首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous inhibition of oxidative phosphorylation by rho- mutation and adenine nucleotide exchange by op1 mutation or bongkrekic acid results in intramitochondrial energy depletion and cessation of growth in yeast. Effect of energy depletion of mitochondria on mitochondrial biogenesis was studied in intact yeast cells. Immunoblot analysis revealed an overall decrease in cellular content of two mitochondrial proteins - ADP/ATP translocase and beta subunit of mitochondrial ATPase - together with their lower ability to reach the proper intramitochondrial compartment. Both effects indicate disturbed biogenesis of energy depleted mitochondria. Quantitative differences in growth abilities and mitochondrial damage observed in two studied systems - op1 rho- double mutants and rho- cells treated with bongkrekic acid - can be explained by different degree of intramitochondrial energy depletion due to leakiness of op1 mutation in op1 rho- cells.  相似文献   

2.
A B Devin  N A Koltovaia 《Genetika》1986,22(12):2768-2774
Different combinations of modifying genes which enhance the rho- mutability of haploid yeast cells are shown to be suppressible by the srm1, srm2, srm3 mutations and by the disomy for chromosome IV. The srm1 mutation leads to dramatic decrease in both the spontaneous and ethidium-bromide induced rho- mutability. Other srm mutations studied and the disomy appear to cause relatively moderate quantitative changes in the spontaneous rho- mutation rate and to have no significant effect on mutation induction by ethidium bromide. Neither additivity nor synergism was revealed by the analysis of the interaction between the srm mutations. We suggest that in Saccharomyces an efficient mechanism of the rho- mutagenesis operates which can be directly affected by the srm1 mutation and more or less modified by other srm mutations under study and by the disomy for chromosome IV.  相似文献   

3.
Induction of petite (cytoplasmic-respiration-deficient, rho-,rho-) mutations in yeast and deletion of mitochondrial drug-resistance genetic markers were compared after after treatment with ethidium and the corresponding photoaffinity probe, ethidium azide. Deletion of mitochondrial drug-resistance markers for chloramphenicol, erythromycin and oligomycin in these petite mutants was observed during prolonged treatment times with ethidium and with ethidium azide in the dark. A similar loss of drug-resistance markers was also observed in petites produced by photolytic treatment with the azide analogue, although the rate of loss appeared to be somewhat less. These results confirmed the usefulness of photoaffinity labeling with ethidium monoazide for studies of mitochondrial mutations.  相似文献   

4.
The influence of the C8 alkoxymethylene trimethyloammonium chloride on the growth of Saccharomyces cerevisiae and activity of mitochondria was studied. It was shown that the compound at low concentration inhibited growth on glycerol medium, but considerably higher concentration is involved in the inhibition of growth on glucose medium. C8-ATC also exerted another inhibitory effect on genotypically different yeast strains: it appeared that rho- strain is more sensitive than rho+ strain. C8-ATC compound was not capable itself of inducing petite mutations, but is able of retarding the petite inducing activity of the mutagen ethidium bromide. The result pointed out the role of mitochondria in the expression of sensitivity to the investigated compound.  相似文献   

5.
A yeast mutant with an impaired system of translocation of adenine nucleotides across the mitochondrial membrane, which stops dividing after superposition of the λ - mutation, was investigated. The results of this work indicate that combination of the op1 mutation with the λ- mutation in a single cell results in interruption of synthesis of polysaccharides and DNA leading to cessation of division of theop 1λ mutant. The mechanism of this effect remains unclear.  相似文献   

6.
A conditional-lethal rho mutant of Salmonella typhimurium LT2 has been isolated. The mutation was selected as a suppressor of the polarity of an insertion sequence (IS)2-induced mutation (gal3) carried on an F' plasmid. In addition to suppression of IS2-induced polarity, the rho-111 mutation suppressed nonsense and frameshift polarity. The rho-associated polycytidylic acid-dependent adenosine triphosphatase activity in the mutant strain was elevated 15-fold above that in the parental strain, and the mutant rho protein was thermally unstable. A temperature-resistant revertant of the mutant strain did not suppress polarity and contained normal levels of polycytidylic acid-dependent adenosine triphosphatase, suggesting that the phenotype of the rho-111-bearing strain is the consequence of a single mutation. The rho-111 mutation was located on the S. typhimurium linkage map midway between the ilv and cya loci by phage P22 cotransduction studies. F' plasmid maintenance was not impaired in the mutant strain, and the mutation was recessive to the wild-type allele. The rho-111 mutation did not alter in vivo expression of either the tryptophan or histidine operons.  相似文献   

7.
Ethidium Bromide-Resistant Mutant of Bacillus subtilis   总被引:6,自引:1,他引:5       下载免费PDF全文
An ethidium bromide-resistant mutant (EB8) derived from a Marburg strain of Bacillus subtilis was found to be conditionally resistant to 10 mug of ethidium bromide per ml. Expression of resistance is complete only during vegetative growth at incubation temperatures above 30 C in complex medium or minimal medium supplemented with Casamino Acids. Strain EB8 is cross-resistant to acriflavine and proflavine. The ethidium bromide resistance marker is co-transduced with hisA1 at a frequency of 6% and is located to the right of hisA1 on the B. subtilis chromosome as it is usually represented on the map. Incorporation of [5-(3)H] uridine by strain EB8 showed that ribonucleic acid synthesis in both whole cells and protoplasts is ethidium bromide-resistant.  相似文献   

8.
Summary Some physiological properties of a multiple-drug-resistant mutant with a permeability barrier to chloramphenicol and its isogenic parental strain were compared. The ATPase specific activity of plasma and mitochondrial membranes isolated from the mutant strain was approximately 20% lower (P(0.001, Tables 1 and 2) than that of membranes isolated from the isogenic parental strain. Additional evidence of altered mitochondrial function was: (i) the enhanced growth of the parental strain was eliminated by the [rho-] state (Table 3); (ii) the mutant strain had a greater resistance to petite induction by ethidium bromide (Table 4); (iii) the mutant strain was unable to use a nonfermentable energy source for respiratory adaptation (Table 5). It is proposed that a single gene mutation has resulted in an alteration of some physiological properties of the plasma and mitochondrial membranes.  相似文献   

9.
Grande strains of Saccharomyces cerevisiae were mutagenized either by ethidium bromide or by 3-carbethoxy-psoralen (a monofunctional furocoumarin derivative) activated by 365nm light. 973 primary rho- clones induced were randomly collected and analyzed individually for the presence or absence of fifteen mitochondrial genetic markers. 1. Under mild conditions of mutagenesis, 83% of the primary clones showed single-deletion genotypes; a unique order of 14 markers could be deduced from the patterns of the deletion. The gene order confirmed our previous map constructed from the analysis of established non-random petite clones. From the frequencies of disjunction between markers, the distance separating 14 mitochondrial markers were estimated. 2. One region, carrying oxi-3, pho-1 and mit 175 loci, was preferentially lost in rho- mutants: there is a strong constraint in the frequencies of various genotypes found in rho- clones. On each side of this particular region, a bidirectionally oriented pattern of retention of markers is observed.  相似文献   

10.
11.
An Escherichia coli mutant, C18, which plates at an efficiency of 5.0 x 10(-4) under anaerobic condition, was isolated among spontaneous nalidixic-acid-resistant mutants. This strict aerobic mutation was mapped by P1 cotransduction with a gyrA linked transposon Tn10 and found to be at the gyrA gene. A low degree of superhelicity of pBR322 DNA isolated from C18 was demonstrated by agarose gel electrophoresis with various concentrations of ethidium bromide. The superhelical density of pBR322 isolated from C18 was 80% of the value of pBR322 isolated from wild-type bacteria cultured under aerobic condition, and 50% cultured under anaerobic condition. These results lead us to conclude that a certain mutation of the gyrA gene causes a decrease in DNA superhelicity and prevents anaerobic growth.  相似文献   

12.
A ciprofloxacin-resistant mutant of Clostridium perfringens, strain VPI-C, which had stable mutations in the topoisomerase genes, accumulated less norfloxacin and ethidium bromide than the wild type, strain VPI. Efflux pump inhibitors both increased the accumulation of ethidium bromide by cells of the mutant and enhanced their sensitivity to this toxic dye. Cloning a gene, which codes for a putative ABC transporter protein (NP_562422) of 527 amino acids, from the mutant strain VPI-C into the wild-type strain VPI not only reduced the accumulation of ethidium bromide by the recombinant strain but also reduced its sensitivity to norfloxacin and ciprofloxacin. Efflux pump inhibitors decreased the rate at which ethidium bromide was removed from the cells of the recombinant strain. It appears that the putative ABC transporter protein (NP_562422) may contribute to extrusion of drugs from C. perfringens.  相似文献   

13.
Cell lines resistant to ethidium bromide have been developed from cultured mammalian BHK21/C13 cells and these same cells transformed by Rous sarcoma virus (C13/B4). Cells resistant to 2 micrograms ethidium bromide per milliliter have been cloned. One clone of the control and one of the virus-transformed cell lines has been employed for characterization. The resistant cells, in the presence of 2 micrograms ethidium bromide/ml, grow at approximately the same rate as the untreated parental cells. The control cells possess a "normal" karyotype (44 chromosomes), while the corresponding ethidium bromide mutant has a reduced chromosome number of 41 and a number of translocations. The mitochondria displayed morphological alterations compared to the parental lines during the transition phase prior to the isolation of the ethidium bromide-resistant cells. The mitochondria of the ethidium bromide-resistant mutants appear somewhat enlarged with a normal morphology. The effect of ethidium bromide on selected respiratory enzymes in normal and virus-transformed ethidium bromide-resistant baby hamster kidney cells was determined. Ethidium bromide-resistant cells exhibited a depressed level of cytochrome aa3. This depression could not be reversed by growth in ethidium bromide-free media. Ethidium bromide-resistant cells possessed the same cytochrome b, c, and c1 levels per cell as their corresponding parental lines. Purified mitochondria isolated from virus-transformed ethidium bromide-resistant cells exhibited a depression in cytochrome oxidase-specific activity, while the ethidium bromide-resistant control cells did not. All cell lines studied showed a depression in NADH-ferricyanide and NADH-cytochrome c reductase-specific activities relative to their parental BHK21/C13 cells. No increase was observed in virus-transformed ethidium bromide-resistant cells. Ethidium bromide-resistant control cells exhibited a two-fold increase in oligomycin-insensitive adenosine triphosphatase activity relative to their parental cells. All of the cell lines studied possessed equivalent oligomycin-sensitive adenosine triphosphatase-specific activity except for the virus-transformed, dye-resistant mutant, whose activity was increased.  相似文献   

14.
The disomy for chromosome IV in the strains studied led to: reduction in the red pigmentation of ade1 mutant colonies; a decrease in spontaneous rho- mutant frequency, and impairment of sporulation in hybrids descended from disomic parents. The nuclear srm1 mutation decreasing the spontaneous rho- mutability promoted the spontaneous extra chromosome loss in the disomics for chromosome IV. This result suggests a close connection between the spontaneous rho- mutability and mitotic chromosome stability.  相似文献   

15.
After mutagenization and selection, mutant Aspergillus niger strains resistant to certain agents were obtained. Seven of the mutants showed increased extracellular glucose oxidase (GOD), the level for individual cases ranged widely from 8.8 to over 138.5% in comparison with the parental strain. Studies of the relationship between method of selection and frequency of mutation showed that the highest frequency of positive mutations (15.8% and 17.3%) was obtained from mutants resistant to ethidium bromide (1 mmol 1-1) and sodium gluconate (45%), respectively. The time course of growth and enzyme production by the most active mutant AM-11 showed intra- and extracellular GOD activities to have increased about 2.2- and 2.4-fold, respectively, compared with the parental strain.  相似文献   

16.
The F1-ATPase is a multimeric enzyme (alpha3 beta3 gamma delta epsilon) primarily responsible for the synthesis of ATP under aerobic conditions. The entire coding region of each of the genes was deleted separately in yeast, providing five null mutant strains. Strains with a deletion in the genes encoding alpha-, beta-, gamma- or delta-subunits were unable to grow, while the strain with a null mutation in epsilon was able to grow slowly on medium containing glycerol as the carbon source. In addition, strains with a null mutation in gamma or delta became 100% rho0/rho- and the strain with the null mutation in gamma grew much more slowly on medium containing glucose. These additional phenotypes were not observed in strains with the double mutations: Delta alpha Delta gamma, Delta beta Delta gamma, Deltaatp11 Delta gamma, Delta alpha Delta delta, Delta beta Delta delta or Deltaatp11 Delta delta. These results indicate that epsilon is not an essential component of the ATP synthase and that mutations in the genes encoding the alpha- and beta-subunits and in ATP11 are epistatic to null mutations in the genes encoding the gamma- and delta-subunits. These data suggest that the propensity to form rho0/rho- mutations in the gamma and delta null deletion mutant stains and the slow growing phenotypes of the null gamma mutant strain are due to the assembly of F1 deficient in the corresponding subunit. These results have profound implications for the physiology of normal cells.  相似文献   

17.
The uptake of ethidium bromide by Escherichia coli K 12 cells has been studied by using 14C-labeled ethidium and spectrofluorometry on three E. coli strains: the first one (AB1157) has an ethidium-resistant phenotype; the second one derives from the first one after a single mutation (at 10 min on the E. coli genetic map) and has an ethidium-sensitive (Ebs) phenotype; the third one is the acrA strain which appeared to have the same phenotype as the Ebs strain. When the cells are in exponential growth, no ethidium enters wild-type cells, and a very limited amount of ethidium enters Ebs and acrA cells. Massive quantities of ethidium enter AB1157, Ebs, and acrA cells treated by uncouplers and respiring Ebs cells treated by the membrane ATPase-inhibitor dicyclohexylcarbodiimide. A small amount of ethidium enters cells treated in M9 succinate medium by metabolic inhibitors such as KCN or cells starved with oxygen in the same M9 medium. The amount of ethidium and ethidium dimer retained at equilibrium by either type of cell, and by cells infected by T5 phage, as well as the kinetics of influx and efflux, has been measured under a variety of situations (membrane energized or not, and/or membrane ATPase inhibited or not). Furthermore, it was shown that ethidium binds to both RNA and DNA when it enters CCCP-treated wild-type E. coli cells, whereas it binds mainly to DNA when it enters Ebs and acrA cells in exponential growth. As it will be discussed, it is difficult to account for the EthBr uptake by invoking only membrane functions and active transport. Therefore, it is proposed that the variations of the nucleic acid accessibility in E. coli cells might play a role in the control of this uptake. Accordingly, in ethidium-sensitive cells, the mutation would have caused a significant part of the chromosomal DNA (10-20%) to become accessible to ethidium. Hansen [Hansen M. T. (1982) Mutat. Res. 106, 209-216], after a study of the photobinding of psoralen to nucleic acids in the acrA mutant, also suggested that DNA environment was modified in acrA cells.  相似文献   

18.
Ethidium bromide inhibits the in vitro replication of MDV-1 RNA (a small replicating RNA molecule) by reducing the rate of chain elongation. In a serial transfer experiment, in the presence of ethidium, a mutant RNA was selected that was more resistant to ethidium inhibition than is the wild-type MDV-1 RNA.The complete nucleotide sequence of the mutant RNA was determined and three nucleotides in the mutant sequence were found to be different from those in the wild type. The mixture of mutant and wild-type RNAs present in successive transfers was also sequenced. Each of the three point mutations occurred at a different time. These results show that the mutant RNA did not arise from a pre-existing strand present in the wild-type population, but rather, occurred de novo in the course of the experiment.It is probable that the chemical basis of resistance is the elimination of ethidium binding sites due to the specific alterations in the nucleotide sequence, since the mutant RNA was found to bind less ethidium than the wild-type molecules.  相似文献   

19.
Lebr 625 and Lebr 350 cells, resistant to ethidium bromide in concentrations 25 and 50 mkg/ml, are able to grow continuously in serum- and protein-free media. Under the same conditions the parental L929 cells are not able to. Two cell lines (625 sf and 350 sf) were established capable of growing in serum- and protein free media. It is found that ethidium bromide is toxic for resistant cells grown the in serum-free medium. The addition of serum lowers the toxic action of ethidium bromide. A continuous growth of resistant cells in serum-free medium (under nonselective conditions) leads to a decreased level of resistance, which may nevertheless persist for a long period of cultivation (over 2.5 years).  相似文献   

20.
Mitochondria were isolated from the cellular slime mold. Dictyoostelium discoideum, and partially purified by sucrose density gradient fractionation. The most purified mitochondrial fraction from the gradient contained essentially no contaminating lysosomes and minimal amounts of contaminating peroxisomes as determined by the marker enzymes N-acetyl-glucosaminidase and catalase. A mitochondrial fraction with the same amount of lysosomal and peroxisomal contamination was also isolated from cells which had been treated with ethidium bromide for 5 days. The most purified mitochondrial fraction from control and ethidium bromide-treated cells had an identical buoyant density of 1.181 to 1.182 g per ml, suggesting that treatment with the drug does not result in any drastic structural changes in the mitochondrial membrane which would affect its density. In the purified mitochondria from ethidium bromide-treated cells, the content of cytochromes a-a3 was decreased over 80% and that of cytochrome oxidase and oligomycin sensitive ATPase were reduced approximately 50%. By contrast, the specific activities of NADH and succinate dehydrogenases were identical in the purified mitochondria from control and ethidium bromide-treated cells. Previously, we had reported that the specific activities of these two enzymes had nearly doubled in whole cells maintained in ethidium bromide for a time equivalent to six or seven generations after growth had stopped (Stuchell, R. N., Weinstein, B. I., and Beattie, D. S. (1973) Fed. Eur. Biochem. Coc Lett. 37, 23-26). These results suggest that continued formation of new mitochondrial membranes, with an identical complement of succinate and NADH dehydrogenases, must occur despite the cessation of cell growth which occurs as a result of the ethidium bromide induced loss of mitochondrial enzymes. Consequently, the amount of mitochondria, or mitochondrial protein per cell, calculated from the activity of NADH and succinate dehydrogenases has increased nearly 50%. Possible models to explain the control of mitochondrial biogenesis are discussed to explain these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号