首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Selective removal of intracellular glutathione (GSH) and inhibition of the GSH-dependent peroxidase (GSH-Px) by 1-chloro-2, 4-dinitrobenzene (CDNB) was used to evaluate the role of GSH and GSH-Px in arachidonic acid (AA) metabolism in human platelets. Although total conversion of AA through the lipoxygenase pathway is lowered by GSH depletion, significant 12-HETE formation was observed suggesting that GSH and GSH-Px are not required for the generation of 12-HETE in human platelets. Prolonged treatment of platelets with CDNB (2 h) completely destroyed GSH-Px activity creating a model in which the effects of GSH alone could be determined. Platelet homogenates replenished with GSH, but lacking GSH-Px activity converted significantly higher amounts of AA to 12-HPETE and 12-HETE than control. Platelet cytosolic metabolism of 15-HPETE to 15-HETE decreased after CDNB, while the membrane metabolism remained similar to control due to high GSH-independent peroxidase activity associated with the membranes. These results indicate that GSH and GSH-Px function to enhance lipoxygenase activity, rather than catalyse the reduction of 12-HPETE to 12-HETE.  相似文献   

2.
Selective removal of intracellular glutathione (GSH) and inhibition of the GSH-dependent peroxidase (GSH-Px) by 1-chloro-2,4-dinitrobenzene (CDNB) was used to evaluate the role of GSH and GSH-Px in arachidonic acid (AA) metabolism in human platelets. Although total conversion of AA through the lipoxygenase pathway is lowered by GSH depletion, significant 12-HETE formation was observed suggesting that GSH and GSH-Px are not required for the generation of 12-HETE in human platelets. Prolonged treatment of platelets with CDNB (2 h) completely destroyed GSH-Px activity creating a model in which the effects of GSH alone could be determined. Platelet homogenates replenished with GSH, but lacking GSH-Px activity converted significantly higher amounts of AA to 12-HPETE and 12-HETE than control. Platelet cytosolic metabolism of 15-HPETE to 15-HETE decreased after CDNB, while the membrane metabolism remained similar to control due to high GSH-independent peroxidase activity associated with the membranes. These results indicate that GSH and GSH-Px function to enhance lipoxygenase activity, rather than catalyse the reduction of 12-HPETE to 12-HETE.  相似文献   

3.
12-Lipoxygenase activity in platelets of spontaneously hypertensive rats was investigated. Enzyme activity was measured in the absence and the presence of reduced glutathione. In both assay conditions, 12-lipoxygenase activity in platelets of spontaneously hypertensive rats was significantly higher than that in platelets of normotensive rats. Since 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), a 12-lipoxygenase product of arachidonic acid in platelets, has been reported to be a potent chemoattractant for aortic smooth muscle cells, increase in biosynthesis of 12-HETE in platelets of spontaneously hypertensive rats might contribute to the explanation of pathogenesis of vascular disorder commonly found in hypertension patients.  相似文献   

4.
Lipoxygenase activities were estimated in washed platelets (intact platelets) and their subcellular fractions obtained from 7 patients with deficient platelet lipoxygenase activities and 9 normal subjects. From sonicated platelet preparations, 12,000 g supernatant (F-I), cytosol (F-II) and microsomal fractions (F-III) were prepared by differential centrifugation. When 12-hydroxyeicosatetraenoic acid (12-HETE) produced by the incubation of arachidonic acid with intact platelets or each of their subcellular fractions from normal subjects was measured by reversed-phase high-performance liquid chromatography analysis, the lipoxygenase activities of F-I, F-II and F-III were 87%, 31% and 17%, respectively, of the enzyme activity of intact platelets. One of the patients showed no detectable lipoxygenase activity in any preparation, while the other patients showed reduced enzyme activities in all preparations. The addition of CaCl2 significantly increased 12-HETE synthesis solely by F-I from these patients. In most of these patients, contrary to normal subjects, it appeared that the lipoxygenase activity was not fully expressed in intact platelets, since the F-I produced more 12-HETE than the intact platelets.  相似文献   

5.
When platelets are activated by the recognition of exposed collagen fibers, they start synthesizing two major arachidonic acid metabolites, i.e. thromboxane A2 and 12S-hydroxyeicosatetraenoic acid (12-HETE) via cyclooxygenase and 12-lipoxygenase pathways, respectively. Although the physiological role of the former is well established, that of the latter has not been fully elucidated. Recently, we have revealed that 12-HETE interferes with collagen-induced platelet aggregation [Sekiya, F. et al. (1990) Biochim. Biophys. Acta 1044, 165-168]. In the present paper, we show that this substance enhances thrombin-induced aggregation of bovine platelets, in sharp contrast with the case of collagen. Additionally, 12-HETE is able to prevent the prostaglandin E1-induced elevation of platelet cAMP level and counteracts its inhibitory effect on platelet aggregations. With these observations, we propose a novel self-regulatory mechanism of platelets where 12-HETE plays a key role; it switches sensitivity of platelets from the primary agonist (collagen) to the secondary one (thrombin), and cancels the inhibitory effect of cAMP elevators.  相似文献   

6.
Anti-12(S)-hydroxyeicosatetraenoic acid (12-HETE)-antibody and anti-thromboxane B2 (TXB2)-antibody were generated and applied to the radioimmunoassay. The detection limit for 12-HETE was 16 pg. The cross-reactivities of anti-12-HETE-antibody were 4.6% for 15-HETE, 0.18% for 5-HETE and below 0.15% for leukotrienes and prostaglandins (PGs). 12-HETE and TXB2 released from guinea pig platelets were measured by radioimmunoassay. Platelet activating factor (PAF) at 10(-9) M induced the aggregation of platelets, the releases of immunoreactive-12-HETE (1.8 +/- 1.2 ng/10(8) platelets, mean +/- S.D.) and immunoreactive-TXB2 (18.5 +/- 17.3 ng/10(8) platelets). Collagen at 1 microgram/ml also evoked platelet aggregation, the releases of immunoreactive-12-HETE (2.7 +/- 1.1 ng/10(8) platelets) and immunoreactive-TXB2 (11.8 +/- 4.6 ng/10(8) platelets). By the stimulation with these compounds, TXB2 was produced in a greater amount than 12-HETE from guinea pig platelets. Although 10(-7) M and 10(-6) M U46619, a TXA2 mimetic, caused platelet aggregation, arachidonic acid metabolites were not released. These data suggest the presence of different mechanisms of platelet activation depending on each stimulus.  相似文献   

7.
The effect of tert-butyl hydroperoxide (t-BOOH) on the formation of thromboxane (TX) B2, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) from exogenous arachidonic acid (AA) in washed rabbit platelets was examined. t-BOOH enhanced TXB2 and HHT formation at concentrations of 8 microM and below, and at 50 microM it inhibited the formation, suggesting that platelet cyclooxygenase activity can be enhanced or inhibited by t-BOOH depending on the concentration. t-BOOH inhibited 12-HETE production in a dose-dependent manner. When the platelets were incubated with 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE) instead of AA, t-BOOH failed to inhibit the conversion of 12-HPETE to 12-HETE, indicating that the inhibition of 12-HETE formation by t-BOOH occurs at the lipoxygenase step. Studies utilizing indomethacin (a selective cyclooxygenase inhibitor) and desferrioxamine (an iron-chelating agent) revealed that the inhibitory effect of t-BOOH on the lipoxygenase is not mediated through the activation of the cyclooxygenase and that this effect of t-BOOH is due to the hydroperoxy moiety. These results suggest that hydroperoxides play an important role in the control of platelet cyclooxygenase and lipoxygenase activities.  相似文献   

8.
Soluble elastin, prepared from insoluble elastin by treatment with oxalic acid or elastase, was found to inhibit the formation of thromboxane B2 both from [1-14C]arachidonic acid added to washed platelets and from [1-14C]arachidonic acid in prelabeled platelets on stimulation with thrombin. In both systems, the formation of 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) was accelerated. Oxalic acid-treated soluble elastin st 1 and 10 mg/ml inhibited the formation of thromboxane B2 from exogenously supplied arachidonic acid 21 and 59%, respectively, and the formation of thromboxane B2 in prelabeled platelets stimulated by thrombin 44 and 94%, respectively. These concentrations of elastin increased the formation of 12-HETE from exogenously supplied arachidonic acid about 3.4- and 7.3-times, respectively. Almost all the added arachidonic acid was converted to metabolites. In prelabeled platelets, soluble elastin at 1 and 10 mg/ml increased the formation of 12-HETE stimulated by thrombin about 1.3- and 2.8-times, respectively, and inhibited the thrombin-induced total productions of thromboxane B2 (12-hydroxy-5,8,10-heptadecatrienoic acid (12-HETE) and free arachidonic acid by 26 and 25%, respectively. Elastase-treated digested elastin also inhibited the formation of thromboxane B2 and stimulated the formation of 12-HETE in prelabeled platelets stimulated by thrombin. This inhibitory action of elastin was not replaced by desmosine. The level of cAMP in platelets was not affected by soluble elastin. Soluble elastin was also found to inhibit platelet aggregation induced by thrombin. However, the inhibitory action of soluble elastin on platelet aggregation cannot be explained by inhibition of thromboxane B2 formation by the elastin.  相似文献   

9.
Even though shear-induced platelet activation and aggregation have been studied for about 20 years, there remains some controversy concerning the arachidonic acid metabolites formed during stress activation and the role of thromboxane A2 in shear-induced platelet aggregation. In this study, platelets were labelled with [1-14C]arachidonic acid to follow the metabolism of arachidonic acid in stimulated platelets using HPLC and scintillation counting. Platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE). In contrast, for platelets activated by shear--though arachidonic acid metabolism was stimulated--only 12-HETE was formed and essentially no cyclooxygenase metabolites were detected. This indicates that physical forces may initiate a different pathway for eicosanoid metabolism than most commonly used chemical stimuli and perhaps also implies that regulation of the cyclooxygenase activity may be a secondary level of regulation in eicosanoid metabolism.  相似文献   

10.
Arachidonic acid metabolism by erythrocytes   总被引:2,自引:0,他引:2  
Rabbit, chicken, rat, and dog erythrocytes (10(9) cells/ml) synthesized immunologically active 12-hydroxyeicosatetraenoic acid (12-HETE) when stimulated by the Ca2+ ionophore, A-23187. The levels of immunologically active hydroxyeicosatetraenoic acid were independent of the number of white blood cells and platelets in the erythrocyte suspensions. Two products were resolved by high performance liquid chromatography; one product was identified as 12-HETE, while a second product appeared to be a dihydroxyeicosatetraenoic acid. Radiolabeled arachidonic acid was incorporated into phospholipids. Phosphatidylcholine and phosphatidylethanolamine were primary sources of the 12-HETE and dihydroxyeicosatetraenoic acid, all of which were released from the cells.  相似文献   

11.
The in vitro effect of trichosanic acid (TCA; C18:3, omega-5), a major component of Trichosanthes japonica, on platelet aggregation and arachidonic acid (AA) metabolism in human platelets was studied. TCA dose-dependently suppressed platelet aggregation of platelet rich plasma and washed platelets. TCA decreased collagen (50 micrograms/ml)-stimulated production of thromboxane B2 (TXB2) and 12-hydroxyhepta-decatrienoic acid (HHT) in a dose-dependent manner, while that of 12-hydroxyeicosatetraenoic acid (12-HETE) was rather enhanced. The conversion of exogenously added [14C]AA to [14C]TXB2 and [14C]HHT in washed platelets was dose-dependently reduced by the addition of TCA, while that to [14C]12-HETE was increased. Similar observations were obtained when linolenic acid (LNA; C18:3, omega-3) was used. These results suggest that TCA may decrease TXA2 formation in platelets, probably due to the inhibition of cyclooxygenase pathway, and thereby reduce platelet aggregation.  相似文献   

12.
12-Hydroxyeicosatetraenoic acid (12-HETE), a lipoxygenase product released by activated platelets and macrophages, reduced prostacyclin (PGI2) formation in bovine aortic endothelial cultures by as much as 70%. Maximal inhibition required 1 to 2 h to occur and after 2 hr, a concentration of 1 microM 12-HETE produced 80% of the maximum inhibitory effect. 5-HETE and 15-HETE also inhibited PGI2 formation. The inhibition was not specific for PGI2; 12-HETE reduced the formation of all of the radioactive eicosanoids synthesized from [1-14C]arachidonic acid by human umbilical vein endothelial cultures. Inhibition occurred in the human cultures when PGI2 formation was elicited with arachidonic acid, ionophore A23187 or thrombin. These findings suggest that prolonged exposure to HETEs may compromise the antithrombotic and vasodilator properties of the endothelium by reducing its capacity to produce eicosanoids, including PGI2.  相似文献   

13.
A cytosolic 650-kDa complex which binds 12(S)-hydroxy-5,8,10, 14-eicosatetraenoic acid (12(S)-HETE) with high affinity and specificity has been found in various cell lines but not until now in platelet cytosol. After incubation of human platelets with 12(S)-[3H]HETE, a labeled cytosolic 650-kDa complex was isolated. As previously shown for the binding complex in Lewis lung carcinoma (LLC) cells, ATP treatment transformed the platelet complex into a 50-kDa ligand-binding subunit. These results are of interest for two reasons: (a) 12(S)-HETE is a major arachidonic acid metabolite in platelets, and (b) platelets contain large amounts of the cell adhesion molecule GpIIb/IIIa, the activation of which is regulated by 12(S)-HETE. Hsp90 was found to be a component of the 12(S)-HETE binding complex in Lewis lung carcinoma cells, and the 50-kDa ligand-binding subunit itself bound 12(S)-HETE with high affinity. Competition experiments showed that 12(R)-HETE, 15-deoxy-Delta12, 14-prostaglandin J2, and 5(S)-HETE had lower affinity for the 50-kDa subunit than 12(S)-HETE. The 12(S)-HETE binding protein appears to be distinct from known members of the steroid hormone receptor superfamily of nuclear receptors.  相似文献   

14.
The oxygenation of arachidonic acid into thromboxane B2 (TXB2), 12-hydroxy-heptadecatrienoic (HHT) and 12-hydroxy-eicosatetraenoic (12-HETE) acids has been examined in human platelets in the absence or presence of 1mM calcium. From endogenous arachidonic acid, external calcium did not affect the formation of cyclo-oxygenase products (TXB2 and HHT) but enhanced that of 12-HETE when thrombin at high concentrations was the agonist. Dose-response curves performed with thrombin and collagen revealed that increased stimulation resulted in higher ratios of 12-HETE/HHT. On the other hand external calcium did not alter significantly the synthesis of either products from exogenous arachidonic acid and the total conversion of the substrate was unchanged. We conclude that extracellular calcium may facilitate the liberation of arachidonic acid from platelet phospholipids when induced by high thrombin concentrations. The excess of arachidonic acid liberated would then be diverted towards the lipoxygenase pathway.  相似文献   

15.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B (LTB), 6-trans-LTB4, 12-epi-6-trans-LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohydroxyeicosatetraenoic acids (i.e., 5-HETE) and omega-oxidation products (i.e., 2O -COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 microM), LTB4 but not 5-HETE formation was impaired. (1-14C)Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate, (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

16.
Washed platelets were prepared from healthy children and adults, and patients with renal glomerular diseases, and incubated with [1-14C] arachidonate to measure the generation capacities of thromboxane (Tx) A2 and 12-hydroxyeicosatetraenoate (12-HETE). Tx generation capacity of platelets was significantly higher in patients with chronic glomerulonephritis, purpura nephritis and lupus nephritis than in healthy control subjects. There was no significant increase in minimal change nephrotic syndrome. 12-HETE showed a decreasing tendency in the glomerular diseases, which was restored to normal level by in vitro addition of indomethacin. Such increased Tx generation capacity of platelets may cause abnormal enhancement of platelet functions and conceivably constitute an aggravating factor of glomerular and microvascular damage in the affected kidney.  相似文献   

17.
Rat platelets were isolated and labelled with [1-14C] arachidonic acid. After aggregation thromboxane B2, 12-hydroxy 5,8,10-heptadecatrienoic acid (HHT) and 12-hydroxy-eicosatetraenoic acid (12-HETE) were the main metabolites formed. A comparison was made between several properties of the platelets of adrenalectomized and sham operated rats. There was no difference in collagen-induced aggregation. The amount of 12-HETE and the sum of TxB2 and 12-HETE formed from endogenous arachidonic acid after aggregation was higher in the first group.  相似文献   

18.
Aspirin inhibits thromboxane A2 (TxA2) production whereas its salicylate moiety inhibits 12-hydroxy-eiosatetraenoic acid (12-HETE) production in the platelet. The significance of the latter effect on platelet function is unclear. We examined the effects of aspirin and salicylate on (i) platelet/ collagen adhesion using 3H-adenine-labelled human platelets and collagen- coated discs, (ii) platelet aggregation induced by thrombin, collagen, ADP and arachidonic acid, and (iii) platelet TxA2 and 12-HETE synthesis as measured by radioimmunoassay and high pressure liquid chromatography respectively. Aspirin (50 μM) decreased platelet aggregation and increased platelet adhesion. The decrease in aggregation was associated with inhibition of TxA2 production and the increase in adhesion was associated with enhanced 12-HETE production. Salicylate had the opposite effects. Platelet aggregation was increased and platelet adhesion decreased. The increased aggregation was associated with enhanced TxA2 production and the decrease in aggregation was associated with inhibition of 12-HETE production. These observations suggest that 12-HETE facilitates platelet adhesion which can be altered by salicylate treatment.  相似文献   

19.
In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo.  相似文献   

20.
The cytochrome P-450 arachidonic acid metabolite 20-HETE is central to the regulation of vascular tone, renal function, and blood pressure and is synthesized in the rat kidney in response to angiotensin II (ANG II) and endothelin-1 (ET-1). There are very few studies examining the cellular synthesis of 20-HETE in humans. We aimed to measure human neutrophil and platelet 20-HETE levels under basal conditions and after ANG II, ET-1, and calcium ionophore (CaI). 20-HETE was measured in human platelets and neutrophils after saline (control), CaI (2.5 μg/ml), and ANG II or ET-1 (10 nmol/l-1 μmol/l) incubations. The effect of cells, which were preincubated with the ω-hydroxylase inhibitor N-hydroxy-N'-(4-butyl-2-methylphenyl) (HET0016, 10 nM), ANG II types 1 or 2 (AT(1) or AT(2)) receptor inhibition with irbesartan (1 μmol/l) or PD-123319 (1 μmol/l), or endothelin receptor subtypes A or B (ET(A) or ET(B)) receptor inhibition with BQ-123 or BQ-778 (100 nmol/l), was studied. Neutrophil and platelet content and release of 20-HETE was significantly increased by CaI and blocked by the ω-hydroxylase inhibitor HET0016. ANG II and ET-1 significantly increased neutrophil and platelet content and release of 20-HETE. ANG II increased 20-HETE via the AT(2) receptor. ET-1 increased 20-HETE through the ET(B) receptor in platelets and both the ET(A) and ET(B) receptors in neutrophils. These studies show that human platelets and neutrophils synthesize 20-HETE in response to ANG II and ET-1. 20-HETE synthesis in both cell types was predominantly mediated via the AT(2) and ET(B) receptors. Stimulation via these receptor pathways has generally been thought to be cardioprotective and requires further studies in clinical situations associated with low-grade inflammation or where ANG II and ET-1 are elevated to clarify the role of 20-HETE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号