首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jung KC  Kim NH  Park WS  Park SH  Bae Y 《FEBS letters》2003,554(3):478-484
The CD99 antigen has been implicated in various cellular processes, including apoptosis in T cells. Previously, we reported two monoclonal antibodies that recognize different epitopes of the CD99 molecule, named DN16 and YG32. In this study, we investigated the role of each CD99 epitope in T cell apoptosis. Unlike the DN16 epitope, CD99 ligation via the YG32 epitope failed to induce T cell death. Surprisingly, however, the YG32 signal enhanced Fas-mediated apoptosis in Jurkat T cells. Augmentation of Fas-mediated apoptosis by YG32 ligation was inhibited by treatment with either of the caspase inhibitors z-VAD-fmk or z-IETD-fmk, and YG32 ligation appeared to induce Fas oligomerization. These results suggest that each CD99 epitope plays a distinct role in T cell biology, especially in T cell apoptosis.  相似文献   

2.
Apoptosis signalling through the Fas pathway requires several steps of aggregation of the Fas receptor in the membrane, including aggregation that may occur in the absence of Fas ligand. Association of Fas domains is determinant to signal transmission following Fas ligand binding to a specific domain. The domains involved in Fas aggregation are located in its extracellular region and contain three potential protein kinase C-binding motifs. We therefore studied the possibility that phosphorylation of the extracellular region of Fas might be implicated in the regulation of Fas-mediated apoptosis. Inhibition experiments of extracellular phosphorylation were performed in human Jurkat T leukemia cells with K252b, an impermeant protein-kinase inhibitor. Extracellular phosphorylation of Fas receptor was related to ecto-kinase, as assessed by the [γ-32P] ATP labelling of Fas-116 kDa aggregates, suppressed by K252b inhibitor which significantly increased the sensitivity to Fas-mediated apoptosis. Ecto-PKC involvement was demonstrated by bisindolylmaleimide VIII, a selective inhibitor of protein kinase C which significantly increased both Fas aggregation in the membrane and Fas-mediated apoptosis and by the addition of the PKC pseudo-substrate 19–36 which inhibited the phosphorylation of 116 kDa Fas aggregates. These data support a role for Fas phosphorylation in the decreased sensitivity to apoptosis in the Jurkat T leukemia cell line. *There was an equal contribution from these two authors.  相似文献   

3.
Fructose-induced hepatic ATP depletion prevents TNF-induced apoptosis, whereas it contrarily enhances CD95-induced hepatocyte apoptosis in vitro and in vivo. By contrast, transformed liver cells are not protected against TNF due to metabolic alterations, allowing selective tumor targeting. We analyzed the molecular mechanisms by which fructose modulates cytokine-induced apoptosis. A release of adenosine after fructose-induced ATP depletion, followed by a cAMP response, was demonstrated. Likewise, cAMP and adenosine mimicked per se the modulation by fructose of CD95- and TNF-induced apoptosis. The effects of fructose on cytokine-induced apoptosis were sensitive to inhibition of protein kinase A. Fructose prevented the pro-apoptotic, sustained phase of TNF-induced JNK signaling and thereby blocked bid-mediated activation of the intrinsic mitochondrial apoptosis pathway in a PKA-dependent manner. We explain the dichotomal effects of fructose on CD95- and TNF-induced cell death by the selective requirement of JNK signaling for the latter. These findings provide a mechanistic rationale for the protection of hepatocytes from TNF-induced cell death by pharmacological doses of fructose.  相似文献   

4.
Inducible resistance to Fas—mediated apoptosis in B cells   总被引:6,自引:0,他引:6  
Rothstein TL 《Cell research》2000,10(4):245-266
Apoptosis produced in B cells through Fas(APO-1,CD95) triggering is regulated by signals derived from other surface receptors:CD40 engagement produces upregulation of Fas expression and marked susceptibility to Fas-induced cell death,whereas antigen receptor engagement,or IL-4R engagement,inhibits Fas killing and in so doing induces a state of Fas-resistance,even in otherwise sensitive,CD40-stimulated targets.Surface immunoglobulin and IL-4R utilize at least partially distinct path ways to produce Fas-resistance that differentially depend on PKC and STAT6,respectively.Further,surface immunoglobulin signaling for inducible Fas-resistance bypasses Btk,requires NF-κB,and entails new macromolecular synthesis.Terminal effectors of B cell Fas-resistance include the known anti-apoptotic gene products,Bcl-XL and FLIP,and a novel anti-apoptotic gene that encodes FAIM (Fas Apoptosis Inhibitory Molecule).faim was identified by differential display and exists in two alternatively spliced forms;faim-S is broadly expressed,but faim-L expression is tissue-specific.The FAIM sequence is highly evolu tionarily conserved,suggesting an important role for this molecule throughout phylogeny.Inducible resistance to Fas killing is hypothesized to protect foreign antigen-specific B cells during potentially hazardous interactions with FasL-bearing T cells,whereas autoreactive B cells fail to become Fas-resistant and are deleted via Fas-dependent cytotoxicity.Inadvertent or aberrant acquisition of Fas-resistance may permit autoreactive B cells to escape Fas deletion,and malignant lymphocytes to impede anti-tumor immunity.  相似文献   

5.
Inhibition of Fas-mediated apoptosis in Yac-1 cell via Anti-Fas ribozyme   总被引:4,自引:1,他引:4  
As an RNA molecule with catalytic activity, ribozymecan inhibit gene expression via binding and cleaving targetRNA in a sequence specific way [1–3]. Now hammerheadribozyme is widely used in gene therapy because of itsmany superiorities [4–6], which incl…  相似文献   

6.
7.
8.
Although numerous studies have shown that certain long chain fatty acids can induce apoptosis in cancer cells, the molecular mechanisms for this phenomenon are still poorly elucidated. The phosphoinositide 3-kinase (PI3-kinase) signaling pathway plays a pivotal role in the regulation of cell growth and can also contribute to tumorigenesis and cancer progression. The aims of the present study were three fold: (i) to investigate the potential chemopreventative/antiproliferative effect of various fatty acids in colon cancer cells (CaCo-2 cells) and normal colon epithelium cells (NCM460 cells); (ii) to investigate the mechanisms by which incubation with various fatty acids influences the PI3-kinase pathway in CaCo-2 cells; and (iii) to evaluate apoptosis in our cell model. Although all the fatty acids increased the viability of normal (NCM460) cells, only docosahexaenoic acid (DHA) significantly reduced cell viability and induced apoptosis in the cancer (CaCo-2) cells. Our results indicate that DHA is an effective chemotherapeutic agent to induce apoptosis in cancer cells and that this effect is mediated by the PI3-kinase signaling pathway.  相似文献   

9.
The relationship between the cell cycle and Fas-mediated apoptosis was investigated using Jurkat cells. Analysis of the inducibility of apoptosis by anti-Fas antibody during the cell cycle synchronized by the thymidine double-block method, showed that apoptosis was induced in only 50% of the G2/M phase cells, while most of cells in the other phases underwent apoptosis. These observations indicate that G2/M phase cells are more resistant to Fas-mediated apoptosis than cells in other phases. Furthermore, a detailed analysis of G2/M phase found that only 20–30% of the cells underwent apoptosis 12 h after the removal of the second thymidine block (pre-G2/M phase). This suggests that Fas-mediated apoptosis is potently suppressed during the pre-G2/M phase. A possible explanation for the observation that cells in the pre-G2/M phase are less sensitive to anti-Fas antibody is lower expression level of Fas. To test this possibility, Fas expression levels on the cell surface during the cell cycle were examined. The content of Fas on the cell surface, however, did not change appreciably during the cell cycle. Thus, the suppression of apoptosis in the pre-G2/M phase is determined downstream after the receipt of the apoptotic signal through Fas.  相似文献   

10.
11.
12.
目的:探究乌司他丁在脑缺血再灌注损伤中的脑保护作用机制。方法:原代分离培养雄性SD大鼠脑皮质细胞,部分细胞经siRNA沉默HSP70基因。细胞先以无糖培养基在低氧条件下培养,12 h后复糖复氧模拟体外缺血再灌注损伤,并实施乌司他丁预处理干预,流式细胞术检测各组细胞的凋亡率,western-blotting检测Bcl-2,Bax,HSP70,JNK和p-JNK蛋白的表达。结果:与对照组比较,模型组脑组织细胞凋亡率明显增多(P0.05)、Bcl-2和Bax的表达量均有上调,Bcl-2/Bax的比值显著降低(P0.01)、HSP70的表达无显著变化;与模型组比较,乌司他丁处理组脑组织细胞凋亡率明显降低(P0.05)、Bax的表达量显著下调(P0.05),Bcl-2/Bax的比值显著上调(P0.05),HSP70的表达显著上调(P0.05),JNK的表达无显著变化、p-JNK则显著下调(P0.05)。HSP70沉默后乌司他丁的脑保护作用消失,对以上蛋白的表达无显著影响。结论:乌司他丁可能是通过上调HSP70表达进而抑制JNK信号转导通路对缺血再灌注引起的脑损伤起保护作用。  相似文献   

13.
Apoptosis plays an important role in the dysfunction of exocrine glands. Fas is a death-inducing receptor found on many types of cells including epithelial acinar cells. To elucidate the intracellular mechanism of Fas-mediated cell death in exocrine glands, an epithelial acinar cell line, SMG-C6, was studied. Caspase-1, -3, -8, and -9 activities were elevated in SMG-C6 cells after the induction of apoptosis by soluble Fas ligand (FasL). The activation of caspase-1 and -8 occurred prior to caspase-3 and -9 activation. The caspase-1 inhibitor, zYVAD-fmk, was effective in preventing cell death, whereas the caspase-3 and -8 inhibitors (ac-DEVD-CHO and ac-IETD-CHO, respectively) were not. zYVAD-fmk was able to inhibit caspase-3 activation indicating that caspase-1 is upstream to caspase-3. Furthermore, kinetic studies show that caspase-1 is an early event in the Fas apoptotic pathway. This study shows that caspase-1 participates in Fas-mediated apoptosis of epithelial cells by initiating the caspase cascade.  相似文献   

14.
By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis.  相似文献   

15.
Expression of an interferon inducible gene 6-16, G1P3, increases not only in type I interferon-treated cells but also in human senescent fibroblasts. However, the function of 6-16 protein is unknown. Here we report that 6-16 is 34 kDa glycosylated protein and localized at mitochondria. Interestingly, 6-16 is expressed at high levels in gastric cancer cell lines and tissues. One of exceptional gastric cancer cell line, TMK-1, which do not express detectable 6-16, is sensitive to apoptosis induced by cycloheximide (CHX), 5-fluorouracil (5-FU) and serum-deprivation. Ectopic expression of 6-16 gene restored the induction of apoptosis and inhibited caspase-3 activity in TMK-1 cells. Thus 6-16 protein has anti-apoptotic function through inhibiting caspas-3. This anti-apoptotic function is expressed through inhibition of the depolarization of mitochondrial membrane potential and release of cytochrome c. By two-hybrid screening, we found that 6-16 protein interacts with calcium and integrin binding protein, CIB/KIP/Calmyrin (CIB), which interacts with presenilin 2, a protein involved in Alzheimers disease. These protein interactions possibly play a pivotal role in the regulation of apoptosis, for which further detailed analyses are need. These results overall indicate that 6-16 protein may have function as a cell survival protein by inhibiting mitochondrial-mediated apoptosis.  相似文献   

16.
目的揭示丹酚酸B(Salvianolic Acid B,Sal B)对肝癌细胞株HepG2的杀伤作用。方法用不同浓度的丹酚酸B处理HepG2细胞,37℃培养24h。用RT-PCR检测促凋亡基因Bax的转录水平,并用流式细胞术检测细胞凋亡的水平。结果①100μmol/L、50μmol/L、25μmol/L等浓度的Sal B处理都能使HepG2细胞促凋亡基因bax的转录水平升高,其中100μmol/L处理组最为明显。②不同浓度的Sal B处理都能使HepG2细胞发生凋亡,其中100μmol/L处理组最为明显。结论 Sal B有促进HepG2细胞凋亡的作用。  相似文献   

17.
Previous studies suggest that localization of tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family members is important for regulating their signal transduction. During a screen for TRAF3-associated proteins that potentially alter TRAF3 subcellular localization and enable signal transduction, we identified a novel protein, T3JAM (TRAF3-interacting Jun N-terminal kinase (JNK)-activating modulator). This protein associates specifically with TRAF3 but not other TRAF family members. Coexpression of T3JAM with TRAF3 recruits TRAF3 to the detergent-insoluble fraction. More importantly, T3JAM and TRAF3 synergistically activate JNK but not nuclear factor (NF)-kappaB. Our studies indicate that T3JAM may function as an adapter molecule that specifically regulates TRAF3-mediated JNK activation.  相似文献   

18.
Jung YS  Kim HY  Lee YJ  Kim E 《FEBS letters》2007,581(5):843-852
This study examined the role of Daxx in ischemic stress. Upon ischemic stress, nuclear export of Daxx to the cytoplasm was observed in primary myocytes as well as in various cell lines. Daxx silencing using siRNAs was detrimental in tethering PML-nuclear body (PML-NB) constituents together. Overexpression of Daxx (W621A) caused nuclear export of p53 independently of PML and promoted ischemic cell death via activation of JNK. Conversely, overexpression of Daxx (S667A) prevented dissociation of PML-NB constituents and protected cells from ischemic death. Collectively, our results demonstrate that the subcellular localization of Daxx determines its role in ischemic cell death.  相似文献   

19.
20.
Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPS) leading to the activation of the innate immune response and subsequently to the shaping of the adaptive immune response. Of the known human TLRs, TLR3, 7, 8, and 9 were shown to recognize nucleic acid ligands. TLR3 signaling is induced by double-stranded (ds)RNA, a molecular signature of viruses, and is mediated by the TRIF (TIR domain-containing adaptor-inducing IFNbeta) adaptor molecule. Thus, TLR3 plays an important role in the host response to viral infections. The liver is constantly exposed to a large variety of foreign substances, including pathogens such as HBV (hepatitis B virus) and HCV (hepatitis C virus), which frequently establish persistent liver infections. In this work, we investigated the expression and signaling pathway of TLR3 in different hepatoma cell lines. We show that hepatocyte lineage cells express relatively low levels of TLR3 mRNA. TLR3 signaling in HEK293 cells (human embryonic kidney cells) activated NF-kappaB and IRF3 (interferon regulatory factor 3) and induced IFNbeta (interferon beta) promoter expression, which are known to lead to pro-inflammatory cytokine secretion. In Huh7 cells, there was only a short-term IRF3 activation, and a very low level of IFNbeta expression. In HepG2 cells on the other hand, while no induction of pro-inflammatory factors was observed, signaling by TLR3 was skewed towards the induction of apoptosis. These results indicate preferential induction of the apoptotic pathway over the cytokine induction pathway by TLR3 signaling in hepatocellular carcinoma cells with potential implications for therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号