首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In addition to causing overt nociception, intraplantar (ipl) endothelin (ET)-1 injection into the rat hind paw induces hyperalgesia to mechanical stimuli, mediated via local ET(B) receptors coupled to protein kinase (PK) C, but not PKA. The present study further examines the intracellular signaling mechanisms underlying this effect of ET-1. ET-1 (30 pmol) or phospate-buffered saline (PBS) was injected ipl in rats and the threshold of responsiveness to mechanical stimulation was assessed repeatedly each hour up to 8 hrs and 24 hrs, using the dynamic plantar aesthesiometer test, which detects the minimal pressure required to evoke paw withdrawal. Different groups were treated, 15 mins before ET-1 administration, with ipsilateral injection of selective inhibitors of either phospholipase (PL) A2 (1 nmol PACOCF3), PLC (30 pmol U73122), PKC (1 nmol GF109203X), p38 mitogen-activated protein kinase (MAPK; 30 nmol SB203580), extracellular signal-regulated kinase (ERK1/2; 30 nmol PD98059), c-Jun N-terminal kinase (JNK; 30 nmol SP600125), or vehicle, to assess their influence on the hyperalgesic response. The mechanical hyperalgesia caused by ET-1 started 2 hrs after injection, peaked at 5 hrs (PBS, 29 +/- 0.5 g; ET-1, 17 +/- 1.3 g) and lasted up to 8 hrs. The inhibitors of PLC, PKC, p38 MAPK, ERK1/2, and JNK caused long-lasting reductions of the mechanical hyperalgesia (inhibitions at 4 hrs of 100%, 90%, 97%, 90%, and 100%, respectively), but the PLA2 inhibitor reduced hyperalgesia only at 4 hrs (by 58%). Thus, mechanical hyperalgesia triggered by ET-1 in the rat hind paw depends importantly on signaling pathways involving PLC, PKC, p38 MAPK, ERK1/2, and JNK, whereas the contribution of PLA2 is relatively minor.  相似文献   

2.
3.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

4.
Adenosine binds to a class of G-protein coupled receptors, which are further distinguished as A(1), A(2a), A(2b) and A(3) adenosine receptors. As we have shown earlier, the stable adenosine analogue NECA (N6-(R)-phenylisopropyladenosine) stimulates IL-6 expression in the human astrocytoma cell line U373 MG via the A(2b) receptor. The mechanism by which NECA promotes astrocytic IL-6 expression has not been identified. By using various inhibitors of signal transduction, we found that p38 mitogen-activated protein kinases (MAPK) activation (inhibitor SB202190), but not extracellular signal-regulated kinase (ERK) (PD98059) and c-jun N-terminal kinase (JNK)(SP600125), is essential in the NECA-induced signalling cascade that leads to the increase in IL-6 synthesis in U373 MG cells. Results obtained with protein kinase C (PKC) inhibitors that have different substrate specificities, indicated that the PKC delta and epsilon isoforms are also involved in adenosine receptor A(2b) dependent upregulation of IL-6 expression. This is supported by the fact that NECA induced the activation of PKC delta and epsilon in U373 MG cells.  相似文献   

5.
6.
7.
Cao L  Zhang Y  Cao YX  Edvinsson L  Xu CB 《PloS one》2012,7(3):e33008

Background

Cigarette smoking is a strong cardiovascular risk factor and endothelin (ET) receptors are related to coronary artery diseases. The present study established an in vivo secondhand smoke (SHS) exposure model and investigated the hypothesis that cigarette smoke induces ET receptor upregulation in rat coronary arteries and its possible underlying mechanisms.

Methodology/Principal Findings

Rats were exposed to SHS for 200 min daily for 8 weeks. The coronary arteries were isolated and examined. The vasoconstriction was studied by a sensitive myograph. The expression of mRNA and protein for receptors was examined by real-time PCR, Western blot and immunofluorescence. Compared to fresh air exposure, SHS increased contractile responses mediated by endothelin type A (ETA) and type B (ETB) receptors in coronary arteries. In parallel, the expression of mRNA and protein for ETA and ETB receptors of smoke exposed rats were higher than that of animals exposed to fresh air, suggesting that SHS upregulates ETA and ETB receptors in coronary arteries in vivo. Immunofluorescence staining showed that the enhanced receptor expression was localized to the smooth muscle cells of coronary arteries. The protein levels of phosphorylated (p)-Raf-1 and p-ERK1/2 in smoke exposed rats were significantly higher than in control rats, demonstrating that SHS induces the activation of the Raf/ERK/MAPK pathway. Treatment with Raf-1 inhibitor GW5074 suppressed SHS-induced enhanced contraction mediated by ETA receptors, and inhibited the elevated mRNA and protein levels of ETA and ETB receptors caused by SHS. The results of correlation and regression analysis showed that phosphorylation of Raf and ERK1/2 were independent determinants to affect protein expression of ETB and ETA receptors.

Conclusions/Significance

Cigarette smoke upregulates ETB and ETA receptors in rat coronary artery, which is associated with the activation of the Raf/ERK/MAPK pathway.  相似文献   

8.
Park YD  Kim YS  Jung YM  Lee SI  Lee YM  Bang JB  Kim EC 《Cytokine》2012,60(1):284-293
Increased interleukin (IL)-17 and IL-23 levels exist in the gingival tissue of periodontitis patients, but the precise molecular mechanisms that regulate IL-17 and IL-23 production remain unknown. The aim of this study was to explore the role of SIRT1 signaling on Porphyromonas gingivalis lipopolysaccharide (LPS)-induced IL-17 and IL-23 production in human periodontal ligament cells (hPDLCs). IL-17 and IL-23 production was significantly increased in LPS-treated cells. LPS treatment also led to the upregulation of SIRT1 mRNA and protein expression. LPS-induced IL-17 and IL-23 upregulation was attenuated by pretreatment with inhibitors of phosphoinositide 3-kinase (PI3K), p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), and NF-κB, as well as neutralizing antibodies against Toll-like receptors (TLRs) 2 and 4. Sirtinol treatment (a known SIRT1 inhibitor) or SIRT1 knockdown by small interfering RNA blocked LPS-stimulated IL-17 and IL-23 expression. Further investigation showed that LPS decreased osteoblast markers (i.e., ALP, OPN, and BSP) and concomitantly increased osteoclast markers (i.e., RANKL and M-CSF). This response was attenuated by inhibitors of the PI3K, p38, ERK, JNK, NF-κB, and SIRT1 pathways. These findings, for the first time, suggest that human periodontopathogen P. gingivalis LPS is implicated in periodontal disease bone destruction and may mediate IL-17 and IL-23 release from hPDLCs. This process is dependent, at least in part, on SIRT1-Akt/PI3K-MAPK-NF-κB signaling.  相似文献   

9.
We examined endothelin-1 (ET-1) regulation of the xenobiotic efflux pump, multidrug resistance-associated protein isoform 2 (MRP2), in intact dogfish shark rectal salt gland tubules using a fluorescent substrate sulforhodamine 101 and confocal microscopy. Subnanomolar to nanomolar concentrations of ET-1 rapidly reduced the cell-to-lumen transport of sulforhodamine 101. These effects were prevented by an ET(B) receptor antagonist but not by an ET(A) receptor antagonist. Immunostaining with an antibody to mammalian ET(B) receptors showed specific localization to the basolateral membrane of the shark rectal gland epithelial cells. ET-1 effects on transport were blocked by a protein kinase C (PKC)-selective inhibitor, implicating PKC in ET-1 signaling. A protein kinase A (PKA)-selective inhibitor had no effect. Forskolin reduced luminal accumulation of sulforhodamine 101, but inhibition of PKA did not block the forskolin effect. Consistent with this observation, a cAMP analog that does not activate PKA reduced luminal accumulation of sulforhodamine 101. These results indicate that shark rectal gland transport on MRP2 is regulated by ET acting through an ET(B) receptor and PKC. In addition, cAMP affects transporter function through a PKA-independent mechanism, possibly by competition for transport.  相似文献   

10.
11.
We hypothesize that cerebral ischemia leads to enhanced expression of endothelin (ET), 5-hydroxytryptamine (5-HT), and angiotensin II (ANG II) receptors in the vascular smooth muscle cells. Our aim is to correlate the upregulation of cerebrovascular receptors and the underlying molecular mechanisms with the reduction in regional and global cerebral blood flow (CBF) after subarachnoid hemorrhage (SAH). SAH was induced by injecting 250 microl blood into the prechiasmatic cistern in rats. The cerebral arteries were removed 0, 1, 3, 6, 12, 24, and 48 h after the SAH for functional and molecular studies. The contractile responses to ET-1, 5-carboxamidotryptamine (5-CT), and ANG II were investigated with myograph. The receptor mRNA and protein levels were analyzed by quantitative real-time PCR and immunohistochemistry, respectively. In addition, regional and global CBFs were measured by an autoradiographic method. As a result, SAH resulted in enhanced contractions to ET-1 and 5-CT. ANG II [via ANG II type 1 (AT(1)) receptors] induced increased contractile responses [in the presence of the ANG II type 2 (AT(2)) receptor antagonist PD-123319]. In parallel the ET(B), 5-HT(1B), and AT(1) receptor, mRNA and protein levels were elevated by time. The regional and global CBF showed a successive reduction with time after SAH. In conclusion, the results demonstrate for the first time that SAH induces the upregulation of ET(B), 5-HT(1B), and AT(1) receptors in a time-dependent manner both at functional, mRNA, and protein levels. These changes occur in parallel with a successive decrease in CBF. Thus there is a temporal correlation between the changes in receptor expression and CBF reduction, suggesting a linkage.  相似文献   

12.
13.
Endothelin-1 (ET-1) acts on two different G protein-coupled receptors, namely the endothelin A (ET(A)) and the endothelin B (ET(B)) receptors. Both receptor subtypes show differences in their tissue expression and signal transduction. In the present study, we compared the ability of ET(A) and ET(B) receptors to stimulate extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, we analyzed the role of the extracellular N terminus for ERK1/2 activation, because the ET(B) receptor undergoes an agonist-dependent N-terminal proteolysis. ET-1 stimulation of HEK293 cells stably expressing the ET(A) receptor induced a monophasic, but sustained ERK1/2 activation, whereas the ET(B) receptor showed a biphasic ERK1/2 activation. A truncated mutant ET(B) receptor, lacking the proteolytically cleaved N terminus (delta2-64 ET(B)) revealed only a monophasic and transient ERK1/2 activation. Treatment of HEK293 delta2-64 ET(B) cell clones with ET-1 and a synthetic NT27-64 peptide, corresponding to the N-terminally cleaved fragment of the ET(B) receptor and ET-1, did not restore the biphasic activation of ERK1/2. A chimeric ET(B) receptor in which the N terminus was replaced by the N terminus of the ET(A) receptor elicited biphasic ERK1/2 activation. The presented data suggest that an intact N terminus of the ET(B) receptor is necessary for the second phase of ERK1/2 activation. However, it appears that the length of the N terminus rather than a specific sequence motif is required for biphasic ERK1/2 activation.  相似文献   

14.
在应用肌球蛋白轻链激酶特异抑制剂ML-7抑制了肌球蛋白轻链磷酸化后,花生四烯酸(arachidonic acid,AA)仍可诱导兔血管平滑肌细胞(SM3)发生迁移.为了进一步阐明其信号传导途径,应用多种信号抑制剂,采用免疫印迹、Boyden小室和提取细胞膜蛋白等实验方法,对上述迁移作用的信号传导途径进行了深入的研究.结果显示,PTX(Gi蛋白抑制剂)、U73122(PLC抑制剂)、staurosporine (PKC抑制剂)、PD98059(ERK1/2抑制剂)和SB203580(p38抑制剂)分别可拮抗上述AA诱导的SM3细胞迁移作用,而SP600125(JNK抑制剂)的作用较弱.免疫印迹结果显示,AA可提高SM3细胞中PKC(ε)、ERK1/2、p38和JNK信号的磷酸化水平,呈时间依赖性, PTX或U73122可抑制上述作用;staurosporine可抑制由AA 引起的ERK1/2和JNK的磷酸化水平增强,但对p38的磷酸化水平无影响.还发现AA可促进PLCβ2的细胞膜移位, PTX可抑制其作用.上述结果表明,当肌球蛋白轻链的磷酸化被抑制后, AA可通过Gi蛋白的活化促进PLCβ2向细胞膜移位,进而通过激活PKC(ε)、ERK1/2、p38和JNK等信号转导途径而诱导SM3细胞发生迁移  相似文献   

15.
In this study, we demonstrate that protein kinase C (PKC) activators, including phorbol-12-myristate-13-acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DOG), and platelet-derived growth factor α are potent inducers of angiopoietin-like protein 4 (ANGPTL4) expression in several normal lung cell types and carcinoma cell lines. In human airway smooth muscle (HASM) cells induction of ANGPTL4 expression is observed as early as 2 h after the addition of PMA. PMA also increases the level of ANGPTL4 protein released in the medium. PKC inhibitors Ro31-8820 and Gö6983 greatly inhibit the induction of ANGPTL4 mRNA by PMA suggesting that this up-regulation involves activation of PKC. Knockdown of several PKCs by corresponding siRNAs suggest a role for PKCα. PMA does not activate MAPK p38 and p38 inhibitors have little effect on the induction of ANGPTL4 indicating that p38 is not involved in the regulation of ANGPTL4 by PMA. In contrast, treatment of HASM by PMA induces phosphorylation and activation of Ra, MEK1/2, ERK1/2, JNK, Elk-1, and c-Jun. The Ras inhibitor manumycin A, the MEK1/2 inhibitor U0126, and the JNK inhibitor SP600125, greatly reduce the increase in ANGPTL4 expression by PMA. Knockdown of MEK1/2 and JNK1/2 expression by corresponding siRNAs inhibits the induction of ANGPTL4. Our observations suggest that the induction of ANGPTL4 by PMA in HASM involves the activation of PKC, ERK, and JNK pathways. This induction may play a role in tissue remodeling during lung injury and be implicated in several lung pathologies.  相似文献   

16.
NGF may play a role in airway inflammation and hyperresponsiveness. We studied its possible involvement in airway remodelling and report here its proliferative effect and its receptor and signalling pathways in human airway smooth muscle cells in culture (HASMC). Proliferation of HASMC induced by NGF (0.1-10 pM) was assessed by the XTT and BrdU techniques with and without kinase inhibitors. Immunoprecipitation and Western blotting were used to study phosphorylation of TrkA and MAPK. NGF caused dose-dependent proliferation of HASMC and induced TrkA phosphorylation, both abolished by the tyrosine-kinase inhibitor K252a. PI3K and JNK inhibitors had no effect. PKC inhibitors partially inhibited NGF-induced proliferation and totally abolished p38 phosphorylation but did not affect ERK1/2 phosphorylation. The rafK inhibitor decreased NGF-induced proliferation, and totally abolished ERK1/2 phosphorylation, but did not affect p38 phosphorylation. This finding was confirmed by the decrease of NGF-induced proliferation after treatment with inhibitors of the p38 or of ERK1/2 pathways. In conclusion, NGF activation of the TrkA receptor involves two distinct signalling pathways: PKC selectively activates p38, and the ras/raf pathway selectively activates ERK1/2. Both are necessary to induce HASMC proliferation.  相似文献   

17.
Context: Ginsenoside Rb1 improves insulin sensitivity and glucose uptake in muscle cells via different signaling pathways; however, it is not clear that it has any effect on leptin signaling in skeletal muscle.

Objectives: The aim of this study was to investigate the effect of ginsenoside Rb1 on leptin receptors expression and main signaling pathways of leptin (STAT3, PI3 kinase and ERK kinase) in C2C12 skeletal muscle cells.

Materials and methods: C2C12 myotubes were incubated with various concentrations of Rb1 (0.1, 1 and 10?μM) for different incubation times (1–12?h). Leptin receptors expression and GLUT-4 translocation were analyzed using realtime PCR and western blot analyses, respectively. PI3 and ERK kinases were blocked using their specific inhibitors (wortmannin and PD98059) in the presence and absence of RB1 to determine the main signaling pathway related to leptin receptor activation in C2C12 cells.

Results: Rb1 could maximally stimulate both leptin receptors (OBRa and OBRb) mRNA and protein expression and phosphorylation of STAT3, PI3K and ERK2 in C2C12 myotubes at 10?μM for 3?h. Rb1 induced GLUT4 translocation was inhibited by the silencing of OBRb mRNA, demonstrated that glucose uptake was mediated via leptin receptor activation. GLUT4 recruitment to the cell surface induced by Rb1 was inhibited by wortmannin, an inhibitor of PI3K in combination with OBRb siRNA, but not by PD98059 an ERK2 kinase-1 inhibitor, indicating that GLUT4 translocation induced by Rb1 was associated with the leptin receptor upregulation and subsequent activation of PI3K.

Conclusions: Our results suggest that Rb1 promote translocation of GLUT4 by upregulation of leptin receptors and activation of PI3K.  相似文献   

18.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

19.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

20.
Recently, the involvement of the MAP kinase ERK in mitogenic signaling of cholecystokininB (CCK(B)) receptors has been shown. However, the intracellular effector systems involved in this signaling pathway are poorly defined. In this study, we used COS-7 cells transiently transfected with the human CCK(B) receptor to investigate cholecystokinin-induced MAP kinase activation. CCK-8 induced activation of ERK2 which is associated with its phosphorylation and localization in the nucleus. The CCK-8-dependent ERK stimulation is sensitive to wortmannin an inhibitor of phosphoinositide 3-kinases (PI3Ks) indicating the involvement of PI3K activity. To identify the PI3K species involved in mitogenic signaling of the CCK(B) receptor several dominant-negative mutants of PI3K regulatory and catalytic subunits were transiently expressed. Surprisingly, different catalytically inactive mutants of the G protein-sensitive PI3Kgamma did not affect ERK stimulation induced by CCK, whereas a dominant-negative mutant of the regulatory p85 subunit induced significant inhibition of CCK-dependent ERK activity. These results indicate an involvement of PI3K class 1A species alpha, beta or/and delta in signal transduction via CCK(B) receptors. In addition, protein kinase C (PKC)-dependent signaling pathways contribute to CCK(B)-mediated MAP kinase signaling as shown by inhibition of CCK-8-induced ERK activation by the PKC inhibitor bisindolylmaleimide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号