of tertiary structure modifications induced by an interaction between a protein and its specific ligand. Deuterium/hydrogen exchange kinetic measurements indicated that, in the absence of Ca2+, a large fraction of the protein (40%) is inaccessible to solvent. Addition of Ca2+ increased to 55% the inaccessibility to solvent, representing a major conformational change characterized by the shielding of at least 93 amino acids.  相似文献   

18.
Hydrophobins self assemble into amphipathic films at hydrophobic-hydrophilic interfaces. These proteins are involved in a broad range of processes in fungal development. We have studied the conformational changes that accompany the self-assembly of the hydrophobin SC3 with polarization-modulation infrared reflection absorption spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, and circular dichroism, and related them to changes in morphology as observed by electron microcopy. Three states of SC3 have been spectroscopically identified previously as follows: the monomeric state, the alpha-helical state that is formed upon binding to a hydrophobic solid, and the beta-sheet state, which is formed at the air-water interface. Here, we show that the formation of the beta-sheet state of SC3 proceeds via two intermediates. The first intermediate has an infrared spectrum indistinguishable from that of the alpha-helical state of SC3. The second intermediate is rich in beta-sheet structure and has a featureless appearance under the electron microscope. The end state has the same secondary structure, but is characterized by the familiar 10-nm-wide rodlets.  相似文献   

19.
The aim of this work was to evaluate unilamellar liposomes as new potential capreomycin sulfate (CS) delivery systems for future pulmonary targeting by aerosol administration. Dipalmitoylphosphatidylcholine, hydrogenated phosphatidylcholine, and distearoylphosphatidylcholine were used for liposome preparation. Peptide-membrane interaction was investigated by differential scanning calorimetry (DSC) and attenuated total internal reflection Fourier-transform infrared spectroscopy (ATIR-FTIR). Peptide entrapment, size, and morphology were evaluated by UV spectrophotometry, photocorrelation spectroscopy, and transmission electron microscopy, respectively. Interaction between CS and the outer region of the bilayer was revealed by DSC and ATIR-FTIR. DSPC liposomes showed enhanced interdigitation when the CS molar fraction was increased. Formation of a second phase on the bilayer surface was observed. From kinetic and permeability studies, CS loaded DSPC liposomes resulted more stable if compared to DPPC and HPC over the period of time investigated. The amount of entrapped peptide oscillated between 10% and 13%. Vesicles showed a narrow size distribution, from 138 to 166 nm, and a good morphology. These systems, in particular DSPC liposomes, could represent promising carriers for this peptide.  相似文献   

20.
Historically, the task of determining the structure of membrane proteins has been hindered by experimental difficulties associated with their lipid-embedded domains. Here, we provide an overview of recently developed experimental and predictive tools that are changing our view of this largely unexplored territory - the 'Wild West' of structural biology. Crystallography, single-particle methods and atomic force microscopy are being used to study huge membrane proteins with increasing detail. Solid-state nuclear magnetic resonance strategies provide orientational constraints for structure determination of transmembrane (TM) alpha-helices and accurate measurements of intramolecular distances, even in very complex systems. Longer distance constraints are determined by site-directed spin-labelling electron paramagnetic resonance, but current labelling strategies still constitute some limitation. Other methods, such as site-specific infrared dichroism, enable orientational analysis of TM alpha-helices in aligned bilayers and, combined with novel computational and predictive tools that use evolutionary conservation data, are being used to analyze TM alpha-helical bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号