首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The P transposable element family in Drosophila melanogaster is responsible for the syndrome of hybrid dysgenesis which includes chromosomal rearrangements, male recombination, high mutability and temperature sensitive agametic sterility (called gonadal dysgenesis sterility). P element activity is controlled by a complex regulation system, encoded by the elements themselves, which keeps their transposition rate low within the strain bearing P elements and limits copy number by genome. A second regulatory mechanism, which acts on the level of RNA processing, prevents P mobility to somatic cells. The oldest available strains, representing most major geographical regions of the world, exhibited no detectable hybridization to the P-element. In contrast, all recently collected natural populations that were tested carried P-element sequences. The available evidence is consistent with the hypothesis of a worldwide P-element invasion of D. melanogaster during the past 30 years. Timing and direction of the invasion are discussed. The lack of P-element in older strains of Drosophila melanogaster as well as in the species must closely related to Drosophila melanogaster, suggests that P entered the Drosophila melanogaster genome recently, probably by horizontal transfer from an other species. The analysis of P-element elsewhere in the genus Drosophila reveals that several more distantly related species carried transposable elements with sequences quite similar to P. The species with the best-matching P-element is D. willistoni. A P-element from this species was found to match all but one of the 2907 nucleotides of the Drosophila melanogaster P-element. The phylogenic distributions and the likely horizontal transfers of the two other Drosophila transposable elements are discussed.  相似文献   

2.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   

3.
The spread of a transposable element family through a wild population may be of astonishing rapidity. At least three families of transposable genetic elements have recently invaded Drosophila melanogaster worldwide, including the P element. The mechanism has been a process of effectively replicative transposition, and, for the P element, has occurred notwithstanding the sterility induced by unrestricted movement. This element's invasion into D. melanogaster has been accompanied by the development of heterogeneity between P sequences, most of which now have internal deletions. Increasing evidence suggests that some deleted elements can repress P transposition, thereby protecting the host from the harmful effects of complete elements. Such repressing elements may rise to high frequencies in populations as a result of selection at the level of the host. We here investigate selective sweeps invoked by the spread of P sequences in D. melanogaster populations. Numerous high-frequency sites have been identified on the X chromosome, which differ in frequency between populations, and which are associated with repression of P-element transposition. Unexpectedly, sequences adjacent to high-frequency P-element sites do not show reduced levels of genetic diversity, and DNA variability is in linkage equilibrium with the presence or absence of a P element at the adjacent selected site. This might be explained by multiple insertions or through a selection for recombination analogous to that seen in 'hitchhiking'.  相似文献   

4.
Approximately 100 strains derived from natural populations of Drosophila melanogaster were tested for the presence or absence of P- element sequences by using two molecular probes derived from internal regions of a full-sized P element. Strains that had been collected from several continents at varying times during the past 60 years were examined. The oldest available strains, representing most major geographical regions of the world, exhibited no detectable hybridization to the P-element probes. In contrast, all recently collected natural populations that were tested carried P-element sequences. The earliest appearance of P elements occurred in collections made during the 1950s and early 1960s in the Americas and during the late 1960s on other continents. The youngest strains that were completely devoid of P elements originated in populations sampled during the mid-1960s in America, but as late as 1974 in populations from the USSR. There are differences in the patterns of hybridization to the two P-element probes between populations from different geographical regions. These differences are consistent with the varying P-M phenotypic properties of these populations. Taken together with the results of phenotypic tests reported in earlier studies, the available evidence is consistent with the hypothesis of a worldwide P-element invasion of D. melanogaster during the past 30 years and suggests that the putative invasion of the Americas possibly preceded by approximately a decade that in Europe, Africa, and the rest of the world.   相似文献   

5.
C. Y. Wu  J. Mote-Jr.    M. D. Brennan 《Genetics》1990,125(3):599-610
Interspecific differences in the tissue-specific patterns of expression displayed by the alcohol dehydrogenase (Adh) genes within the Hawaiian picture-winged Drosophila represent a rich source of evolutionary variation in gene regulation. Study of the cis-acting elements responsible for regulatory differences between Adh genes from various species is greatly facilitated by analyzing the behavior of the different Adh genes in a homogeneous background. Accordingly, the Adh gene from Drosophila grimshawi was introduced into the germ line of Drosophila melanogaster by means of P element-mediated transformation, and transformants carrying this gene were compared to transformants carrying the Adh genes from Drosophila affinidisjuncta and Drosophila hawaiiensis. The results indicate that the D. affinidisjuncta and D. grimshawi genes have relatively higher levels of expression and broader tissue distribution of expression than the D. hawaiiensis gene in larvae. All three genes are expressed at similar overall levels in adults, with differences in tissue distribution of enzyme activity corresponding to the pattern in the donor species. However, certain systematic differences between Adh gene expression in transformants and in the Hawaiian Drosophila are noted along with tissue-specific position effects in some cases. The implications of these findings for the understanding of evolved regulatory variation are discussed.  相似文献   

6.
T J Lockett  D Lewy  P Holmes  K Medveczky  R Saint 《Gene》1992,114(2):187-193
We describe a new vector for the P-element-mediated introduction of gene constructs into the germ line of Drosophila melanogaster. The P-element vector carries 6.8 kb of genomic DNA containing the rough gene (ro) from D. melanogaster and a polylinker (MCS) containing ten unique cloning sites. To demonstrate its utility, we have cloned into the MCS of this vector, the firefly luciferase (Luc)-encoding gene (luc) under the control of the D. melanogaster hsp70 promoter and have transformed flies with the resultant P-element. Single insertions of this element, whether in the hemizygous or homozygous condition, completely rescued the ro- mutation and directed heat-inducible synthesis of Luc mRNA and enzyme.  相似文献   

7.
Two independent stationary P-related neogenes had been previously described in the Drosophila obscura species group and in the Drosophila montium species subgroup. In Drosophila melanogaster, P-transposable elements can encode an 87 kDa transposase and a 66 kDa repressor, but the P-neogenes have only conserved the capacity to encode a 66 kDa repressor-like protein specified by the first three exons. We have previously analyzed the genomic modifications associated with the transition of a P-element into the montium P-neogene, the coding capacity of which has been conserved for around 20 Myr ( Nouaud, D., and D. Anxolabéhère. 1997. Mol. Biol. Evol. 14:1132-1144). Here we show that the P-neogene of some species of the montium subgroup presents a new structure involving the capture of an additional exon from a very distant P-element subfamily. This additional exon is inserted either upstream or downstream of the first exon of the P-neogene. As a result of alternative splicing, these modified neogenes can produce, in addition to the repressor-like protein, a new protein which differs only by the NH2-terminal region. We hypothesize that this protein diversity within an organism results in a functional diversification due to the selective advantage associated with the domestication of the P-neogene in these species. Moreover, the autonomous P-element which provides the additional exons is still present in the genome. Its nucleotide sequence is more than 45% distant from the previously defined P-type element (M-type, O-type, T-type) and defines a new P-type element subfamily referred to as the K-type.  相似文献   

8.
9.
Two sequences (ARS) capable of maintaining the autonomous replication of plasmids in yeast cells were localized in the right part of Drosophila melanogaster P-element subcloned from the pi 25.1 plasmid. An ARS was found in the DNA region of genome adjacent to P-element. ARS sequences contain imperfect (10 out of 11) consensus typical of yeast ARS and have a complicated domain structure.  相似文献   

10.
11.
We studied the process by which whd, a P-element insertion allele of the Drosophila melanogaster white locus, is replaced by its homolog in the presence of transposase. These events are interpreted as the result of double-strand gap repair following excision of the P transposon in whd. We used a series of alleles derived from whd through P-element mobility as templates for this repair. One group of alleles, referred to collectively as whd-F, carried fragments of the P element that had lost some of the sequences needed in cis for mobility. The other group, whd-D, had lost all of the P insert and had some of the flanking DNA from white deleted. The average replacement frequencies were 43% for whd-F alleles and 7% for the whd-D alleles. Some of the former were converted at frequencies exceeding 50%. Our data suggest that the high conversion frequencies for the whd-F templates can be attributed at least in part to an elevated efficiency of repair of unexpanded gaps that is possibly caused by the closer match between whd-F sequences and the unexpanded gap endpoints. In addition, we found that the gene substitutions were almost exclusively in the direction of whd being replaced by the whd-F or whd-D allele rather than the reverse. The template alleles were usually unaltered in the process. This asymmetry implies that the conversion process is unidirectional and that the P fragments are not good substrates for P-element transposase. Our results help elucidate a highly efficient double-strand gap repair mechanism in D. melanogaster that can also be used for gene replacement procedures involving insertions and deletions. They also help explain the rapid spread of P elements in populations.  相似文献   

12.
S J Bray  J Hirsh 《The EMBO journal》1986,5(9):2305-2311
The dopa decarboxylase gene (Ddc) has been isolated from Drosophila virilis and introduced into the germ-line of Drosophila melanogaster by P-element mediated transformation. The integrated gene is induced at the correct stages during development with apparently normal tissue specificity, indicating that cis-acting elements required for regulation are functionally conserved between the two species. A comparison of the DNA sequences from the 5' flanking regions reveals a cluster of small (8-16 bp) conserved sequence elements within 150 bp upstream of the RNA startpoint, a region required for normal expression of the D. melanogaster Ddc gene.  相似文献   

13.
Drosophila P element integration in the mouse   总被引:4,自引:0,他引:4  
A recombinant plasmid containing the Drosophila melanogaster P element transposon was microinjected into mouse zygotes. Dot-blot analysis indicated that one of the newborns contained a single copy of the microinjected DNA per haploid mouse genome equivalent; two other newborns had integrated multiple copies of the P element construct. Southern mapping revealed that the entire plasmid, including both pBR322 sequences and P element sequences, had integrated in each of the three animals. In the two mice carrying multiple copies of the microinjected DNA, the copies appear to be linked in a tandem head-to-tail array. Therefore, in each of the three newborns integration of P element sequences has occurred by a mechanism which is distinct from that observed when the same plasmid is injected into Drosophila embryos. Analysis of DNA from the offspring of one of the transgenic mice showed no indication of transposition of P element sequences.  相似文献   

14.
Experimental data suggest that the P transposable element has invaded the Drosophila melanogaster genome after a horizontal transfer from the phylogenetically distant species Drosophila willistoni. The differences between P element phylogeny and that of the Drosophila genus could in part be explained by horizontal transfers. In vivo experiments show that P elements are able to transpose in the genomes of other Drosophila species. This suggests that horizontal transmission of P elements could have taken place in many species of this genus. The regulation, transposition, and deleterious effects of the P element in D. melanogaster were formalized and integrated in a global model to produce a simulation program that simulates a P element invasion. The simulations show that our knowledge of the P element in D. melanogaster can explain its behavior in the Drosophila genus. The equilibrium state of the invaded population of a new species depends on its ability to repair damage caused by P element activity. If repair is efficient, the equilibrium state tends to be of the P type state, in which case the element could subsequently invade other populations of the species. Conversely, the equilibrium state is of the M′ type state when the ability to repair damage is low. The invasion of the P element into other populations of this new species can then only occur by genetic drift and it is likely to be lost. The success of a P element invasion into a new species thus greatly depends on its ability to produce dysgenic crosses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Duttaroy A 《Heredity》2002,89(2):114-119
Spontaneous meiotic recombination events do not normally occur in the male germ line of Drosophila melanogaster. However, such events are induced in males when a P transposable element or a source of P element encoded transposase protein is present in its genome. This report concerns a molecular analysis of the meiotic exchanges that were induced in the male Drosophila by P elements within a genetically marked region of the third chromosome. The marked region also harbors a single P-element called P(lArB). Fifty-six percent of the P(lArB) region crossovers indicated some alterations in the P element 5' fragment. Such alterations appear to be related to asymmetric or unequal genetic exchanges. Finally, P(lArB) excision was found to be independent of P(lArB) region crossover events.  相似文献   

16.
17.
18.
19.
Several studies have suggested that P elements have rapidly spread through natural populations of Drosophila melanogaster within the last four decades. This observation, together with the observation that P elements are absent in the other species of the melanogaster subgroup, has lead to the suggestion that P elements may have entered the D. melanogaster genome by horizontal transmission from some more distantly related species. In an effort to identify the potential donor in the horizontal transfer event, we have undertaken an extensive survey of the genus Drosophila using Southern blot analysis. The results showed that P-homologous sequences are essentially confined to the subgenus Sophophora. The strongest P hybridization occurs in species from the closely related willistoni group. A wild-derived strain of D. willistoni was subsequently selected for a more comprehensive molecular examination. As part of the analysis, a complete P element was cloned and sequenced from this line. Its nucleotide sequence was found to be identical to the D. melanogaster canonical P, with the exception of a single base substitution at position 32. When the cloned element was injected into D. melanogaster embryos, it was able to both promote transposition of a coinjected marked transposon and induce singed-weak mutability, thus demonstrating its ability to function as an autonomous element. The results of this study suggest that D. willistoni may have served as the donor species in the horizontal transfer of P elements to D. melanogaster.  相似文献   

20.
D. Garza  M. Medhora  A. Koga    D. L. Hartl 《Genetics》1991,128(2):303-310
A chimeric white gene (wpch) and other constructs containing the transposable element mariner from Drosophila mauritiana were introduced into the germline of Drosophila melanogaster using transformation mediated by the P element. In the absence of other mariner elements, the wpch allele is genetically stable in both germ cells and somatic cells, indicating that the peach element (i.e., the particular copy of mariner inserted in the wpch allele) is inactive. However, in the presence of the active element Mos1, the wpch allele reverts, owing to excision of the peach element, yielding eye-color mosaics and a high rate of germline reversion. In strains containing Mos1 virtually every fly is an eye-color mosaic, and the rate of wpch germline reversion ranges from 10 to 25%, depending on temperature. The overall rates of mariner excision and transposition are approximately sixfold greater than the rates in comparable strains of Drosophila simulans. The activity of the Mos1 element is markedly affected by position effects at the site of Mos1 insertion. In low level mosiac lines, dosage effects of Mos1 are apparent in the heavier level of eye-color mosaicism in Mos1 homozygotes than in heterozygotes. However, saturation occurs in high level mosaic lines, and then dosage effects are not observed. A pBluescribe M13+ plasmid containing Mos1 was injected into the pole plasm of D. melanogaster embryos, and the Mos1 element spontaneously integrated into the germline at high efficiency. These transformed strains of D. melanogaster presently contain numerous copies of mariner and may be useful in transposon tagging and other applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号