首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lake riparian areas provide wildlife habitat for a wide variety of species. Residential development throughout such lakeshore areas of the United States has increased exponentially in recent decades. Awareness of the vulnerability and importance of lakeshore ecosystems has increased concurrently. Lakeshore habitat restoration projects have been implemented to mitigate some of the negative impacts of human shoreline development, and containerized (CT) trees are frequently one of the highest costs associated with such restoration projects. As an alternative, we tested the effectiveness of using dormant bare‐root (BR) trees in restoration projects along two lakeshores in northern Wisconsin, U.S.A. In addition, we experimented using BR stock that was incorporated into gravel medium at a local nursery and planted later in the summer months. We monitored growth and survival of four native tree species in these three planting treatments over a 3–4‐year period. CT red maple (Acer rubra), paper birch (Betula paperifera), and northern red oak (Quercus rubra) increased in size significantly faster than BR and/or gravel culture (GC) counterparts, whereas CT showy mountain ash (Sorbus decora) growth rates were similar to those of BR and GC stock. Mortality was generally low, but for those species/planting treatments with higher mortality (paper birch and red oak), CT trees were more likely to survive than BR or GC trees. Our results show that the success of deciduous BR and/or GC tree stock relative to CT trees is species dependent, and for some species, CT trees' higher growth rates and survivorship could offset their higher costs.  相似文献   

3.
Successional pathways in native forest, planted 15–33 years ago on reconstructed surfaces to restore aesthetic values destroyed by hydro‐electric dam construction at Aratiatia, central North Island, New Zealand, were compared with those on similar surfaces left unplanted. Only native species were planted. Classification identified three canopy communities and several ground layer communities with significant inter‐stratum relationships: Pittosporum tenuifolium‐Sophora tetraptera short forest with ground layers dominated by litter; P. tenuifolium‐Kunzea ericoides short forest over adventive grasses on planted sites; and adventive Cytisus scoparius shrubland over grasses on unplanted sites. Planted communities mirror young secondary forests on intact substrates in the district, but have lower density and similar or higher basal area than such forests elsewhere. Established seedlings of seven planted canopy trees, mostly early successional bird‐dispersed species, are reasonably widespread in floristically rich PittosporumSophora forest. Seedlings of only two species are widespread in floristically poor PittosporumKunzea forest, and none on unplanted sites. This first large‐scale attempt at ecological restoration in New Zealand, by mass planting of new surfaces with early successional native woody species, has created aesthetically‐pleasing stands of indigenous forest on sites which would otherwise remain in relatively stable adventive shrubland communities for the foreseeable future. Only continued monitoring will show whether further management is necessary and whether natural processes are operating at a level sufficient to ensure that artificially initiated successions will continue along more or less natural pathways.  相似文献   

4.
Survival rates of both early and middle instar larvae of the nymphalid butterfly, Sasakia charonda, were estimated to be lowest on test trees planted in a meadow (site A), intermediate in a small, narrow secondary deciduous broadleaf forest (small patch, site B) and highest in a large secondary deciduous broadleaf forest (large forest, site C). The larval mortality rates due to predation by tree-climbing predators from the ground (tree climbing predator) such as ants and the larvae of carabids were estimated to be greater at sites A and B than those at site C. The number of predatory ants climbing test trees was significantly greater at sites A and B than at site C, and the ants harvested honeydew from aphids living on tree leaves at those two sites. Aphid densities were significantly higher on trees at sites A and B than at site C, and aphid densities and numbers of predatory ants were significantly and positively correlated at sites A and B. In an experiment controlling aphid density per branch on test trees, the numbers of ants and the mortality rates of S. charonda larvae were greater on branches with high aphid densities than on those with low aphid densities at both sites A and B. These results suggest that the aphid density per host tree was higher in the meadow and the small patch than in the large forest; at both sites these higher aphid densities attracted higher numbers of predatory ants to test trees, and as a result, mortality rates of S. charonda larvae were increased.  相似文献   

5.
Black poplar (Populus nigra L.) is a major species for European riparian forests but its abundance has decreased over the decades due to human influences. For restoration of floodplain woodlands, the remaining black poplar stands may act as source population. A potential problem is that P. nigra and Populus deltoides have contributed to many interspecific hybrids, which have been planted in large numbers. As these Populus x canadensis clones have the possibility to intercross with wild P. nigra trees, their offspring could establish themselves along European rivers. In this study, we have sampled 44 poplar seedlings and young trees that occurred spontaneously along the Rhine river and its tributaries in the Netherlands. Along these rivers, only a few native P. nigra L. populations exist in combination with many planted cultivated P. x canadensis trees. By comparison to reference material from P. nigra, P. deltoides and P. x canadensis, species-specific AFLP bands and microsatellite alleles indicated that nearly half of the sampled trees were not pure P. nigra but progeny of natural hybridisation that had colonised the Rhine river banks. The posterior probability method as implemented in NewHybrids using microsatellite data was the superior method in establishing the most likely parentage. The results of this study indicate that offspring of hybrid cultivated poplars compete for the same ecological niche as native black poplars. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

6.
Invasion by exotic plant species is known to affect native communities and ecosystems, but the mechanisms of the impacts are much less understood. In a field study, we examined the effects of a tree invader, Acer platanoides (Norway maple, NM), on canopy structure and seedling growth in the understory of a North American deciduous forest. The experimental site contains a monospecific patch of A. platanoides and a mixed patch of A. platanoides with its native congener, A. rubrum (red maple, RM). In the study, we examined canopy characteristics of three types of trees in the forests, i.e., RM trees in the mixed forest, NM trees in the mixed forest, and NM trees in its monospecific patch. Height growth and biomass production of RM and NM seedlings under intact canopies and newly created gaps of the three types of trees were followed for two growing seasons. We found that removal of half of the canopy from focal trees increased canopy openness and light transmission to the forest floor, but to a greater extent under NM trees than under RM trees. Seedlings of these two Acer species varied greatly in biomass production under canopies of the same type of trees and in their responses to canopy opening. For example, seedlings of the exotic NM grown under the native RM trees in the mixed forests increased biomass production by 102.4% compared to NM seedlings grown under conspecific trees. The native RM seedlings grown under NM trees, however, reduced biomass production by 23.5% compared to those grown under conspecific trees. It was also observed that RM was much more responsive in biomass production to canopy opening than NM. For instance, total seedling biomass increased by 632.2% in RM, but by only 134.6% in NM in response to the newly created gaps. In addition, we found that NM seedlings allocated a greater portion of biomass below-ground as canopy openness increased, whereas the same trend was not observed in RM seedlings. Our results thus demonstrated that invasion of NM significantly altered canopy structure and community dynamics in the hardwood forest. Because the exotic NM seedlings are able to grow well under the native RM trees, but not vice versa, NM will likely expand its distribution in the forests and make it an ever increasingly serious tree invader in its non-native habitats, including North America.  相似文献   

7.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

8.
亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值比较研究   总被引:3,自引:0,他引:3  
田苗  宋广艳  赵宁  何念鹏  侯继华 《生态学报》2015,35(23):7709-7717
植物干重热值(GCV)是衡量植物生命活动及组成成分的重要指标之一,反映了植物光合作用中固定太阳辐射的能力。利用氧弹量热仪测定了亚热带和暖温带两个典型森林生态系统常见的276种常见植物叶片的干重热值,探讨了亚热带和暖温带植物热值分布特征,以及不同生活型、乔木类型间植物热值的变化规律。实验结果发现:亚热带常绿阔叶林和暖温带落叶阔叶林叶片热值的平均值分别为17.83 k J/g(n=191)和17.21k J/g(n=85),整体表现为亚热带植物暖温带植物。不同地带性植被的植物叶片热值在不同生活型间表现出相似的规律,其中亚热带常绿阔叶林表现为:乔木(19.09 k J/g)灌木(17.87 k J/g)草本(16.65 k J/g);暖温带落叶阔叶林表现为:乔木(18.41 k J/g)灌木(17.94 k J/g)草本(16.53 k J/g);不同乔木类型间均呈现常绿乔木落叶乔木、针叶乔木阔叶乔木的趋势。落叶阔叶乔木表现为亚热带暖温带,而常绿针叶乔木则呈现亚热带暖温带的趋势。此外,我们对于两个分布区域内的4种针叶树种叶片热值进行了比较,发现华北落叶松(19.32 k J/g,暖温带)杉木(19.40 k J/g,亚热带)马尾松(19.82 k J/g,亚热带)油松(20.95 k J/g,暖温带)。亚热带常绿阔叶林和暖温带落叶阔叶林植物热值的特征及其变化规律,为森林生态系统的能量流动提供了理论基础。  相似文献   

9.
We initiated a study of the effects of mycorrhizal fungal community composition on the restoration of tropical dry seasonal forest trees. Tree seedlings were planted in a severely burned experimental site (1995 fire) during the growing season of 1998 at the El Edén Ecological Reserve, in north Quintana Roo, Mexico. Seedlings of Leucaena leucocephala, Guazuma ulmifolia, Caesalpinia violacea, Piscidia piscipula, Gliricidia sepium, and Cochlospermum vitifolium were germinated in steam‐sterilized soil and either remained uninoculated (nonmycorrhizal at transplanting) or were inoculated with mycorrhizal fungi in soils from early‐seral (recently burned) or late‐seral (mature forest) inoculum. Inoculum from the early‐seral soil was largely Glomus spp., whereas a diverse community of arbuscular mycorrhizal fungi were reintroduced from the mature forest including species of Scutellospora, Gigaspora, Glomus, Sclerocystis, and Acaulospora. Plants grew better when associated with the mature forest inoculum, unlike a previous experiment in which plants grew taller with the early‐seral inoculum. Reasons for the different responses include a less‐intense burn resulting in more residual organic matter. In addition to mycorrhizal responses, plants were severely affected by deer browsing. One tree species, C. vitifolium found in the region but not in the reserve, was eliminated by a resident fungal facultative pathogen. Several practical conclusions for restoration can be made. The common nursery practice of soil sterilization may be detrimental because it eliminates beneficial mycorrhizal fungi; species not native to the site may not survive because they may not be adapted to the local pathogens; and herbivory can be severe depending on the landscape context of the restoration.  相似文献   

10.
Most Hawaiian forests lack resiliency following disturbance due to the presence of non‐native and invasive plant and animal species. The montane wet forest within Hakalau Forest National Wildlife Refuge on Hawai'i island has a long history of ungulate disturbance but portions of the refuge were fenced and most ungulates excluded by the early 1990s. We examined patterns of regeneration within two 100 ha study sites in this forest following the removal of ungulates and in the absence of invasive woody tree species to determine, in part, if passive restoration techniques can be successful under these conditions. We characterized growth, mortality, and basal area (BA) changes for approximately 7,100 marked individuals of all native tree species present in two surveys over a 17–18‐year period within two hundred 30 m diameter forest plots. Considerable recruitment within plots of new trees of all species significantly changed size class distributions and erased deficits in small‐sized trees observed during the first survey, particularly for the codominant canopy tree, koa (Acacia koa). Overall, growth of established dominant 'ōhi'a trees (Metrosideros polymorpha) and recruitment of mid‐canopy trees contributed to increases in BA while high levels of mortality for large A. koa trees contributed to decreased BA. This resulted in a slight increase in BA between the two surveys (+1.9%). This study demonstrates that fencing and ungulate removal may have rescued the A. koa population by facilitating the first real pulse in recruitment in over a century, and that passive restoration can be a successful management strategy in this forest.  相似文献   

11.
The floristic characteristics, age structure and survival modes of Tertiary-relic deciduous forests were analyzed at 1600 m on Mt. Emei (3099 m), Sichuan, China. Three plots were selected to represent typical topographies: Plot 1 at 1620 m on a scree slope, Plot 2 at 1640 m on a slope with moderately rocky soils, and Plot 3 at 1616 m on a gentle slope with less rocky soils. At Plot 1, on the scree slope, the forest was rich in species and dominated by Tertiary remnants and other deciduous trees (Davidia involucrata, Styrax hemsleyana, Cercidiphyllum japonicum var.sinense, Pterocarya hupehensis, Prunus brachypoda, Prunus padus, Tetracentron sinense andStaphylea holocarpa). The relic deciduous tree taxaDavidia, Cercidiphyllum, Tetracentron andEuptelea occupied the unstable concave slopes, where evergreen broad-leaved trees (Castanopsis platycantha andMachilus pingii) were rarely able to survive. On the relatively stable convex slopes of this plot, evergreen trees with small diameter mainly appeared in the subcanopy and shrub layers.Davidia involucrata was the dominant species in this forest. On the slope with moderately rocky soils (Plot 2), the forest was co-dominated by relicDavidia and other deciduous (Styrax andPterocarya), and evergreen trees (Castanopsis andMachilus). On the gentle slope with less rocky soils (Plot 3),Davidia trees were found only in the subcanopy and shrub layers, and the forest was dominated byMachilus, Castanopsis, Styrax andPrunus trees. Regeneration ofDavidia occurs mainly on the scree slope where landslides are most common. The age structure of theDavidia stands indicates that this species is able to survive on the unstable scree habitat due to its strong sprouting ability. The Tertiary-relic deciduous forest on the scree slope is seen to be a topographic climax forest.  相似文献   

12.
Ecological restoration of abandoned, formerly forested farmland can improve the delivery of ecosystem services and benefit biodiversity conservation. Restoration programs can involve removing isolated, non‐native trees planted by farmers for fruit or wood. As such “legacy” trees can attract seed dispersers and create microclimates that help native seedlings to establish, removing them may actually slow forest recovery. Working on abandoned farmland in Kibale National Park, Uganda, we evaluated the effect of legacy trees on forest recovery by measuring the number, diversity, and biomass of native seedlings and saplings regenerating in plots centered on avocado (Persea americana), mango (Mangifera indica), and Eucalyptus legacy trees compared with adjacent plots without legacy trees. The assemblages of native, forest‐dependent tree species in plots around avocado and mango trees were distinct from each other and from those around eucalyptus and all the near‐legacy plots. In particular, avocado plots had higher stem density and species richness of forest‐dependent species than near‐avocado plots, particularly large‐seeded, shade‐tolerant, and animal‐dispersed species—key targets of many restoration plans. Furthermore, many of the species found in high numbers were among those failing to establish in ongoing large‐scale forest restoration in Kibale. Taken together, our results demonstrate that the legacy trees facilitate the dispersal and establishment of native tree species. Retaining the existing legacy trees for a number of years could usefully complement existing management strategies to restore more biodiverse native forest in degraded lands. However, careful monitoring is needed to ensure that the legacy trees do not themselves establish.  相似文献   

13.
We examined the impacts of land-use history on the species composition and diversity of a warm-temperate riparian forest landscape in Kyushu, southern Japan, focusing on the relationship between evergreen oaks and deciduous trees in natural and seminatural forests. The species composition of 59 plots was classified into four types (A to D). Type A, which showed a significant bias towards sites not subject to nonforest land use since 1947, had high species diversity consisting of (1) many lucidophyllous components of the region, including the rare indigenous oak Quercus hondae, and (2) summergreen tree species of varying dominance and number representing unique or locally rare elements of the riparian landscape in this warm-temperate region. Type B was dominated by a common species of oak, Q. glauca, and displayed less clear distribution bias with land-use history. In contrast to types A and B, types C and D, which were characterized by high dominance of deciduous trees, had negative bias away from sites that had been under forest land use in 1947. Presumably, intensive anthropogenic disturbances associated with nonforest land uses had expanded the habitats for deciduous trees. This phenomenon was represented by the establishment of forests (type D) dominated by Ulmus davidiana var. japonica (UDJ) after it had been released from the suppression of evergreen forest trees during a period of nonforest land use that prevents the successful recovery of evergreen trees. From these results we conclude that the impacts of land-use history on the diversity of warm-temperate riparian forest landscape are multiphased: a period of nonforest land use has a strong negative impact on lucidophyllous forest trees represented by the rare indigenous oak Q. hondae; release from the suppressive effects of the lucidophyllous species then encourages establishment of locally rare deciduous tree flora represented by UDJ, which continue to persist for decades after abandonment of nonforest land use.  相似文献   

14.
Herbivores can affect future forest composition by feeding selectivity. At temperature-sensitive treelines, herbivory can exacerbate or constrain climate-driven distributional shifts in tree species. This study analyses the impact of herbivory in a Mediterranean treeline of widespread Pinus sylvestris and P. nigra pinewoods, testing whether herbivory damage reinforces or inhibits the climatic responses of these trees. We used naturally occurring sapling pairs of similar size and age of both species, thereby isolating plant characteristics from environmental effects in herbivore behaviour. Herbivory damage by ungulates proved higher than that caused by insects in saplings of both species. Low plant density and extreme abiotic conditions at the treeline could in part be responsible for the observed low incidence of insect herbivory. Ungulates preferred P. sylvestris over P. nigra, implying heavier browsing damage for a large number of P. sylvestris saplings, suffering reduced internode growth as a consequence. In addition, P. sylvestris could not compensate height-growth reductions due to browsing with higher growth rate than P. nigra. In fact, P. sylvestris showed similar or lower relative height growth with respect to P. nigra. Under a scenario of increasing aridity and maintenance of ungulate populations, the upward migration of P. sylvestris in its southern range could be restricted by higher drought vulnerability than P. nigra, a situation exacerbated by ungulate herbivory. Our results indicate that ungulate herbivory reinforces climatic response of coexisting P. sylvestris and P. nigra at treeline, favouring a potential change in community dominance towards Mediterranean P. nigra.  相似文献   

15.
The quantitative role of the canopy size of nurse shrubs on microenvironment and native tree establishment in degraded tropical lands has been seldom studied. In a 21‐month field experiment, we aimed to test the effect of a native shrub with different canopy sizes on the early establishment of native trees as part of the effort of forest restoration in tropical China. We examined the microenvironment, and the seedling establishment and growth of two native trees: Castanopsis fissa and Syzygium hancei in both open space (OS) microsite and microsite under the canopy of the native pioneer shrub Rhodomyrtus tomentosa. Shrub microsite was further divided into large canopy (LC), and medium canopy (MC) microsite, based on the shrub leaf area indices. Results showed that relative to OS, LC had higher soil nutrient concentration and water content, and lower photosynthetic active radiation (PAR), while MC had lower PAR and higher soil exchangeable Mg, K, and Ca. Survival and growth were mostly enhanced, while water stress and photoinhibition reduced for C. fissa seedlings in MC and S. hancei seedlings in LC. It is found that the beneficial effects of the native shrub on seedling establishment and growth result mostly from the improvement in nutrient and water availabilities, the reduction in plant stress caused by harsh summer light, and the specific ecological requirements of different tree species. We suggest that different canopy sizes of native shrub R. tomentosa may be explored to target different native trees and hence promote forest restoration in degraded tropical ecosystems.  相似文献   

16.

Aim

Ecological restoration is critical for recovering biodiversity and ecosystem services, yet designing interventions to achieve particular outcomes remains fraught with challenges. In the extensive regions where non‐native species are firmly established, it is unlikely that historical conditions can be fully reinstated. To what degree, and how rapidly, can human‐dominated areas be shifted via restoration into regimes that benefit target species, communities or processes?

Location

We explore this question in a >20‐year‐old reforestation effort underway at Hakalau Forest National Wildlife Refuge in montane Hawaii. This large‐scale planting of Acacia koa trees is designed to secure populations of globally threatened bird species by transitioning the site rapidly from pasture to native forest.

Methods

We surveyed all forest birds in multiple corridors of young planted trees, remnant corridors of mature trees along gulches and at sites within mature forest. Using a Bayesian hierarchical approach, we identified which factors (distance from forest, habitat type and surrounding tree cover) had the most important influence on native and exotic bird abundance in the reforestation area.

Results

We found that 90% of native and exotic bird species responded quickly, occupying corridors of native trees approximately a decade after planting. However, native and exotic forest birds responded to markedly different characteristics of the reforested area. Native bird abundance was strongly predicted by proximity to mature forest and remnant corridors; conversely, exotic bird abundance was best predicted by overall tree cover throughout the area reforested.

Main conclusions

Our results demonstrate that large‐scale tree planting in corridors adjacent to mature forest can catalyse rapid recovery (both increased abundance and expanded distribution) of forest birds and that it is possible to design reforestation to benefit native species in novel ecosystems.
  相似文献   

17.
In NW Patagonia, South America, natural shrublands and mixed forests of short Nothofagus antarctica (G. Forst.) Oerst. trees are currently being replaced by plantations with Pseudotsuga menziesii (Mirb) Franco. This land use change is controversial because the region is prone to drought, and replacement of native vegetation by planted forests may increase vegetation water use. The goal of this study was to examine the physiological differences, especially the response of water flux and canopy conductance to microclimate, that lead to greater water use by exotic trees compared to native trees. Meteorological variables and sapflow density of P. menziesii and four native woody species were measured in the growing season 2005–2006. Canopy conductance (gc) was estimated for both the exotic (monoculture) and native (multi-species) systems, including the individual contributions of each species of the native forest. Sapflow density, stand-level transpiration and gc were related to leaf-to-air vapor pressure difference (VPD). All native species had different magnitudes and diurnal patterns of sapflow density compared to P. menziesii, which could be explained by the different gc responses to VPD. Stomatal sensitivity to VPD suggested that all native species have a stronger stomatal control of leaf water potential and transpiration due to hydraulic limitations compared to P. menziesii. In conclusion, differences in water use between a P. menziesii plantation and a contiguous native mixed forest of similar basal area could be explained by different gc responses to VPD between species (higher sensitivity in the native species), in addition to particular characteristics of the native forest structure.  相似文献   

18.
19.
Vegetation composition and forest stand development are frequently mediated by browsing herbivores. These relationships have received little attention in a forest restoration context even though White‐tailed deer (Odocoileus virginianus) is likely to influence these agriculture, forest, and restored ecosystem mosaic landscapes. Tree species composition, herbaceous vegetation, and deer browsing patterns were assessed 5 and 7 years following bottomland hardwood forest restoration on a 526‐ha site in the Cache River watershed in southern Illinois, United States. Light‐seeded tree species (Fraxinus pennsylvanica, Acer negundo, Liquidambar styraciflua, and Platanus occidentalis) of volunteer origin dominated the woody vegetation component, with especially high stocking and density near existing forest cover and potential seed sources. At more distant locations, presumably planted Quercus spp. were more likely to dominate and were the only tree species found in 15% of plots in year 7. Quercus stocking increased over the course of the study, constituting 7% of trees during year 7. Deer herbivory was associated with reduced stem height and disproportionately impacted seedlings of Quercus palustris and Celtis spp. Our results suggest that deer browsing influences forest stand composition and density as a function of distance from the nearest forest edge. Herbaceous vegetation had little impact on early stand development. Continued spread of the exotic and invasive Lonicera japonica and potential mortality of F. pennsylvanica due to an anticipated Emerald ash borer (Agrilus planipennis) epidemic, combined with low stand density and delayed canopy closure, may result in persistent overstory gaps and compromise long‐term restoration success.  相似文献   

20.
Successful growth of a tree is the result of combined effects of biotic and abiotic factors. It is important to understand how biotic and abiotic factors affect changes in forest structure and dynamics under environmental fluctuations. In this study, we explored the effects of initial size [diameter at breast height (DBH)], neighborhood competition, and site condition on tree growth, based on a 3‐year monitoring of tree growth rate in a permanent plot (120 × 80 m) of montane Fagus engleriana–Cyclobalanopsis multiervis mixed forest on Mt. Shennongjia, China. We measured DBH increments every 6 months from October 2011 to October 2014 by field‐made dendrometers and calculated the mean annual growth rate over the 3 years for each individual tree. We also measured and calculated twelve soil properties and five topographic variables for 384 grids of 5 × 5 m. We defined two distance‐dependent neighborhood competition indices with and without considerations of phylogenetic relatedness between trees and tested for significant differences in growth rates among functional groups. On average, trees in this mixed montane forest grew 0.07 cm year?1 in DBH. Deciduous, canopy, and early‐successional species grew faster than evergreen, small‐statured, and late‐successional species, respectively. Growth rates increased with initial DBH, but were not significantly related to neighborhood competition and site condition for overall trees. Phylogenetic relatedness between trees did not influence the neighborhood competition. Different factors were found to influence tree growth rates of different functional groups: Initial DBH was the dominant factor for all tree groups; neighborhood competition within 5 m radius decreased growth rates of evergreen trees; and site condition tended to be more related to growth rates of fast‐growing trees (deciduous, canopy, pioneer, and early‐successional species) than the slow‐growing trees (evergreen, understory, and late‐successional species).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号